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Diabetic cardiomyopathy (DCM) is defined as structural and functional cardiac

abnormalities in diabetes, and cardiomyocyte death is the terminal event of DCM.

Ferroptosis is iron-dependent oxidative cell death. Evidence has indicated that

iron overload and ferroptosis play important roles in the pathogenesis of DCM.

Mitochondria, an important organelle in iron homeostasis and ROS production,

play a crucial role in cardiomyocyte ferroptosis in diabetes. Studies have shown

some anti-diabetic medicines, plant extracts, and ferroptosis inhibitors might

improve DCM by alleviating ferroptosis. In this review, we systematically reviewed

the evidence of ferroptosis in DCM. Anti-ferroptosis might be a promising

therapeutic strategy for the treatment of DCM.
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1 Introduction

The global prevalence of diabetes mellitus (DM) is increasing. Data from the

International Diabetes Federation (IDF) has indicated that the global prevalence of DM

was estimated to be 10.5% (536.6 million) of adults in 2021 (1). Cardiovascular disease is

the leading cause of death in diabetic patients (2). Early in 1972, Rubler et al. described a

pathological cardiac alteration in DM patients, which was characterized by ventricular

hypertrophy and fibrosis, and termed diabetic cardiomyopathy (DCM) (3). Currently,

DCM is defined as structural and functional cardiac abnormalities in diabetes, which

cannot be explained by hypertension, coronary artery heart disease, valvular heart disease,

or other heart diseases. DCM is the leading cause of heart failure and death in DM

patients (4).
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The death of cardiomyocytes is the terminal event of DCM (4–6).

Ferroptosis, which was first described in 2012 by Dixon et al., is iron-

and lipotoxicity-dependent cell death, and controlled by multiple

pathways involved in iron accumulation, lipid peroxidation, or a

disturbed antioxidant system (7). Evidence from recent years has

indicated that ferroptosis participates in many heart diseases,

including myocardial infarction (8), cardiac ischemia/reperfusion

(I/R) injury (9), heart failure (10), myocardial hypertrophy (11),

sepsis (12), and doxorubicin-induced heart injury (13). Therefore,

therapies targeting ferroptosis or iron overload might be promising

for cardiac diseases (14–17).

Iron overload and ferroptosis have been found to be closely

correlated with diabetes and its complications (18, 19). Tissue iron

overload causes increased ROS through the Fenton response,

exacerbating diabetic cardiovascular complications (20).

Therefore, in the present review, we summarized the related data

about iron metabolism and ferroptosis and discussed their role in

the pathogenesis of DCM, which may provide new evidence for the

pathogenesis of DCM and its targeted therapy.
2 Iron and DCM

Iron is essential for many physiological processes including

oxygen transport and mitochondrial energy metabolism. The iron

enters the cardiomyocytes by chelating to transferrin, subsequently

binding to the transferrin 1 receptor (TfR1) (21), but also through

other routes including the T-type calcium channel (TTCC), divalent

metal transporter 1(DMT1) (22), the L-type calcium channel
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(LTCC) (23), and Zrt-, Irt-like proteins (ZIP) 8 and 14 (24).

Intracellular iron is utilized, stored bound to cytoplasmic ferritin,

or imported by mitochondria. Excess iron can be extruded from

cardiomyocytes by ferroportin (FPN) (Figure 1).

Iron overload is an excessive accumulation of iron, which has

been found to be associated with insulin resistance, diabetes, and its

complications (20, 25). In human studies, iron overload, which is

demonstrated by serum iron levels, was associated with increased

fasting plasma glucose and the occurrence of type 2 diabetes

mellitus (T2DM) (26), and is positively associated with higher

visceral fat mass in T2DM patients (27). Iron homeostasis is

important to maintain cardiac function. Cardiac iron overload

has been found to participate in the pathogenesis of 5-fluorouracil

(5-FU) induced cardiotoxicity (28), doxorubicin-induced

cardiomyopathy (29), and cardiac I/R injury (30). It has been

suggested that iron overload may induce insulin resistance in

cardiomyocytes (31), manipulate cardiac calcium regulation (32,

33), cause reactive oxygen species (ROS) accumulation and lipid

peroxidation (34, 35), and therefore lead to cardiac dysfunction

(36). Although insulin resistance plays a key role in the

pathogenesis of DCM, whether an impaired insulin signaling

pathway could cause iron overload in cardiomyocytes has almost

never been reported in the literature.

In 2016, Li et al. examined the myocardial iron content using

the aromatic absorption spectrophotometry method in diabetic rats

induced by high fat diet and streptozotocin (STZ) injection, and no

alteration was found between the diabetic rats and control rats (37).

In another study performed in type 2 diabetic mice by Wang et al.,

labile iron content was significantly increased in myocardial tissue
FIGURE 1

The role of ferroptosis in the pathogenesis of DCM. Diabetes or high glucose may cause iron overload, mitochondria disorder, increased NCOA4-
mediated ferritinophagy, and an impaired anti-oxidative Nrf2/GPX4 pathway in cardiomyocytes, which all contribute to increased lipid peroxidation
and ferroptosis. Ferroptosis inhibitors Fer-1 and Lip-1, anti-diabetic medicine canagliflozin, and the plant extract sulforaphane all exhibit anti-
ferroptotic effects in DCM by suppressing lipid peroxidation, activating Nrf2 and promoting Xc-/GSH/GPX4 axis separately. TF, transferrin; TfR1,
transferrin 1 receptor; DMT1, divalent metal transporter 1; ZIP, Zrt-, Irt-like Proteins; Nrf2, nuclear factor erythroid 2-related factor 2; NCOA4,
nuclear receptor coactivator 4; GSH, glutathione; GPX4, glutathione peroxidase 4; L/TTCC, L/T-type calcium channel; FtMt, mitochondrial ferritin;
ROS, reactive oxygen species; Fer-1, ferrostatin–1; Lip-1, liproxstatin–1. The figure was created by Figdraw.
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(38). Furthermore, in another study in STZ-induced diabetic rats,

Fe2+ content was found to be increased in the heart tissue,

indicating iron overload existed in DCM (39). An in vitro study

conducted by Li et al. (40), found increased Fe2+ content in H9C2

cells treated with high glucose. Therefore, iron overload was found

in DCM and might be correlated with the pathogenesis of

DCM (Table 1).
3 Ferroptosis and DCM

Iron overload may trigger ferroptosis, a unique form of non-

apoptotic cell death, which is characterized by iron-dependent lipid

peroxidation (41). Cells that undergo ferroptosis exhibit malformed

mitochondria, a decreased crest, membrane concentration, rupture

of the outer membrane, and an absence of features of apoptosis. The

main cause of ferroptosis is the depletion of glutathione and

impaired function of phospholipid peroxidase glutathione

peroxidase 4 (GPX4) which can protect cell membranes from

peroxidative damage (7, 42). Ferroptosis participates in many

cardiomyopathies including doxorubicin-induced cardiomyopathy

(29), myocardial infarction (43), and heart failure (44). In diabetes,

increased advanced glycation end-products (38), lipid peroxidation,

and oxidative stress (45) all participate in the pathogenesis of DCM,

which are also the triggers for cellular iron overload and ferroptosis.

The expression of ferroptosis-promoting genes was increased in the

heart tissue from STZ-induced diabetic mice (46) and ferroptosis

was found in T2DMmice with DCM (38). A ferroptosis-promoting

gene profile was also found by Gawargi et al. (47) in the heart tissue

of diabetic patients with heart failure. Furthermore, ferroptosis

inhibition led to improved cardiac contract function in T2DM

mice (38). Therefore, ferroptosis participates in DCM and could be

an intervention target in DCM therapy.

Ferroptosis is a complicated process in which many regulators

and pathways are involved (48, 49). The detailed mechanisms

underlying ferroptosis in DCM have been investigated but are

quite limited. Nuclear factor erythroid 2-related factor 2 (Nrf2) is

an important transcriptional factor and participates in multiple

biological processes including anti-oxidation (50). It has been found

that the activation of Nrf2 may improve DCM (51–53) and this

effect might be partly via anti-ferroptotic effects. Wang et al. found

that sulforaphane can increase ferritin expression in myocardial

tissue by activating Nrf2, which may inhibit advanced glycation

end-product-induced ferroptosis in DCM (38). Nrf2/GPX4, Nrf2/

HO-1 pathway activation could inhibit ferroptosis and thus alleviate
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high glucose-induced cardiomyocyte injury (54–56) (Figure 1).

Recently, novel evidence has indicated that alterations in the

intestinal microbiota (57) reduced cardiac expression of retinol

dehydrogenase 10 (58) and upregulated lysine acetyltransferase 2 A

(Kat2a) (59), both of which participate in ferroptosis in DCM and

provide more therapy targets for DCM.

Mitochondria are not only the organelle that produces ROS but are

also pivotal for iron metabolism and ferroptosis (60). Cardiomyocytes

need a continuous energy supply to maintain their beating.

Mitochondria, as the energy factories, are crucial for maintaining

heart function. It has been suggested that mitochondrial dysfunction

participates in the occurrence and the devolvement of DCM (61, 62).

The role of mitochondria in iron overload and ferroptosis has been

studied but is still complicated. Iron overload caused cardiac and

mitochondria dysfunction in rats (63) and led to mitochondrial iron

accumulation, an increase in mitochondrial ROS, and ferroptosis in

cardiomyocytes (64). Data from an in vitro study indicated that

oxidative stress, which was induced by a tert-butyl hydroperoxide

treatment, induced mitochondrial iron overload and cardiomyocyte

ferroptosis by targeting the Bach1-HO-1 pathway (65). Furthermore, in

doxorubicin-induced cardiomyopathy, doxorubicin triggered iron

accumulation in mitochondria, which further caused cardiomyocyte

ferroptosis (29, 66). Therefore, mitochondrial iron overload is crucial

for cardiomyocyte ferroptosis; however, detailed evidence of its role in

DCM has never been reported.

The iron-sulfur cluster (ISC) is an ancient and conserved

cofactor that is mainly assembled in mitochondria, and the loss of

its synthesis leads to iron overload and ferroptosis. Frataxin is a

mitochondrial ISC-related protein and an important regulator for

ferroptosis (67). Patients with reduced frataxin expression have an

increased risk of diabetes mellitus (68) and cardiomyopathy (69).

Furthermore, decreased frataxin expression has been found to cause

cell ferroptosis in adipose tissue (70) and heart tissue (71).

Mitochondrial ferritin (FtMt) is structurally similar to ferritin-

heavy chains but has lower ferroxidase activity. FtMt overexpression

can lead to intracellular iron redistribution by transferring iron from

the cytoplasm into mitochondria, consequently leading to reduced

iron content in the cytoplasm (72, 73). It has been found that FtMt

could protect cells from oxidative stress by regulating the

mitochondrial labile iron pool and ROS production (73). Mice with

a FtMt deficiency are more sensitive to cardiomyocyte damage caused

by doxorubicin (74) and fatigue (75), indicating that cardiomyocytes

with FtMt deficiency are more prone to injury. FtMt overexpression

could inhibit oxidative stress-induced ferroptosis through the

inhibition of mitochondrial iron overload and ROS in
TABLE 1 Iron content alterations in diabetic models.

Animals/cells Iron measurement/method Trend Reference

High fat diet/STZ-induced diabetic rats Total myocardial iron,
atomic absorption spectrophotometry

no change 37

Type 2 diabetic mice Labile iron levels/ Iron Colorimetric Assay Kit increase 38

STZ-induced diabetic rats Intracellular ferrous ion (Fe2+)/ Iron assay kit increase 39

H9c2 cells Intracellular ferrous ion (Fe2+)/Iron assay kit increase 40
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cardiomyocytes (65). Wang et al. found that the overexpression of

FtMt could ameliorate oxidative stress and ferroptosis in osteoblasts

caused by high glucose (76). Unfortunately, thus far, there is no data

available on the role of FtMt in DCM.

Mitophagy refers to the targeted phagocytosis and destruction

of mitochondria by the cellular autophagy apparatus and is

considered to be the main mechanism of mitochondrial quality

control. Studies on DCM have suggested that decreased mitophagy

may lead to the accumulation of abnormal mitochondria, and result

in increased intracellular oxidative stress, which triggers the

occurrence and development of DCM (77). Improving mitophagy

can improve the risk of developing DCM (78). Studies conducted in

non-cardiomyocytes have found that activating mitophagy may

inhibit ferroptosis. Li et al. found that activating PINK1-Parkin-

dependent mitophagy could protect cells from CISD3-induced

ferroptosis (79). Therefore, whether reduced mitophagy may

trigger ferroptosis in DCM is a promising research topic that

needs to be studied.
4 Ferritinophagy and DCM

Ferritin is a cytosolic storage protein complex consisting of

ferritin heavy-chain (FTH1) and light-chain (FTL) subunits,

responsible for intracellular iron storage (80), and exerts

antioxidant effects by isolating redox-active iron. Ferritin can

affect cell susceptibility to ferroptosis (81). Ferritinophagy is a

selective form of ferritin autophagy degradation whose

overactivation induces increased degradation of ferritin which

binds to iron, and increased iron release leads to iron overload,

leading to cellular ferroptosis. Thus, ferritinophagy plays an

important role in the regulation of ferroptosis by regulating

intracellular iron balance (82).

Nuclear receptor coactivator 4 (NCOA4) is a selective

ferritinophagy cargo receptor that directly recognizes and binds

to FTH1 and transports ferritin to autophagosomes for lysosomal

degradation and iron release (83). In non-cardiomyocytes, NCOA4

knockdown (84) or inhibition of the NCOA4-FTH1 association

(85) was found to inhibit ferroptosis. Cardiac NCOA4 expression

was significantly increased while GPX4 expression was decreased in

diabetic rats (39) and activated NCOA4-mediated ferroptinophagy

and ferroptosis were found in the heart tissue of db/db mice (86).

NCOA4 knockdown or inhibition alleviated ferroptosis in a DCM

model in vitro (87) and in vivo (86), suggesting that increased

ferritinophagy plays an important role in the occurrence of

DCM (Figure 1).
5 Hypoglycemic drugs, ferroptosis,
and DCM

5.1 Metformin

As a classic hypoglycemic drug, metformin has been previously

found to be protective in DCM by alleviating apoptosis (88),

improving autophagy, inhibiting pyroptosis (89), and alleviating
Frontiers in Endocrinology 04
fibrosis (90). In doxorubicin-induced cardiotoxicity mouse models,

metformin treatment inhibited ferroptosis and improved cardiac

function by activating AMP-activated protein kinase (AMPK)a2
phosphorylation (13). In the study by Wu et al., metformin

alleviated cardiac I/R damage in vivo and in vitro by relieving

non-heme iron content and ferroptosis by activating AMPKa and

inhibiting nicotinamide adenine dinucleotide phosphate oxidase 4

expression (91). However, thus far, there is no data available on

whether metformin may alleviate ferroptosis in DCM.
5.2 Glucagon-like peptide-1
receptor agonists

Glucagon-like peptide-1 receptor agonists (GLP–1RAs) have

attracted much attention in recent years for their cardiac protective

effects. Studies have found that liraglutide can improve cardiac

function in diabetic patients (92) and improve the endoplasmic

reticulum stress of cardiomyocytes in diabetic animals (93). In

studies of db/db diabetic mice, liraglutide has been found to reduce

iron overload in the liver as well as the hippocampus, and reduce

ferroptosis (94, 95). In a nationwide register-based study performed

by Bain et al., GLP-1RA administration was found to be associated

with lower circulating ferritin levels in patients with type 2 diabetes

and hemochromatosis (96). Therefore, while alleviating ferroptosis

might partly contribute to the cardio-protective effects of GLP-

1RAs in DCM, more investigations are warranted.
5.3 Sodium-glucose co-transporter-
2 inhibitors

The cardiovascular benefits of sodium-glucose co-transporter-2

(SGLT2) inhibitors have been increasingly documented in recent

years. Evidence from in vivo and in vitro studies has indicated that

SGLT2 inhibitors, such as empagliflozin and dapagliflozin, can

improve DCM by attenuating oxidative stress (97, 98).

Empagliflozin exhibited anti-ferroptotic effects in high glucose-

treated muscle C2C12 cells by restoring the expression of GPX4

(99) and in diabetic kidney disease models by activating Nrf2 (100).

Thus far, only canagliflozin has been found to inhibit ferroptosis in

DCM by balancing cardiac iron homeostasis, promoting Xc-/

glutathione(GSH)/GPX4 axis (101), and activating the AMPK

pathway (102) (Figure 1).
5.4 Dipeptidyl peptidase 4
enzyme inhibitors

The protective effects of dipeptidyl peptidase 4 (DPP-4)

inhibitors on the DCM have been emerging in research in recent

years. For example, linagliptin improved cardiac function in

diabetic mice by inhibiting the NF-kB signaling pathway and

relieving the cardiac inflammatory response by targeting the

NOD-, lrr-, and pyrin domain-containing protein 3/apoptosis-

associated speck-like protein containing a caspase recruitment
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domain (Nlrp3/ASC) inflammasome (103, 104). Sitagliptin was

found to attenuate DCM by attenuating myocardial apoptosis,

inflammation, and nitroxidative stress by targeting the liver

kinase B1/AMPK/Protein kinase B (LKB-1/AMPK/Akt) and Janus

kinase/signal transducers and activators of transcription (JAK/

STAT) pathways and promoting cardiomyocyte autophagy

separately (105–107). Furthermore, alogliptin could improve

mitochondrial function in DCM (108). However, the effect of

DPP-4 inhibitors on iron metabolism or ferroptosis has been

scarcely investigated. In brain tissue, vildagliptin has been found

to reduce iron deposition and inhibit ferroptosis following

intracerebral hemorrhage (109). The role of DPP-4 inhibitors on

ferroptosis in DCM is an interesting subject that needs to be

further explored.
5.5 Thiazolidinediones

Thiazolidinediones (TZDs), a class of peroxisome proliferator-

activated receptor gamma (PPARg) agonist, is the inhibitor of the
ferroptosis marker ACSL4 (110), and has been found to prevent

ferroptosis in many tissues and models including acute kidney

injury (111), a ferroptosis mouse model (112), lung I/R injury (113),

and renal fibrosis (114). However, in a diabetic rat model, TZD

treatment was found to be detrimental as it caused cardiomyocyte

ferroptosis and structural heart disorders (115).

Thus, in addition to their hypoglycemic effects, the effects of

these drugs on ferroptosis in DCM need to be further

explored (Table 2).
6 Plant extracts, DCM, and ferroptosis

6.1 Resveratrol

Resveratrol is a non-flavonoid polyphenol mainly found in a

variety of fruits and vegetables, including peanuts, grapes, and
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berries. In recent years, much attention has been paid to the

effects of resveratrol due to its antidiabetic and cardiovascular

protective properties. Data have indicated that resveratrol,

including its natural precursor polydatin, could alleviate DCM by

improving mitochondrial function, alleviating oxidative stress, and

inhibiting nuclear factor kappa B (NF-kB) activity (116, 117).

Resveratrol has been found to inhibit cardiomyocyte ferroptosis

in I/R models in vivo and in vitro by decreasing TfR1 while

increasing GPX4 and FTH1 expressions, regulating of ubiquity

specific peptidase 19 (USP19)-Beclin1 autophagy (118), and

targeting the voltage-dependent anion channel 1/glutathione

peroxidase 4 (VDAC1/GPX4) pathways (119). Whether its anti-

ferroptotic effects exist in DCM needs to be further investigated.
6.2 Flavonoids

Flavonoids are natural plant polyphenolic phytochemicals and

are widely found in fruits, nuts, vegetables, flowers, vegetables, and

herbs. There is a large amount of evidence from in vitro and in vivo

studies that indicates that flavonoids possess iron-chelating and

antioxidant abilities (120). Flavonoids could improve DCM mainly

through their anti-inflammatory and anti-oxidation effects (121). In

recent years, much attention has been paid to the anti-ferroptotic

effects of flavonoids (122–124) and studies have indicated that

flavonoids could protect against ferroptosis-mediated tissue

damage. Therefore, there are strong possibilities that flavonoids

could achieve their DCM protective effects by alleviating

ferroptosis. However, the existing research mainly focuses on liver

and kidney injury, and the evidence for DCM is still lacking.
6.3 Sulforaphane

Sulforaphane is found in cruciferous vegetables and is a natural

isothiocyanate compound. An activator of Nrf2, the literature has

revealed the effects of sulforaphane on the amelioration of diabetic
TABLE 2 The effects of hypoglycemic drugs on ferroptosis and DCM.

Drugs DCM protective
effects

Anti-ferroptotic effects in other
tissues /models

Direct evidence of ferroptosis in DCM

Met Yes (88–90). DOX-induced cardiomyopathy (13);
Cardiac I/R (91)

Not available

GLP-1RA Yes (92, 93). Diabetic liver and hippocampus (94, 95);
Blood sample of T2DM patients (96)

Not available

SGLT2is Yes (97, 98) High glucose-treated muscle C2C12 cells
(99);
Diabetic kidney disease models (100)

Balanced cardiac iron homeostasis, promoted Xc-/ GSH/GPX4 axis
(101); activated AMPK pathway (102)

DPP4-is Yes (103–108). Brain tissue following intracerebral
hemorrhage (109)

Not available

TZDs None Acute kidney injury (111);
Ferroptosis mice model (112);
I/R induced lung injury (113);
Renal fibrosis (114)

Caused cardiomyocyte ferroptosis and histoarchitectural
disrrangements (115).
Met, Metformin; DOX, doxorubicin; I/R, ischemia/reperfusion; GLP-1RA, glucagon-like peptide-1 receptor agonist; SGLT2i, sodium glucose co-transporter-2 inhibitors; DPP4-is, dipeptidyl
peptidase 4 enzyme inhibitors; TZDs, thiazolidinediones; Xc-/GSH/GPX4, system Xc−/glutathione peroxidase 4 /glutathione.
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complications (125, 126) and cardiovascular disease (127). Studies

performed in DCM models have shown that sulforaphane could

improve cardiac function, cardiac hypertrophy, fibrosis,

inflammation, and oxidative damage (38, 128–131). The anti-

ferroptotic effects of sulforaphane have been found in diabetic

livers (132), cardiac arrest and resuscitation (133), and

myocardial I/R models (127). In DCM models, sulforaphane

could inhibit cardiomyocyte ferroptosis by upregulating ferritin

and SLC7A11 levels via AMPK-mediated Nrf2 activation (38), but

more evidence on the effect of sulforaphane on DCM is still needed.
6.4 Curcumin

Curcumin is a polyphenolic compound extracted from the

rhizomes of the turmeric plant and exhibits DCM protective

effects through its antioxidant (134, 135) and anti-inflammatory

(136) properties. Evidence has indicated its favorable effects on

osteoarthritis (137), acute kidney injury (138), and cigarette smoke-

caused lung epithelial injury (139) by alleviating ferroptosis. Zhang

et al. (55) found that curcumin inhibited ferroptosis in

cardiomyocytes by promoting the function of Nrf2 and increasing

the expression of GPX4 and heme oxygenase-1 in DCM models.
6.5 Berberine

Berberine, an isoquinoline alkaloid isolated from the Chinese

herb Coptis chinensis and other Berberis plants, has been found to

alleviate DCM by preventing cardiac dysfunction and remodeling

(140), being anti-fibrotic (141), interfering with lipidomic profiles

(142), and inhibiting pyroptosis (143, 144). However, although a

large amount of data has found that berberine could alleviate

ferroptosis in many cells and models including islet beta cell loss
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in T1DM (145), a polycystic ovarian syndrome (PCOS) cell model

(146), contrast-induced nephropathy (147), and bone loss induced

by nonalcoholic fatty liver disease (148), no data are available on

whether these anti-ferroptotic effects also participate in its DCM

protective effects.

Therefore, the cardio-protective benefits in DCM of these plant

extracts might be partly achieved through their anti-ferroptotic

effects, but these still need further investigation (Table 3).
7 Ferroptosis inhibitors and DCM

Ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) are ferroptosis

inhibitors and achieve their effects by suppressing lipid peroxidation

(149). Fer-1 ameliorates cardiac injury caused by lipopolysaccharide

(150), H2O2 (150, 151), isoproterenol (152), 5-fluorouracil (153), and

doxorubicin (154). Lip-1 has been found to reduce cardiomyocyte

ferroptosis induced by heat shock (155), 2,3,7,8-Tetrachlorodibenzo-

p-dioxin (156), and I/R injury (138). Furthermore, Fer-1 was found to

inhibit cardiomyocyte ferroptosis induced by palmitic acid (40, 102).

Both Fer-1 (40) and Lip-1 (38) were found to be effective in inhibiting

ferroptosis in DCM (Figure 1).
8 Conclusion and perspectives

As a severe complication of diabetes, the mechanisms

underlying DCM’s pathogenesis and relative therapy strategies

have drawn attention in recent years. Due to the unique high

energy and high iron demand of heart tissue, both energy and

iron dyshomeostasis have been found in DCM. Ferroptosis is novel

cell death induced by iron overload and iron-dependent lipid

peroxidation. In this review, we summarized the evidence on iron

metabolism and ferroptosis in DCM, in particular the role of
TABLE 3 The effects of plant extracts on ferroptosis and DCM.

Plant
extract

DCM protective
evidences

Anti-ferroptosis in other
model/tissue

Anti-ferroptosis in DCM

Resveratrol Yes (116, 117) Cardiac I/R models in vivo and in vitro
(118, 119)

Not available

Flavonoids: Yes (120) LPS-stimulated myocardial injury (122);
Cardiomyocyte ferroptosis model (123);
Fatty liver disease (124)

Not available

Sulforaphane: Yes (38, 128–131) Diabetic liver (132);
Cardiac arrest and resuscitation (133);
Cardiac I/R models (127)

AMPK/Nrf2 activation (38)

Curcumin: Yes (134–136) Osteoarthritis (137);
Acute kidney injury (138);
Cigarette smoke caused lung epithelial
injury (139)

Increased function of Nrf2, and expression of GPX4 and
HO-1 (55)

Berberine: Yes (140, 141) (142–144) Islet beta cells loss in T1DM (145);
PCOS cell model (146);
Contrast-induced nephropathy (147);
Bone loss induced by NAFLD (148)

Not available
I/R, ischemia/reperfusion; LPS, lipopolysaccharides; T1DM, type 1 diabetes mellitus; PCOS, polycystic ovarian syndrome; NAFLD, nonalcoholic fatty liver disease; AMPK, AMP-activated
protein kinase; Nrf2, nuclear factor erythroid-2-related factor-2; HO-1, heme oxygenase-1.
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mitochondria in iron metabolism. However, detailed and in-depth

evidence of the contribution of ferroptosis in DCM is still lacking.

Insulin resistance plays key role in the pathogenesis of DCM;

however, thus far, whether insulin resistance could trigger

ferroptosis has never been explored in DCM. The causal

relationship of mitochondria, the most important organelle for

energy metabolism in cardiomyocytes, with iron metabolism and

ferroptosis in DCM has been scarcely investigated. In vivo data on

the effects of ferroptosis inhibitors on cardiac function is lacking,

although they have been found to be protective in DCM models. In

addition, some anti-diabetic drugs that are potentially cardio-

protective in DCM might possess anti-ferroptotic effects, but this

still needs to be confirmed by more direct research, both in vivo and

in vitro. Clinical evidence for ferroptosis-related screening and

therapy in DCM patients is also lacking. Therefore, the existing

evidence on the role of ferroptosis in DCM is the tip of the iceberg,

as more studies on the detailed mechanisms underlying the role of

ferroptosis and regulation pathways in DCM are warranted.

Targeting ferroptosis might provide more perspectives for DCM

therapy but this still needs to be further explored.
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