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Background: Non-alcoholic fatty liver disease (NAFLD) has emerged as a

predominant driver of chronic liver disease globally and is associated with

increased cardiovascular disease morbidity and mortality. However, the

association between NAFLD and calcific aortic valve disease remains unclear.

We aimed to prospectively investigate the association between NAFLD and

incident aortic valve calcification (AVC), as well as its genetic relationship with

incident calcific aortic valve stenosis (CAVS).

Methods: A post hoc analysis was conducted on 4226 participants from the

Multi-Ethnic Study of Atherosclerosis (MESA) database. We employed the

adjusted Cox models to assess the observational association between NAFLD

and incident AVC. Additionally, we conducted two-sample Mendelian

randomization (MR) analyses to investigate the genetic association between

genetically predicted NAFLD and calcific aortic valve stenosis (CAVS), a severe

form of CAVD. We repeated the MR analyses by excluding NAFLD susceptibility

genes linked to impaired very low-density lipoprotein (VLDL) secretion.

Results: After adjustment for potential risk factors, participants with NAFLD had a

hazard ratio of 1.58 (95% CI: 1.03–2.43) for incident AVC compared to those

without NAFLD. After excluding genes associated with impaired VLDL secretion,

the MR analyses consistently showed the significant associations between

genetically predicted NAFLD and CAVS for 3 traits: chronic elevation of alanine

aminotransferase (odds ratio = 1.13 [95% CI: 1.01–1.25]), imaging-based NAFLD

(odds ratio = 2.81 [95% CI: 1.66–4.76]), and biopsy-confirmed NAFLD (odds ratio

= 1.12 [95% CI: 1.01–1.24]). However, the association became non-significant

when considering all NAFLD susceptibility genes.
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Conclusions: NAFLD was independently associated with an elevated risk of

incident AVC. Genetically predicted NAFLD was also associated with CAVS after

excluding genetic variants related to impaired VLDL secretion.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is prevalent in

approximately 32% of adults and afflicts half of those with type 2

diabetes mellitus (1, 2), NAFLD has become the most common

cause of chronic liver disease worldwide. NAFLD is a clinical-

pathological syndrome, ranges from simple steatosis to non-

alcoholic steatohepatitis, with potential progression to advanced

stages such as fibrosis, cirrhosis, liver failure, and hepatocellular

carcinoma (3). Patients with NAFLD have a substantially higher

mortality rate than the non-NAFLD controls, with cardiovascular

disease (CVD) being the primary reason for death (4).

Calcific aortic valve disease (CAVD) comprises aortic valve

sclerosis and calcific aortic valve stenosis (CAVS), characterized by

calcium build-up on the aortic valve (5). Ranking as the third

leading cause of CVD globally, CAVD affects about 25% of those

over 65 years (6). The Global Burden of Disease Study in 2017

showed that the disability-adjusted life years related to CAVD

increased by 101% from 1990 to 2017 (7). CAVS dominates as

the chief valvular disease among Western populations and is

responsible for the highest valve-related mortality in the United

States (8). With a prevalence exceeding 2% in those over 65,

projections suggested a twofold increase in aortic valve

replacement by 2050 (9). Aortic valve calcification (AVC) is now

perceived as an actively regulated biological process that shares

many similar risk factors with coronary artery atherosclerosis (10).

Additionally, it has been demonstrated that NAFLD is significantly

associated with a higher risk of atherosclerosis (11). Previous studies

have established a link between NAFLD and coronary artery

calcification (12); and showed an cross-sectional association

between NAFLD and aortic and mitral valve calcification (13, 14).

While the prospective and causal relationship between NAFLD and

CAVD remains unknown.
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Mendelian randomization (MR) analysis has become prevalent

in studying the causal relationship between various exposure factors

and outcomes of interest. As genetic variants that increase

susceptibility or protect against the exposure of interest are

randomly assigned at conception, they can be used as

instrumental variables (IVs) in MR analysis. Thus, MR analysis is

often regarded as similar to a randomized controlled trail but with

lower susceptibility to reverse causation and confounding factors

(15). However, there has been no MR analysis on the association

between NAFLD and CAVD yet.

This study aimed to investigate both the observational and

genetic association between NAFLD and CAVD. To achieve this

objective, we initially examined the observational association

between NAFLD and incident AVC using data from the Multi-

Ethnic Study of Atherosclerosis (MESA). Then, we conducted two-

sample MR analyses utilizing recently obtained genome-wide

association study (GWAS) data to explore the association

between genetically predicted NAFLD and CAVS.
2 Methods

2.1 Study design and population

The MESA is an ongoing, prospective, population-based

observational study aimed at investigating early, or subclinical,

atherosclerosis and CVD dynamics, with previously published

details covering examinations and protocols (16). From July 2000

to September 2002, 6814 participants were enrolled in 6 United

States field centers. Before the study initiation, all participants

underwent screening to ensure they were between 45 and 84

years old and had no clinical CVD. Every participant provided

informed consent, and the Institutional Review Boards approved

the study protocols of all participating institutions.

We included participants who had baseline (Exam 1: 2000–

2002) and follow-up (Exam 2: 2002–2004 and Exam 3: 2004–2005)

AVC measurements in the present study. We excluded those with

missing data on AVC score at baseline (n = 2), or during follow-up

AVC score (n = 1059), baseline liver attenuation data (n = 164),

covariates data (n = 210), or those had detectable AVC at baseline

(n = 606), had a history of heavy alcohol consumption (defined as >

7 drinks/week for women and > 14 drinks/week for men, n = 252)
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(17), had a history of hepatitis (n = 143), or had a history of

rheumatic heart disease at baseline (n = 152). Consequently, the

final study sample consisted of 4226 participants (Figure 1).
2.2 Measurements of liver fat

The details of liver fat measurement in the MESA study have

been described previously (18). During the initial examination,

every participant underwent 2 successive non-enhanced cardiac-

gated computed tomography (CT) scans, which provided sufficient

liver imaging to determine fatty liver. Prior research has shown a

negative correlation between liver attenuation on CT scans and liver

fat deposition on liver biopsy, indicating that CT scanning is a

valuable non-invasive approach to detecting fatty liver (19). Briefly,

baseline cardiac CT scans were utilized to measure hepatic

attenuation values (Hounsfield Units, HU) using a region of

interest of ≥ 100 mm2 in area. NAFLD was defined as liver

attenuation value < 51 HU after ruling out alternative factors

contributing liver fat accumulation in individuals without heavy

alcohol use. This threshold is equivalent to a liver-to-spleen ratio of

< 1.0, which indicates at least mild NAFLD (17, 20).
Frontiers in Endocrinology 03
2.3 Measurements of AVC

Calcified lesions on aortic valve leaflets and the aortic root were

characterized as AVC in the MESA study, assessed by either electron-

beam CT or multi-detector row helical CT depending on the study site

to detect cardiovascular calcification (21). All scans underwent

centralized analysis at the Harbour-UCLA Research and Education

Institute, Los Angeles, CA, ensuring low intrareader and interscan

variability (4.4% and 9.7%, respectively) in AVC scoring (21, 22). AVC

score is calculated using the Agatston method, where the calcification

score of each lesion is determined by multiplying the lesion area by a

density factor derived from the maximum HU within this area, the

total AVC score is determined by summing the Agatston score of all

individual lesions (23). AVC score > 0 indicates the presence of AVC,

while AVC score = 0 indicates the absence of AVC (22). Follow-up

measurements for AVC were conducted during Exam 2 (2002–2004)

or Exam 3 (2004–2005).While some participants underwent additional

CT scans at Exam 4 and/or Exam 5 for assessing coronary artery

calcification, these examinations were not included for the present

analysis due to lack of AVC data. Incident AVC was defined as AVC

score > 0 during follow-up in individuals who had no AVC (AVC score

= 0) at the baseline examination (24).
FIGURE 1

Flowchart for selecting the participants from the MESA for analysis. AVC, aortic valve calcification; MESA, Multi-Ethnic Study of Atherosclerosis;
NAFLD, non-alcoholic fatty liver disease.
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2.4 Measurements of other covariates

Participants’ baseline characteristics were obtained at Exam 1.

Participants provided self-reported information on age, sex,

ethnicity, smoking status, drinking status, and medication history.

Physical activity was measured using the MESA typical week

physical activity survey. Body mass index (BMI) was calculated as

weight in kilograms divided by height in meters squared (kg/m2).

Hypertension was identified based on systolic blood pressure

readings of 140 mmHg or higher, diastolic blood pressure

readings of 90 mmHg or higher, or a record of antihypertensive

drug usage in the preceding two weeks. Diabetes was defined by a

fasting glucose level of 126 mg/dL or higher, or a self-reported

physician’s diagnosis of diabetes, or any utilization of antidiabetic

drugs. Detailed descriptions of measurements, including plasma

total cholesterol, high-density lipoprotein cholesterol, triglycerides,

low-density lipoprotein cholesterol, fasting glucose, estimated

glomerular filtration rate, and C-reactive protein, have been

previously published (25).
2.5 GWAS data sources for NAFLD

Gene-exposure data were derived from a GWAS conducted on

the chronic elevation of alanine aminotransferase (cALT) in the

Million Veteran Program, which was a large-scale study that seeks

to pinpoint genetic and non-genetic risk factors for various health

conditions in US veterans. Within this study, NAFLD was defined

as alanine transaminase levels surpassing gender-specific thresholds

(30 U/L for females and 40 U/L for males) on 2 occasions separated

by at least six months within a two-year frame, excluding other liver

diseases (26). The specific design, initial demographics, and quality-

control procedures of this study have been detailed previously (27).

The study included 128,187 controls and 90,408 NAFLD cases from

4 ancestral groups, including Asian-Americans (0.9%), Hispanic-

Americans (6.9%), African-Americans (17.1%), and European-

Americans (75.1%). Among these participants, 77 independent

single nucleotide polymorphisms (SNPs) were identified as having

genome-wide significance (P < 5×10-8) (28). Further, validation was

performed on 22 SNPs in 1 external cohort and 36 SNPs in the

other one. The first cohort consisted of 44,289 individuals with liver

fat measured through CT or magnetic resonance imaging, while the

second cohort consisted of 64,182 individuals with biopsy-

confirmed NAFLD, respectively (28).
2.6 GWAS data sources for CAVS

The CAVS-related GWAS data were provided by the FinnGen

study (https://r9.finngen.fi/), a large public-private partnership

project launched in Finland in 2017 to gather and examine health

and genome information from 500,000 Finish biobank participants.

The GWAS of CAVS in FinnGen included 9153 cases and 368,124

controls and analyzed approximately 20,170,236 SNPs. The

FinnGen study defined CAVS using the ICD-9 codes 4241B and

4241C and ICD-10 codes I35.0 and I35.2.
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2.7 Selection of genetic instruments

To determine the genetic association between NAFLD and

CAVS, we employed 3 IVs sets, including (1) all 77 SNPs

associated with cALT; (2) 22 cALT-associated SNPs that showed

directional concordance and nominal significance in the imaging

cohort, with Z-scores from the imaging data used for analyses; (3) 36

cALT-associated SNPs that showed directional concordance and

nominal significance in the biopsy cohort, with effect estimates

from the biopsy data used for analyses (Supplementary Table 1)

(28). To ensure the precision of the outcomes, we reanalyzed all sets

by removing the NAFLD susceptibility genes linked to a decline in

very low-density lipoprotein (VLDL) secretion (APOE, BCL7B,

MTTP, TM6SF2, and PNPLA3), based on the information from

PhenoScanner and Pubmed search.

The selection of valid IVs in this study involved strict criteria.

SNPs that exhibited linkage disequilibrium with an r2 < 0.001, and <

1 MB from the index variant, or displayed palindromic patterns

with intermediate allele frequencies were removed from the

analyses. Additionally, SNPs that were not present in the outcome

GWAS dataset were excluded. The strength of IVs was evaluated by

calculating F statistic (29), and only IVs with an F statistic > 10 were

deemed valid and reliable for NAFLD analyses.
2.8 Statistical analyses

Continuous variables conforming to a normal distribution were

presented as mean ± SD, while non-normally distributed continuous

variables were given as median (interquartile range). Categorical

variables were presented as numbers (percentages). Student’s t-test

or Mann-Whitney U-test was used for continuous variables,

depending on the distribution. The Chi-square test was applied for

categorical variables. Adjusted Cox models were employed to

examine the association between baseline NAFLD status and the

risk of incident AVC, providing hazard ratios (HR) and 95% CIs. The

statistical analyses were conducted using SPSS version 26. Statistical

significance was determined using a two-sided P value of < 0.05.

The methodology for MR analysis was anchored in 3 fundamental

assumptions (30). The primary analyses of our two-sample MR

analyses employed inverse variance weighted (IVW) method with a

random-effect model. To evaluate heterogeneity, we calculated

Cochran’s Q statistic and conducted leave-one-out analyses.

Horizontal pleiotropy was gauged via MR-Egger intercept test. If the

P value from MR-Egger intercept test > 0.05, it was considered as no

evidence of horizontal pleiotropy, and the estimation from IVW

method was deemed the most reliable (31). We additionally

performed further analyses using more rigorous criteria: (1) simple

median method, even if half of the genetic instruments are invalid, the

effect estimate can still be generated (28); (2) penalised weighted

median method, which decreases the influence of genetic variants

with heterogeneity, effectively mitigating the influence of outliers (28);

(3) MR-Egger regression method, which permits pleiotropic effects for

all genetic variants, with the condition that these effects are

independent of the association between the variant and exposure

(32); (4) weighted mode, which generates consistent results even if
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most IVs were invalid (33). For added precision, MR-PRESSO analyses

were applied to address heterogeneity, excluding SNPs that

significantly added to observed heterogeneity (NbDistribution =

10,000). All two-sample MR analyses were conducted using the

TwoSampleMR package in the R 4.0.1.
3 Results

3.1 Baseline characteristics between
participants with and without NAFLD

The analyses were conducted on 4226 participants from the

MESA study (Figure 1). At baseline, the average age was 60.8 ± 10.0

years, 1879 (44.5%) were men, 1545 (36.6%) were Caucasian, 520

(12.3%) were Chinese, 1211 (28.7%) were African American, 950

(22.5%) were Hispanic, 1729 (40.9%) had hypertension, 474 (11.2%)

had diabetes mellitus, and 645 (15.3%) had NAFLD (Table 1). The

participants were then categorized into two groups depending on

whether they had NAFLD at baseline. Individuals with NAFLD were

younger (59.0 vs. 61.1 years), more Hispanic ethnicity (38.1% vs.

19.7%), and more non-drinkers (26.5% vs. 20.6%). Moreover, they

exhibited increased BMI (32.0 vs. 27.8 kg/m2), systolic blood pressure

(127.6 vs. 124.5 mmHg), diastolic blood pressure (72.9 vs.

71.6 mmHg), triglycerides (163.8 vs. 117.6 mg/dL), fasting glucose

(109.3 vs. 93.5 mg/dL), estimated glomerular filtration rate (82.4 vs.

78.4 ml/min/1.73 m2), and C-reactive protein (3.4 vs. 1.7 mg/L) levels,

while their high-density lipoprotein cholesterol (45.4 vs. 52.3 mg/dL),

low-density lipoprotein cholesterol (114.6 vs. 118.3 mg/dL), and

physical activity (630.0 vs. 915.0 MET-min/wk) levels were lower

(Table 1). Additionally, participants with NAFLD exhibited a higher

prevalence of diabetes mellitus (23.7% vs. 9.0%) and hypertension

(47.8% vs. 39.7%) and a greater likelihood of using antihypertensive

(40.0% vs. 32.4%) and hypoglycemic (16.6% vs. 7.0%) medications

than those without (Table 1).
3.2 Risk of incident AVC for NAFLD groups

Over an average follow-up period of 2.4 ± 0.9 years, 169 (4.0%)

incident AVC cases were observed (Table 2). In the fully-adjusted

model, participants with NAFLD had a significantly higher risk of

AVC incidence than those without (HR = 1.58 [95% CI: 1.03–2.43];

P = 0.038; Table 2). When participants were stratified by age (< 60

or ≥ 60 years), sex (male or female), ethnicity (Caucasian, Chinese,

African American, or Hispanic), and BMI (< 28 or ≥ 28 kg/m2), the

association between NAFLD status and the risk of AVC incidence

remained consistent among all the subgroups (all P for interaction >

0.05, Supplementary Figure 1).
3.3 Genetic association between NAFLD
and CAVS

The GWAS identified 77 cALT-associated SNPs, of which 6

SNPs were unavailable within CAVS dataset, and 1 SNP was
Frontiers in Endocrinology 05
associated with CAVS. An additional 18 SNPs were removed due

to being either linkage disequilibrium or palindromic, resulting in

52 independent SNPs that were used as IVs (Supplementary

Tables 1, 2), with a mean F statistic of 556.9.

IVW analysis detected a non-significant association between

genetically predicted cALT and an increased risk of CAVS (odds

ratio = 1.07 [95% CI: 0.98–1.17]; P = 0.150; Figure 2). A similar trend

was observed in other sensitivity analyses (Figures 2, 3). Although

Cochran’s Q test detected heterogeneity (Q: 101.0, P < 0.001),

heterogeneity was considered acceptable within the context of

random-effects IVW method (28). MR-Egger intercept test showed

a nonsignificant intercept (P = 0.108), indicating the absence of

pleiotropy. No outliers were identified in leave-one-out plot

(Supplementary Figure 6). Furthermore, MR-PRESSO identified 2

outliers, although the exclusion of outliers did not substantially affect

the result (odds ratio = 1.07 [95% CI: 0.97–1.17]; P = 0.173).

IVW analyses conducted on additional NAFLD-related traits,

which included both imaging-based NAFLD (using 17 SNPs,

Supplementary Tables 1, 3) and biopsy-confirmed NAFLD (using

29 SNPs, Supplementary Tables 1, 4), were non-significant

(Figure 2). Consistent results were obtained using penalised

weighted median and weighted mode for both traits (Figure 2,

Supplementary Figures 2, 3). MR-Egger intercept test revealed a

notable intercept for both traits (P < 0.05), suggesting the presence

of potential pleiotropy. No outliers were identified in leave-one-out

plots (Supplementary Figures 7, 8). MR-PRESSO identified several

outliers for both traits, but there was no significant difference in the

causal estimates before and after removing outliers.
3.4 Genetic association between NAFLD
and CAVS after excluding impaired VLDL
secretion-associated genes

We subsequently repeated the analyses after excluding genes that

are associated with impaired VLDL secretion (APOE, BCL7B,MTTP,

TM6SF2, and PNPLA3; F statistic: 465.2; Supplementary Table 2).

IVW method with the remaining 47 SNPs showed a statistically

significant association between cALT-related SNPs and the risk of

CAVS (odds ratio = 1.13 [95% CI: 1.01–1.25]; P = 0.032; Figure 4).

Similar associations were found when simple median, penalised

weighted median, and weighted mode methods were applied, with

odds ratios of 1.15 (95% CI: 1.00–1.31), 1.23 (95% CI: 1.07–1.40), and

1.23 (95% CI: 1.05–1.45), respectively (Figures 4, 5). Heterogeneity

was observed with Cochran’s Q test (Q: 94.4, P < 0.001). MR-Egger

intercept test revealed a non-significant intercept (P = 0.554). No

outliers were identified in leave-one-out plot (Supplementary

Figure 9). However, MR-PRESSO identified 2 outliers, and the

exclusion these SNPs did not substantially affect the result (odds

ratio = 1.17 [95% CI: 1.06–1.29]; P = 0.003).

IVWMR analysis for the imaging data, including the remaining

13 SNPs after removing genes linked to a decline in VLDL secretion

(F statistic: 25.9; Supplementary Table 3) showed statistically

significant association between genetically predicted imaging-

based NAFLD and risk of CAVS (odds ratio = 2.81 [95% CI:

1.66–4.76]; P < 0.001; Figure 4). Similar result was observed with the
frontiersin.org
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simple median method (odds ratio = 6.28 [95% CI: 2.29–17.25]; P <

0.001; Figure 4, Supplementary Figure 4). No heterogeneity was

detected by Cochran’s Q test (Q: 11.5, P = 0.399), and MR-Egger

intercept test demonstrated a nonsignificant intercept (P = 0.091).
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No outliers were identified in leave-one-out plot (Supplementary

Figure 10), and MR-PRESSO method did not detect any outliers.

IVW analysis for the biopsy-confirmed NAFLD, including 25

SNPs (F statistics: 309.1; Supplementary Table 4), showed a
TABLE 1 Baseline characteristics of participants stratified by status of NAFLD.

Clinical characteristic Total (n = 4226) No NAFLD (n = 3581) NAFLD (n = 645) P value

Liver attenuation, HU 60.2 ± 11.7 63.8 ± 7.6 40.1 ± 9.8 < 0.001

Age, years 60.8 ± 10.0 61.1 ± 10.1 59.0 ± 8.9 < 0.001

Male, n (%) 1879 (44.5) 1582 (44.2) 297 (46.0) 0.389

Race, n (%) < 0.001

Caucasian 1545 (36.6) 1341 (37.4) 204 (31.6)

Chinese 520 (12.3) 441 (12.3) 79 (12.2)

African American 1211 (28.7) 1095 (30.6) 116 (18.0)

Hispanic 950 (22.5) 704 (19.7) 246 (38.1)

BMI, kg/m2 28.4 ± 5.5 27.8 ± 5.1 32.0 ± 6.1 < 0.001

SBP, mmHg 125.0 ± 20.6 124.5 ± 20.8 127.6 ± 18.9 < 0.001

DBP, mmHg 71.8 ± 10.1 71.6 ± 10.1 72.9 ± 10.1 0.012

Smoking status, n (%) 0.473

Never smoker 2241 (53.0) 1892 (52.8) 349 (54.1)

Former smoker 1479 (35.0) 1251 (34.9) 228 (35.3)

Current smoker 506 (12.0) 438 (12.2) 68 (10.5)

Drinking status,n (%) 0.002

Never drinker 907 (21.5) 736 (20.6) 171 (26.5)

Former drinker 916 (21.7) 793 (22.1) 123 (19.1)

Current drinker 2403 (56.9) 2052 (57.3) 351 (54.4)

Physical activity, MET-min/wk 840.0 (185.6–2070.0) 915.0 (210.0–2100.0) 630.0 (0–1665.0) < 0.001

Hypertension, n (%) 1729 (40.9) 1421 (39.7) 308 (47.8) < 0.001

Diabetes mellitus, n (%) 474 (11.2) 321 (9.0) 153 (23.7) < 0.001

Antihypertensive medication,
n (%)

1420 (33.6) 1162 (32.4) 258 (40.0) < 0.001

Hypoglycemic medication,
n (%)

357 (8.4) 250 (7.0) 107 (16.6) < 0.001

Lipid-lowering medication,
n (%)

635 (15.0) 530 (14.8) 105 (16.3) 0.338

TC, mg/dL 193.9 ± 33.8 194.1 ± 33.7 192.7 ± 34.2 0.510

TG, mg/dL 124.6 ± 64.7 117.6 ± 60.4 163.8 ± 73.3 < 0.001

HDL-C, mg/dL 51.2 ± 14.5 52.3 ± 14.7 45.4 ± 11.7 < 0.001

LDL-C, mg/dL 117.8 ± 30.6 118.3 ± 30.6 114.6 ± 30.5 0.010

Fasting glucose, mg/dL 95.9 ± 27.5 93.5 ± 24.0 109.3 ± 39.3 < 0.001

eGFR, ml/min/1.73m2 79.0 ± 15.7 78.4 ± 15.6 82.4 ± 15.8 < 0.001

CRP, mg/L 1.9 (0.8–4.3) 1.7 (0.8–3.9) 3.4 (1.5–6.6) < 0.001
Data are presented as mean ± SD for normal distribution continuous variables, median (25th–75th) for non-normally distributed continuous variables, and n (%) for categorical variables. BMI,
body mass index; CRP, C-reactive protein; DBP, diastolic blood pressure; eGFR, estimate glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; HU, Hounsfield units; LDL-C,
low-density lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease; SBP, systolic blood pressure; TC, total cholesterol; TG, triglycerides.
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statistically significant association between biopsy-confirmed NAFLD

and increased risk of CAVS (odds ratio = 1.12 [95% CI: 1.01–1.24]; P =

0.026; Figure 4). Similar results were obtained using simple median,

penalised weighted median, and weighted mode methods, with odds

ratios of 1.19 (95% CI: 1.06–1.33), 1.14 (95% CI: 1.02–1.27), and 1.16

(95% CI: 1.02–1.32), respectively (Figure 4, Supplementary Figure 5).

However, MR-Egger method yielded different result (Figure 4,

Supplementary Figure 5). Heterogeneity was observed with

Cochran’s Q test (Q: 54.2, P < 0.001), while MR-Egger intercept test

revealed a nonsignificant intercept (P = 0.357). No outliers were

identified in leave-one-out plot (Supplementary Figure 11). However,

MR-PRESSO identified 1 outlier, yet its exclusion did not substantially

impact the result (odds ratio = 1.17 [95% CI: 1.07–1.29]; P = 0.001).

The results of the aforementioned MR analyses were summarized in

Supplementary Table 5.

4 Discussion

Our findings provide several noteworthy findings: (1) NAFLD

was independently associated with an increased risk of incident
Frontiers in Endocrinology 07
AVC in the observational analyses; (2) there was no consistent

association between genetically predicted NAFLD and CAVS when

considering all NAFLD susceptibility genes. However, after

excluding genes associated with impaired VLDL secretion, the

associations became significant between genetically predicted

NAFLD and CAVS for all NAFLD-related traits, including cALT,

imaging‐based and biopsy-confirmed NAFLD, as supported by

multiple MR methods.

Previous studies have demonstrated a cross-sectional

association between NAFLD and aortic valve sclerosis (13, 14).

The observed association may be confounded by a series of

coexisting cardiovascular risk factors, such as poor glycemic

control, dyslipidemia and endocrine disorder (10, 34–36). In the

present post hoc analysis of the MESA study, we confirmed the

prospective association between NAFLD and an increased risk of

incident AVC even after accounting for these potential confounding

factors. These indicate that additional mechanisms beyond

traditional cardiovascular and metabolic risk factors may

contribute to this association. NAFLD exacerbated insulin

resistance (37), caused atherogenic dyslipidemia, inflammation,
FIGURE 2

Forest plot of MR results of NAFLD with CAVS. cALT, chronic elevation of alanine transaminase; CAVS, calcific aortic valve stenosis; CI, confidence
interval; MR, Mendelian randomization; NAFLD, non-alcoholic fatty liver disease; OR, odds ratio; SNPs, single nucleotide polymorphisms.
TABLE 2 Adjusted associations between NAFLD at liver attenuation values less than 51 and AVC incident.

Events/No.
at risk

Model 1
HR (95% CI)

P value
Model 2

HR (95% CI)
P value

Model 3
HR (95% CI)

P value

No
NAFLD

138/3581 Reference – Reference – Reference –

NAFLD 31/645 1.66 (1.11–2.49) 0.013 1.57 (1.02–2.41) 0.039 1.58 (1.03–2.43) 0.038
Model 1: adjusted for age, race and sex.
Model 2: adjusted for Model 1 covariates plus BMI, drinking status, physical activity, SBP, and smoking status.
Model 3: adjusted for Model 2 covariates plus CRP, fasting glucose, hypertension, hypoglycemic medication use, LDL-C, and lipid-lowering medication use.
AVC, aortic valve calcification; BMI, body mass index; CRP, C-reactive protein; CI, confidence interval; HR, hazard ratio; LDL-C, low-density lipoprotein cholesterol; NAFLD, non-alcoholic fatty
liver disease; SBP, systolic blood pressure.
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and increased collagen synthesis, all of which have been implicated

in the pathophysiology of valvular calcification (5). In addition,

NAFLD also promoted ferroptosis (38), which was shown to be one

of the main mechanisms of AVC (39). This further supports the

possibility that the toxic systemic effects of NAFLD may be

responsible for the observed association between NAFLD and the

risk of AVC incidence.
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In addition, some selected IVs (APOE, BCL7B, MTTP,

TM6SF2, and PNPLA3) were reported to be related to impaired

VLDL secretion, which directly affects blood lipid levels (40). After

excluding these IVs, our two-sample MR analyses provide a novel

perspective that NAFLD may causally impact the development of

CAVS. The reasons for excluding genes related to impaired VLDL

secretion were as follows. First, hyperlipidemia was recognized as a
FIGURE 4

Forest plot of MR results of NAFLD with CAVS after exclusion of genes associated with impaired VLDL secretion. cALT, chronic elevation of alanine
transaminase; CAVS, calcific aortic valve stenosis; CI, confidence interval; MR, Mendelian randomization; NAFLD, non-alcoholic fatty liver disease;
OR, odds ratio; SNPs, single nucleotide polymorphisms; VLDL, very low-density lipoprotein.
FIGURE 3

Scatter plot from genetically predicted cALT on CAVS. cALT, chronic elevation of alanine transaminase; CAVS, calcific aortic valve stenosis; MR,
Mendelian randomization; SNP, single nucleotide polymorphism.
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risk factor for CVD, and the above genetic variants also directly

affected serum lipids, suggesting the possible influence of horizontal

pleiotropy (40, 41). According to our results, when considering

these IVs, the MR-Egger intercept test showed a statistically

significant intercept. After exclusion of these IVs, the intercept

became non-significant, indicating that we eliminated the influence

of horizontal pleiotropy. In addition to considering the horizontal

pleiotropy, we also excluded these IVs based on the biological

reasons (42, 43). The stable isotope study has shown that

increased flux of free fatty acids and higher rates of lipid synthesis

are the primary causes of NAFLD (42). Furthermore, compared to

individuals without NAFLD, participants with NAFLD typically

exhibited an increase in VLDL secretion rather than a decrease (43).

This study has several strengths and limitations. First, to the

best of our knowledge, it is the first to utilize two-sample MR

analysis to examine the genetic association between NAFLD and

CAVS. Second, we employed 3 gene‐exposure data of 3 different

NAFLD‐related traits in combination with the use of different MR

methods, which contributed to the robustness and validity of our

findings. Notably, there are minor discrepancy in the results of the 3

different NAFLD-related traits. It was possibly because we identified

SNPs associated with cALT based on GWAS. Thus, NAFLD

susceptibility genes unrelated to cALT were not included in the

MR analyses, which could affect our results. Additionally, the

different sensitivities of the 3 different NAFLD-related traits to

various histological stages of NAFLD may also contribute to these

differences. Third, we used the latest and largest-scale available

NAFLD GWAS results for the present analyses. Of note, the

methodology of the foundational GWAS primarily identified

NAFLD genes associated with cALT. It was likely that some

NAFLD susceptibility genes, especially those unrelated to serum

ALT levels, were omitted in our MR analysis. However, these

NAFLD susceptibility genes were consistent with the imaging and
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biopsy evidence of NAFLD, suggesting that these selected genes are

reliable NAFLD markers (28). Another limitation was that the

original GWAS did not differentiate between the histological stages

of NAFLD, a crucial distinction considering fibrosis’s specific

association with cardiovascular mortality (44). Furthermore, while

we excluded genes influencing NAFLD via impaired VLDL

secretion, it did not guarantee the eradication of all potential

horizontal pleiotropy, especially given that many of the

considered SNPs exhibited expression beyond the liver.

In conclusion, our study confirmed that NAFLD was

independently associated with an increased risk of incident AVC.

The two-sample MR analyses further showed that genetically

predicted NAFLD was also associated with CAVS incidence after

excluding genetic variants related to impaired VLDL secretion.

These findings underscore the relevance of the NAFLD in the

development of CAVD and carry important implications for its

prevention and treatment strategies.
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