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Bone injury imaging in knee and
ankle joints using fast-field-echo
resembling a CT using restricted
echo-spacing MRI: a
feasibility study
Nan Wang1, Zhengshi Jin1, Funing Liu1, Lihua Chen1,
Ying Zhao1, Liangjie Lin2, Ailian Liu1 and Qingwei Song1*

1Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China,
2Clinical and Technical Support, Philips Healthcare, Beijing, China
Purpose: To explore the consistency of FRACTURE (Fast-field-echo Resembling

A CT Using Restricted Echo-spacing) MRI and X-Ray/computerized tomography

(CT) in the evaluation of bone injuries in knee and ankle joints.

Methods: From Nov. 2020 to Jul. 2023, 42 patients with knee joint or ankle joint

injuries who underwent FRACTURE MRI examinations were retrospectively

collected. 11 patients were examined by both X-Ray and FRACTURE

examinations. 31 patients were examined by both CT and FRACTURE

examinations. The fracture, osteophyte, and bone destruction of the joints

were evaluated by two radiologists using X-Ray/CT and FRACTURE images,

respectively. Kappa test was used for consistency analysis.

Results: The evaluation consistency of fracture, osteophyte and bone

destruction via X-Ray and FRACTURE images by radiologist 1 were 0.879,

0.867 and 0.847 respectively, and for radiologist 2 were 0.899, 0.930, and

0.879, respectively. The evaluation consistency of fracture, osteophyte and

bone destruction via CT and FRACTURE images by radiologist 1 were 0.938,

0.937 and 0.868 respectively, and for radiologist 2 were 0.961, 0.930, and

0.818, respectively.

Conclusion: For fracture, osteophyte, and bone destruction of knee and ankle

joints. FRACTURE MRI showed a high consistency with X-Ray/CT examinations.
KEYWORDS

MRI, CT, bone, knee, ankle
Abbreviations: FRACTURE, FFE Resembling A CT Using Restricted Echo-spacing; TE, echo time; 3D, three

dimensional; SNR, signal to noise ratio; ISP, IntelliSpace Portal; TR, repetition time; ASIR, adaptive statistical

iterative reconstruction; PACS, picture archiving and communication system; UTE, ultrashort echo time; RF,

radio frequency; GRE, gradient recalled echo; ZTE, zero echo time; sCT, synthetic CT.
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1 Introduction

Fracture, osteophyte and bone destruction are common types of

injuries in bone and joint system, which seriously affect the quality

of life of patients. X-Ray and computerized tomography (CT) are

the main imaging tools for clinical diagnosis of bone and joint

diseases, and widely used in clinical practice. However, X-Ray/CT

imaging is associated with ionizing radiation and may cause

indeterminate damage to the human body, which requires a high

degree of caution for examination of specific populations, such as

pediatric patients and pregnant women. Therefore, a non-radiation

imaging technology is urgently needed as a supplement to X-Ray or

CT examinations especially for multiple longitudinal examinations

of disease progress, which can avoid radiation dose to patients, and

alleviate the psychological burden of patients and their families (1,

2). MRI, as a non-invasive and non-radiation imaging technique,

can provide high soft-tissue contrast with multiple parameters and

is considered to be the first choice and necessary examination

method for diagnosing soft tissue injuries such as ligaments,

tendons and menisci of the osteoarticular system. However, most

of the bone structures show very limited signals on conventional

MRI (3, 4). A variety of advanced MRI methods are gradually

developed for application to the bone and joint system (5). Among

them, a modified three dimensional (3D) fast-field-echo sequence

termed as Fast-field-echo Resembling A CT Using Restricted Echo-

spacing (FRACTURE) can display the bone cortex and show bone

changes caused by fracture, osteophyte or bone tumor similar to CT

(6, 7). In recent years, applications of FRACTURE MRI in different

clinical situations had been reported. FRACTURE MRI can be

delineated inwardly and outwardly beveled fractures as well as

radiating fracture lines, while standard T1- and T2-weighted MRI

detected gunshot-related soft tissue injuries. The FRACTURE MRI

was preliminarily explored by Johnson B et al. for children

examinations, including evaluations of knee joint, lumbar

vertebra and elbow joint (all with only 1 case) (8). Deininger-

Czermak E et al. found that visualization of non-pathological bones

and fractures at the skull vault on FRACTURE images were

comparable to CT images (9). A recent study showed that, with

CT as reference, FRACTURE added to standard MR scans,

providing a unique contrast of bones from the surrounding

tissues, can deliver comparable information with CT on osseous

cervical spine status (10).

Actually, several types of MRI techniques can be used for bone

visualization. Firstly, the ultrashort echo time (UTE) type methods

use a short excitation radio frequency (RF) pulse and the data

acquisition is implemented immediately after signal excitation with

the start of readout gradient. The 3D UTE imaging is commonly

achieved by combining a short rectangular RF pulse excitation with

a 3D radial mapping of k-space (11, 12). Zero Echo Time (ZTE)

imaging is an alternative approach for imaging of tissues with short

transverse relaxation with application of the readout gradient prior

to excitation (13, 14). ZTE is less sensitive to gradient imperfections,

and can achieve shorter TRs and scan times than UTE due to the

minimal gradient switching requirements (15, 16). Different from

UTE/ZTE, FRACTURE does not require the TE to be extremely

short (such as <1 ms), but uses a multi-echo 3D fast field echo
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sequence for signal acquisition at fixed echo intervals. And the high

contrast bone images with high SNR can be reconstructed through

echo accumulation, echo subtraction, and grayscale inversion (17,

18). FRACTURE places much lower requirements on hardware

performance such as on gradient or RF pulse.

While the application of FRACTURE in evaluation of knee and

ankle joint injuries still have not been comprehensively reported.

The study objective was to assess whether the 3D isotropic

FRACTURE imaging is feasible in evaluation of knee and ankle

joint injuries with X-Ray/CT imaging as reference.
2 Methods

2.1 Subjects

From Nov. 2020 to Jul. 2023, 42 patients with knee joint or

ankle joint who underwent FRACTURE MRI examinations in our

hospital were retrospectively collected. Inclusive criteria: (1)

complete MRI (including FRACTURE) and X-Ray or CT scans of

the same examination issue; (2) detailed clinical history. Exclusion

criteria: (1) poor image quality due to motion; (2) the interval

between MRI and X-Ray/CT was more than 4 weeks. 11 patients

were examined by both X-Ray and FRACTURE examinations,

including 7 males and 4 females, aged from 25 to 78 years,

including 6 knee joints (4 left and 2 right) and 5 ankle joints (3

left and 2 right). 31 patients were examined by both CT and

FRACTURE examinations, including 18 males and 13 females,

aged from 16 to 82 years, including 25 knee joints (13 left and 12

right) and 6 ankle joints (3 left and 3 right). The flowchart can be

seen in Figure 1.

This study was approved by the Institutional Review Board of

our hospital (PJ-KS-XJS-2022-64). The requirement for the

informed consent was waived due to the retrospective nature of

the study.
2.2 Image acquisition

MRI scans were performed on a 3.0T MRI scanner (Ingenia CX,

Philips Healthcare, Best, the Netherlands). The knee joint was

scanned with a 16-channel knee coil, and the ankle joint was

scanned with an 8-channel foot coil. The FRACTURE imaging

was scanned in the sagittal orientation for both knee and ankle

joints. Detailed imaging parameters are listed in Table 1. The

FRACTURE MRI was acquired with six gradient echoes using in-

phase echo-spacing (first TE: 2.3 ms; echo-spacing: 2.3 ms). Echo

times at in-phase intervals enabled accentuated T2 decay of bones,

while the signals from other tissues were preserved. As the signal

decreased from the first to the sixth echoes, the contrast increased.

The summation of all six echoes yielded cumulated images with

high contrast by maintaining a high signal to noise ratio (SNR).

Dephasing across voxel was additionally minimized due to the high

scan resolution. The cumulated images were finally inverted so that

they resembled the CT images. Echo summation and inversion of

the cumulated images were automatically performed on the host
frontiersin.org
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computer, and the reconstructed FRACTURE images were

translated to the IntelliSpace Portal (ISP v9.0, Philips Healthcare)

for further analyses.
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CT examination was performed on the Discovery HD 750 CT

scanner (GE Healthcare, USA). The tube voltage was 100kV, the

tube current was 150mA, and the adaptive statistical iterative

reconstruction (ASIR) was 30%. The CT scan range covered the

whole knee joint or ankle joint. After data scan, the image was

automatically transmitted to GE workstation (AW4.6) for analysis.

X-Ray examination was performed on the beam limiting device

(General Medical Merate, Italy). X-Ray images of knee and ankle

joints included both positive and lateral positions. After the filming

was completed, the images were automatically transmitted to a

picture archiving and communication system (PACS) workstation

certifed for clinical use (miPlatform, Client ID: 3.0.30501.283).
2.3 Image analysis

Coronal and sagittal CT and FRACTURE images were further

reconstructed by a technician with 4 years’ work experience, and the

reconstructed slice thickness and interval were both 1 mm. Fracture

is defined as continuous interruption of cortical bone. Osteophyte is

a fibrocartilage-capped bony outgrowth. Bone destruction is defined

as loss of bone tissue caused by local bone being replaced by

diseased tissue. Two radiologists with five and seven years’

experience respectively in imaging diagnosis independently

evaluated the FRACTURE and X-Ray/CT images to determine

whether each piece of bone had the following three signs:
TABLE 1 Parameter settings of FRACTURE MRI.

FRACTURE
(knee)

FRACTURE
(ankle)

Field-of-view (mm3) 160×160×105 160×160×102

Acquisition voxel
size (mm2)

0.6×0.6 0.6×0.6

Matrix size 268×264 268×264

Slice/Thick (mm) 350/0.6 340/0.6

TR (ms) 18 18

First TE (ms) 2.3 2.3

Echo-space (ms) 2.3 2.3

Echo number 6 6

Flip angle (°) 15 15

Compressed SENSE factor CS 6 CS 6

Scan time (min: sec) 03: 07 02: 58
FRACTURE, FFE Resembling A CT Using Restricted Echo-spacing; TR, repetition time; TE,
echo time.
FIGURE 1

Flowchart of participants that were included and evaluated in the study.
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fracture, osteophyte, and bone destruction by a blind method. The

images were repeatedly read by the two radiologists with a time

interval more than 4 weeks in a random order on a PACS

workstation certified for clinical use.
2.4 Statistical analysis

Data organization and statistical analyses were performed using

SPSS version 22.0 software. Kappa test was used for consistency

analyses, which includes consistency between results evaluated by

FRACTURE and X-Ray/CT images for each radiologist, consistency

between results by the two radiologists using different imaging

techniques,.Kappa’s criteria for checking consistency are as follows:

0-0.2 for extremely low consistency, 0.2-0.4 for general consistency,

0.4-0.6 for medium consistency, 0.6-0.8 for high consistency, and

0.8-1 for almost complete consistency.
3 Results

3.1 Bone compositions for the knee and
ankle joints

The knee and ankle joints of all patients were counted according

to the bone compositions. As for the 11 patients who underwent X-

Ray and FRACTURE examinations, totally 54 pieces of bones were

analyzed, including 6 pieces of femur and patella, 11 pieces of tibia

and fibula, and 5 pieces of scaphoid, medial cuneiform, lateral

cuneiform and calcaneus, respectively. As for the 31 patients who

underwent CT and FRACTURE examinations, totally 136 pieces of

bones were analyzed, including 25 pieces of femur and patella, 31

pieces of tibia and fibula, 6 pieces of scaphoid, medial cuneiform,

lateral cuneiform and calcaneus, respectively. Results of lesion

evaluation on all these bones by two radiologists were listed in

Tables 2 and 3. Radiologist 1 diagnosed 35 bones of fracture, 37

bones of osteophyte and 15 bones of bone destruction through X-

Ray and CT, and 34 bones of fracture, 42 bones of osteophyte and

17 bones of bone destruction through FRACTURE. Radiologist 2

diagnosed 38 bones of fracture, 34 bones of osteophyte and 19 bones

of bone destruction through X-Ray and CT, and 41 bones of
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fracture, 36 bones of osteophyte and 14 bones of bone destruction

through FRACTURE.
3.2 Consistency of assessment of lesions

The fracture, osteophyte and bone destruction assessed by

radiologist 1 via X-Ray and FRACTURE images were all with

high consistency (kappa values of 0.879, 0.867 and 0.847

respectively), and similar results were obtained for radiologist 2

(kappa values of 0.899, 0.930, and 0.879). The fracture, osteophyte

and bone destruction assessed by two radiologists via CT and

FRACTURE images were also with high consistency (kappa

values of 0.938, 0.937 and 0.868 for radiologist 1, and kappa

values of 0.961, 0.930, and 0.818 for radiologist 2). The fracture,

osteophyte and bone destruction assessed by two radiologists via X-

Ray/CT were with high consistency (kappa range: 0.868-1). The

fracture, osteophyte and bone destruction assessed by two

radiologists via FRACTURE were with high consistency (kappa

range: 0.780-0.915) (Figures 2–6; Tables 4, 5).
4 Discussion

In our study, evaluations of bone lesions on FRACTURE and X-

Ray/CT images were in high consistency (kappa range: 0.818-

0.961), especially for the evaluation of fracture and the display of

fracture line, which indicates the reliable performance of

FRACTURE. Besides, evaluations of osteophyte and bone

destruction of knee or ankle joints on FRACTURE images by

different radiologists showed high consistency, which indicates

the high stability and repeatability of FRACTURE imaging.

FRACTURE combined with conventional MRI enables

simultaneous visualization of both bone and soft tissue injuries,

which would be of great potential for direct and comprehensive

assessment of diseases in the osteoarticular system.

There was no study on the consistency analyses between X-Ray/

CT and UTE on the evaluation of bone lesions in the lower

extremities. Recently, some scholars had compare the diagnostic

performance of CT-like images based on a 3D T1 GRE, UTE, and

FRACTURE with conventional CT in patients with suspected
TABLE 2 Total number of different kinds of bone lesions by X-Ray and
FRACTURE images (n=54).

Radiologist 1 Radiologist 2

X-Ray MRI X-Ray MRI

fracture 5 4 5 6

non-fracture 49 50 49 48

osteophyte 8 10 9 8

non-osteophyte 46 44 45 46

bone destruction 4 3 5 4

non-
bone destruction

50 51 49 50
TABLE 3 Total number of different kinds of bone lesions by CT and
FRACTURE images (n=136).

Radiologist 1 Radiologist 2

CT MRI CT MRI

fracture 33 30 33 35

non-fracture 103 106 103 101

osteophyte 29 32 25 28

non-osteophyte 107 104 111 108

bone destruction 11 14 14 10

non-
bone destruction

125 122 122 126
fr
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osseous shoulder pathologies (19). Assessment of bony Bankart

lesions and other osseous pathologies was feasible and accurate

using CT-like images based on 3-T MRI compared with

conventional CT. Compared to the T1 GRE and FRACTURE

sequence, the UTE measurements correlated best with CT. The

bone tumors or tumor-like lesions in the lower extremities were

analyzed in previous literature reports (20), where the consistency

in visualization of periosteal reaction and penetration of the cortex

was fair to good to excellent between ZTE and CT (kappa range:

0.682–0.852). In a single-center data, the result of osteoarthritis

scoring of CT and sCT images set shows that sCT provides

comparable scoring accuracy to CT for knee osteoarthritis

scoring. The intermodality agreement of osteoarthritis scores

between CT and sCT was substantial to almost-perfect for

tibiofemoral (k = 0.63 and 0.84 for the two readers) and

patellofemoral joints (k = 0.78 and 0.81 for the two readers),

where both are showing acceptable confidence levels for scoring

osteoarthritis (21).
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FRACTURE, UTE and ZTE have different methods to highlight

the bone structure. FRACTURE images are post-processed (signal

inversion) to improve bone contrast. UTE/ZTE images can also be

post-processed to improve bone contrast (22). UTE/ZTE images

can be combined with long T2 suppression pulses to create high

bone contrast (23, 24). Deininger-Czermak et al. compared UTE

and FRACTURE for the assessment of craniocervical junction in

subjects with varying degrees of degeneration using CT imaging as

reference, and concluded that UTE and FRACTURE can both be

used as valid alternatives to CT in evaluation of the craniocervical

junction in nontraumatic cases (25). In addition to direct scanning

to highlight the bony tissues. MR-based synthetic CT (sCT) is an

alternative solution for generating quantitative CT-like contrast

from MR images. SCT was generated using a patch-based neural

network derived from a UNet (26). Some neural network models

have been developed into bone MRI software. With CT as the

reference standard, synthetic CT of the sacroiliac joints has better

diagnostic performance in the detection of structural lesions in
FIGURE 2

Stacked bar charts show the fracture, osteophyte and bone destruction assessed by radiologist 1 via X-Ray/CT and FRACTURE images were with
high consistency (kappa range: 0.847-0.938).
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individuals suspected of having sacroiliitis compared with routine

T1-weightedMRI (27). The advantage of sCT is that there is no false

positive bone visualizations at the water-fat interfaces (28).

However, the neural network reconstruction image does not

mean that it is the real performance. Different studies applied

different deep learning models (29). It still needs a lot of multi-

center verification. Moreover, the T1 GRE sequence required by

neural network is not a routine clinical diagnostic sequence, and it

also needs additional scanning. Thus, Bone-MRI software is rarely

used in clinic, and limited to the research stage.

We evaluated the diagnostic value of MR derived CT-like

images based on the FRACTURE sequence for assessment of

fracture, osteophyte and bone destruction in knee and ankle

joints, and the results were compared with references, which

consisted of conventional X-Ray/CT findings. Bone injuries

assessed by FRACTURE imaging showed a high consistency with

findings by X-Ray/CT imaging. Therefore, FRACTURE can be used

as a reliable alternative of X-Ray/CT examination for fracture,

osteophyte and bone destruction in knee and ankle joints

especially for patients who need to avoid of ionizing radiation,

including infants and pregnant women.
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Besides, FRACTURE is associated with the following three

advantages for clinical applications: First, it is based on

conventional 3D gradient echo sequences available on most

commercially available MRI scanners; Second, 3D acquisition

ensures the image resolution and SNR, and the isotropic imaging

facilitates multiplanar reconstruction for visualization of the joints

or lesions in any direction; and third multi-echo acquisition at fixed

intervals to minimize the chemical shift artifact and ensure the

clarity of final images. The scan time may be an issue of

FRACTURE. While, with introduction of the compressed sensing

technology for acquisition acceleration (30), the FRACTURE

imaging with spatial resolution similar to CT scans can be

completed in a significantly reduced scan time of about 3 mins

(previously around 6 mins) without degeneration in image quality

(31, 32).

Fracture, osteophyte, and bone destruction are common

diseases of bone and joint system,having typical imaging

manifestations and FRACTURE MRI should not only be valid for

evaluation of these kinds of lesions in knee and ankle joints, but also

applicable to regions such as spine for evaluation of osteophyte and

compression fracture etc., especially for patients with spinal canal
FIGURE 3

Images in a 45-year-old male with fracture of the right tibial plateau. (A, B) were coronal CT and FRACTURE images. (C, D) were sagittal CT and
FRACTURE images. CT and FRACTURE images showed the same oblique fracture line and bone fragment displacement.
FIGURE 4

Images in a 36-year-old female with anterior and inferior avulsion fracture of left tibia. (A, C) were sagittal and coronal CT images. (B, D) were
sagittal and coronal FRACTURE images. Free bone fragments were consistent in CT and FRACTURE images.
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stenosis caused by osteopathy. MRI examination that takes into

account both spinal bone changes and intervertebral disc lesions is

worthy of further study.
5 Limitations and future work

Our research has some limitations. First, FRACTURE sequence

causes all tendons, ligaments, air pockets, water/fat interfaces to end

up as high intensity false positives. Undeniably, false positive bone
Frontiers in Endocrinology 07
visualisations limit that single application of the FRACTURE

sequence. However, whether it is trauma or bone tumor patients,

conventional MRI sequences including T1, T2 and PDWI are

indispensable. Conventional MRI is used to display soft tissues

including tendons, ligaments, etc. FRACTURE is a supplement to

conventional MRI examination, showing bone. False positive bone

visualizations will not lead to wrong diagnosis in clinical work.

Second, another concern of FRACTURE is its high sensitivity to the

strong susceptibility at the bone and soft tissue interface (especially

for the trabecular bone and marrow interface in the spine/hip).
FIGURE 5

Images in a 65-year-old male with osteochondroma of the left lower femoral shaft. (A, B) were lateral X-Ray and sagittal FRACTURE images. Wide
base and morphology of tumor were consistent in X-Ray and FRACTURE images.
FIGURE 6

Images in a 40-year-old male with right distal fibula fracture. (A, B) were positive X-Ray and coronal FRACTURE images. Fracture lines and bone
fragments were consistent in X-Ray and FRACTURE images.
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Other T2* shortening factors, such as iron deposition (e.g., iron in

the spine, which might significantly shorten its T2*), multiple peaks

for marrow fat (thus short T2* for marrow, especially at high field

strength such as 7T), and field inhomogeneity, might contribute to

the overestimation of bone in FRACTURE imaging. Third, the

sample size was relatively small, and assessment of FRACTURE for

more types of bone and joint diseases, such as osteochondroma and

giant cell tumor, were not available, which need to be further

investigated. Fourth, CT and X-Ray images were not both

acquired for the same patients, which may introduce bias in the

performance evaluation of FRACTURE.

In our further studies, the FRACTURE method will be assessed

on a larger cohort of patients (particularly for patient cohorts who

need to avoid of ionizing radiation), and more types of bone injuries

will be included for evaluation.
6 Conclusion

FRACTURE is an easily accessible and implementable MRI

method for bone injury examination. The addition of FRACTURE

to conventional MRI provides the opportunity to simultaneously

obtain osseous and soft tissue injury information within the same

examination, and results from our study suggest that FRACTURE

enables clear assessments of three types of bone lesions on knee and

ankle joints: fracture, osteophyte and bone destruction, which were

in high consistency with results by X-Ray/CT examinations. In the

future, it is a valuable research direction for people who need to

reduce or avoid electron radiation.
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TABLE 4 Consistency of lesion evaluation by the two radiologists using X-Ray and FRACTURE MRI.

Radiologist 1 Radiologist 2 MRI X-Ray

X-Ray vs. MRI X-Ray vs. MRI Radiologist 1 vs. 2 Radiologist 1 vs. 2

fracture 0.879 0.899 0.780 1

osteophyte 0.867 0.930 0.867 0.930

bone destruction 0.847 0.879 0.847 0.879
TABLE 5 Consistency of lesion evaluation by the two radiologists using CT and FRACTURE MRI.

Radiologist 1 Radiologist 2 MRI CT

CT vs. MRI CT vs. MRI Radiologist 1 vs. 2 Radiologist 1 vs. 2

fracture 0.938 0.961 0.899 1

osteophyte 0.937 0.930 0.915 0.908

bone destruction 0.868 0.818 0.818 0.868
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