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Background: Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder

in women of reproductive age, is mainly ameliorated through drugs or lifestyle

changes, with limited treatment options. To date, numerous researchers have

found that fertility nutrient supplements may benefit female reproductive health,

but their direct impact on polycystic ovary syndrome risk remains unclear.

Methods: Our research employs Mendelian Randomization to assess how fertility

nutrients affect PCOS risk. Initially, we reviewed 49 nutrients and focused on 10:

omega-3 fatty acids, calcium, dehydroepiandrosterone, vitamin D, betaine, D-

Inositol, berberine, curcumin, epigallocatechin gallate, and metformin. Using

methodologies of Inverse Variance Weighting and Mendelian Randomization-

Egger regression, we examined their potential causal relationships with PCOS risk.

Results:Our findings indicate omega-3 fatty acids reduced PCOS risk (OR=0.73, 95%

CI: 0.57-0.94, P=0.016), whereas betaine increased it (OR=2.60, 95% CI: 1.09-6.17,

P=0.031). No definitive causal relations were observed for calcium,

dehydroepiandrosterone, vitamin D, D-Inositol, and metformin (P>0.05). Drug target

Mendelian Randomization analysis suggested that increased expression of the

berberine target gene BIRC5 in various tissues may raise PCOS risk (OR: 3.00-4.88;

P: 0.014-0.018), while elevated expressions of curcumin target gene CBR1 in Stomach

and epigallocatechin gallate target gene AHR in Adrenal Gland were associated with

reduced PCOS risk (OR=0.48, P=0.048; OR=0.02, P=0.018, respectively).

Conclusions: Our research reveals that specific fertil ity nutrients

supplementation, such as omega-3 fatty acids, berberine, and curcumin, may

reduce the risk of PCOS by improving metabolic and reproductive abnormalities

associated with it.
KEYWORDS

polycystic ovary syndrome, fertility nutrients, Mendelian Randomization, drug target
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1 Introduction

Polycystic Ovary Syndrome (PCOS) is a common metabolic

disturbance and heterogeneous endocrine disorder among women of

reproductive age (1), with an estimated prevalence of 6%-10% during

this period (2, 3). It is mainly characterized by hyperandrogenism,

anovulation, and/or oligo-ovulation. Studies have shown that women

with PCOS exhibit persistent menstrual irregularities, infertility, and

obesity. Moreover, even after conception, PCOS can lead to adverse

pregnancy outcomes such as gestational hypertension, spontaneous

miscarriages, and preterm births (4–6).

Despite its high prevalence, the exact etiology of PCOS remains

unclear. Research indicates that PCOS is a multifactorial disease,

often involving genetic, metabolic, and environmental abnormalities

(7). Hyperandrogenism during different developmental stages is

considered as a primary driver of the metabolic and reproductive

dysregulations associated with PCOS (8). Insulin resistance is also

commonly viewed as a significant etiological factor in PCOS, with

approximately 50% to 80% of women with the syndrome exhibiting

signs of insulin resistance (9, 10). Current treatment strategies for

PCOS primarily involve lifestyle interventions or pharmacological

treatments targeting pathological symptoms. Studies suggest that a

weight reduction of 5% to 10% in overweight or obese women may

restore regular menstruation and ovulation (11, 12); the use of

metformin or D-chiro-D-Inositol can increase insulin sensitivity

and improve the condition in patients with PCOS (13); and

clomiphene citrate can block hypothalamic estrogen receptors,

stimulating follicle development through a negative feedback

mechanism (14). However, overall, the clinical drugs available are

limited, and curing PCOS remains challenging.

Appropriate nutritional supplementation during preconception and

pregnancy is beneficial for the development of the mother, embryos,

fetuses, and pregnancy outcomes. These supplements are generally

recognized as “Fertility Nutrients” or “Fertility Supplements” (15, 16).

For example, supplementation with coenzyme Q10, melatonin, and

vitamins A, C, and E can effectively promote follicular development

andmaturation in womenwith premature ovarian aging and diminished

ovarian reserve (17–22). Supplementation with Docosahexaenoic acid

(DHA), and minerals such as calcium, magnesium, and selenium, can

effectively regulate hormone endocrine levels and insulin metabolism

abnormalities in patients with PCOS (23–26). Supplementation with

curcumin and vitamin D can effectively regulate overall blood glucose

concentrations in pregnant women (21, 27). Additionally,

supplementation with folic acid and betaine can significantly lower

serum homocysteine levels and prevent fetal neural tube defects during

preconception and pregnancy (18, 28). All of the above shows

associations between nutrient supplementation and reproductive

health, thus revealing whether reproductive nutrient supplementation

can reduce the risk of PCOS is of great significance.

At present, common observational epidemiological research

methods, such as meta-analyses and clinical randomized

controlled trials, can associate medication or reproductive
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nutrient supplementation with PCOS. However, due to the

difficulty in confirming whether all potential confounding factors

and other possible influencing factors have been excluded from the

correlation between exposure and outcome, the causal inference

conclusions drawn from traditional analyses often lack rigor.

With the emergence of large-scale Genome-Wide Association

Studies (GWAS) at the end of the 20th century, researchers have

been able to use genetic variants to infer causal relationships

between exposure factors (such as nutritional supplements, drugs,

drug targets, or risk factors for disease) and outcome factors (such

as diseases or biological events). Mendelian Randomization (MR) is

a novel genetic analysis method that uses genetic variants strongly

associated with exposure as instrumental variables to assess the

causal relationship between exposure and outcome (29). This

method relies on three essential assumptions: (1) Genetic variants

are strongly associated with exposure. (2) Genetic variants are not

associated with any confounders of the exposure-outcome

relationship. (3) Genetic factors only affect the outcome through

the exposure. MR avoids the confounding factors and reverse

causality issues present in observational studies, providing a more

reliable causal relationship than observational research.

Based on two-sample Mendelian Randomization studies, this

research uses fertility supplements as the exposure factors and

Polycystic Ovary Syndrome as the outcome to explore the causal

relationship. This approach may provide more potential feasible

solutions for the clinical treatment and prevention of PCOS.
2 Materials and methods

2.1 Acquisition and selection of
exposure data

Using the IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/)

and the Drug Bank database (https://go.drugbank.com/), a search

was conducted for 49 common fertility supplements (see

Supplementary Table 1). A total of 10 supplements suitable for

Mendelian Randomization (MR) analysis were selected for study,

including DHA, calcium, Dehydroisoandrosterone (DHEA),

vitamin D, betaine, and metformin, with their respective

GWAS_IDs being met-d-DHA, ukb-b-7043, ebi-a-GCST004941,

ebi-a-GCST90000618, met-a-362, and ukb-a-159 (Table 1). Data

for D-Inositol (30) were downloaded from the GWAS Catalog

(2023) website (https://www.ebi.ac.uk/gwas/).

Additionally, berberine, curcumin, and epigallocatechin gallate

(EGCG) were searched, and 10 target genes were identified

respectively as BIRC5, qacR, PPARG, VDR, ABCC5, CBR1,

GSTP1, AHR, DNMT1, and DHFRL1 (Table 2). Public data from

GTEx (https://www.gtexportal.org/) were utilized to obtain the cis-

eQTLs associated with the expression of these target genes in 49

human tissues. These cis-eQTLs were used as instrumental variables

for drug target MR analysis.
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2.2 Acquisition of outcome data

TheGWAS_ID for PCOSwas retrieved from the IEUOpenGWAS

project database (https://gwas.mrcieu.ac.uk/) as finn-b-E4_POCS.

This data originates from publicly published GWAS summary

statistics in 2021, encompassing a total of 16,379,676 SNPs.
2.3 Two-sample MR analysis

We conducted a two-sample Mendelian Randomization (MR)

analysis (31) using R software (version 4.2.3) and the

TwoSampleMR package (version 0.5.7). For the seven fertility

nutritional components with GWAS_ID, causal relationships with

PCOS were assessed using mendelian randomization analysis

methods (instrumental variable logistic regression with SNPs as

instrumental variables) such as inverse variance weighted (IVW),

MR-Egger regression, simple mode, weighted median, and weighted

mode. Odds ratios (OR) and their 95% confidence intervals (CI)

were estimated, and a p-value < 0.05 was considered

statistically significant.

Heterogeneity was tested using Cochran’s Q test, with a

p-value < 0.05 indicating the presence of heterogeneity. Pleiotropy

was assessed using the MR-Egger intercept test, with a p-value <

0.05 indicating the presence of pleiotropy. Sensitivity analysis was

conducted using the leave-one-out method to evaluate the

robustness of the findings, checking if the removal of a single

variant affected the relationship between exposure and outcome.

Forest plots were used to visualize causal associations, and scatter

plots were used to visualize the effect sizes of each genetic

instrument on exposures and outcomes.
2.4 Drug target MR analysis

For the three fertility nutritional components without GWAS

data, we analyzed the instrumental variables containing multiple
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SNP loci using a fixed-effect inverse variance weighted MR method.

For instrumental variables containing only a single SNP locus, the

Wald ratio method was used.

3 Results

Firstly, this study took seven reproductive nutritional

supplements with GWAS data—DHA, calcium, DHEA, vitamin

D, betaine, D-Inositol, and metformin—as exposure factors

(Table 1). After genome-wide screening (p < 5 × 10^-5) and

clumping (r^2 < 0.001, kb = 10,000), 216, 126, 104, 376, 61, 99,

and 196 SNPs were included respectively. These SNPs were strongly

associated with the exposure factors and were independent of each

other (Figure 1).

At the same time, this study used the eQTL data corresponding

to the target action points of three fertility nutritional components

without GWAS data—berberine, curcumin, and EGCG—as

instrumental variables. After screening (p < 5 × 10^-5), the target

genes for berberine: BIRC5 and qacR, included 389 and 0 SNPs

respectively; the target genes for curcumin: PPARG, VDR, ABCC5,

CBR1, and GSTP1, included 1058, 530, 4150, 4809, and 5693 SNPs

respectively; the target genes for EGCG: AHR, DNMT1, and

DHFRL1, included 88, 76, and 0 SNPs respectively (Figure 2).

Subsequently, we conducted a two-sample MR analysis on the

seven fertility nutritional supplements with GWAS data. The IVW

results showed that DHA could decrease the risk of PCOS

(OR=0.73, 95% CI: 0.57-0.94, P=0.016), while betaine could

increase the risk of PCOS (OR=2.60, 95% CI: 1.09-6.17, P=0.031).

For calcium, DHEA, vitamin D, D-Inositol, and metformin, the MR

analyses across all five regression models showed p-values greater

than 0.05, indicating no statistical significance (Figure 3). In MR

analysis, the IVW regression analysis is of particular importance; if
TABLE 1 GWAS Data Information on Seven Fertility
Nutritional Components.

GWAS MR

Exposure ID N
Number
of SNPs

DHA met-d-DHA 114,999 12,321,875

Calcium ukb-b-7043 461,384 9,851,867

DHEA ebi-a-GCST004941 9,722 21,770,677

Vitamin D
ebi-

a-GCST90000618
496,946 6,896,093

Betaine met-a-362 7,806 2,545,684

Metformin ukb-a-159 337,159 10,894,596

Inositol / 8193 /
Exposure, Exposure factor; ID, GWAS_ID; N, Sample size of GWAS data; Number of SNPs,
Number of SNPs detected in GWAS data samples.
TABLE 2 Fertility nutrients target data information.

Nutrient composition Target MR

Exposure Target Number of SNPs

Berberine
BIRC5 389

qacR 0

Curcumin

PPARG 1,058

VDR 530

ABCC5 4,150

CBR1 4,809

GSTP1 5,693

EGCG

AHR 88

DNMT1 76

DHFRL1 0
Exposure, Exposure Factor; Target, Drug Target; Number of SNPs, Number of SNPs
Corresponding to Targets. BIRC5, Baculoviral IAP repeat-containing protein 5; qacR,
HTH-type transcriptional regulator QacR; PPARG, Peroxisome proliferator-activated
receptor gamma; VDR, Vitamin D3 receptor; ABCC5, Multidrug resistance-associated
protein 5; CBR1, Carbonyl reductase [NADPH] 1; GSTP1,Glutathione S-transferase P;
AHR, Aryl hydrocarbon receptor; DNMT1, DNA (cytosine-5)-methyltransferase 1; and
DHFRL1, Dihydrofolate reductase, mitochondrial.
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the IVW result is statistically significant, and the effect value (b) of

other non-statistically significant models is in the same direction as

the IVW b value, the exposure factor can still be considered to have

a causal relationship with the outcome. The scatter plot for DHA

and PCOS is shown in Figure 4A. The forest plot for the effect

estimates of individual SNPs on PCOS is provided in

Supplementary Figure 1.

Furthermore, we conducted sensitivity tests for the MR analysis

results of DHA and PCOS. The IVW results showed Cochran’s
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Q=203.16, P=0.50; MR-Egger results showed Cochran’s Q=203.46,

P=0.52, with both methods having p-values greater than 0.05,

indicating no heterogeneity among the instrumental variables.

The MR-Egger intercept was 0.0045, P=0.58, suggesting no

pleiotropy among the included SNPs. The funnel plot also

indicated that the causal effect estimates of IVW were

symmetrically distributed overall, showing no heterogeneity

(Figure 4B). The study also used the Leave-one-out method to

test the impact of the remaining SNPs after removing a single SNP,
FIGURE 1

Significant SNPs in GWAS Data for reproductive nutritional components. (A) DHA; (B) Calcium; (C) DHEA; (D) Vitamin D; (E) Betaine; (F) Inositol;
(G) Metformin. X-axis: Chromosomal positions of SNPs; Y-axis: SNPs correspond to negative log10 values of p-values; Gray dashed line: P=5e-5
threshold; Red solid line: P=5e-8 threshold.
FIGURE 2

Significant SNPs in Target Genes for fertility nutritional components. (A) BIRC5; (B) VDR; (C) ABCC5; (D) CBR1; (E) GSTP1; (F) AHR; (G) PPARG;
(H) DNMT1; Gray dashed line: P=5e-5 threshold; Red solid line: P=5e-8 threshold. X-axis: Chromosomal position of the SNP; Y-axis: SNPs
correspond to negative log10 values of p-values.
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and it was observed that there were no outlier SNPs or SNPs

affecting the results (Supplementary Figure 2), thereby confirming

the reliability of our results.

Finally, we conducted Mendelian randomization (MR) analyses

on the drug targets of three fertility nutritional components:

berberine, curcumin, and EGCG. The results indicated that the

upregulation of the berberine target gene BIRC5 in tissues such as

“Cells _ Cultured _ fibroblasts”, “Esophagus _ Mucosa”, “Skin _ Not

_ Sun _ Exposed _ Suprapubic”, and “Skin _ Sun _ Exposed _ Lower
Frontiers in Endocrinology 05
_ leg” could increase the risk of PCOS (OR=4.88, 95% CI: 1.31-

18.24, P=0.018; OR=3.00, 95% CI: 1.25-7.17, P=0.014; OR=3.63,

95% CI: 1.26-10.42, P=0.017; OR=4.23, 95% CI: 1.32-13.53, P=0.015

respectively). In Adrenal _ Gland tissue, the upregulation of the

EGCG target gene AHR could decrease the risk of PCOS (OR=0.02,

95% CI: 0.00-0.52, P=0.018), and in Stomach tissue, the

upregulation of the curcumin target gene CBR1 could decrease

the risk of PCOS (OR=0.48, 95% CI: 0.23-0.99, P=0.048)

(Figures 5–7).
FIGURE 3

Forest plot of the results of MR Analysis of fertility nutrients and PCOS. Exposure, Exposure Factor; N, Sample Size; OR, Odds Ratio; 95% CI, 95%
Confidence Interval; P, p-value; an asterisk “*” denotes P<0.05 as a statistically significant result in the Mendelian Randomization analysis.
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4 Discussion

Polycystic Ovary Syndrome (PCOS) is a common reproductive

endocrine metabolic disease among women of reproductive age,

characterized by hyperandrogenism, ovulatory dysfunction, and the

presence of polycystic ovaries (32). Due to the heterogeneity of

these features, diagnosing and treating PCOS has always been

challenging. This study utilized a two-sample Mendelian

randomization approach to assess the causal relationship between

reproductive nutritional supplementation and the risk of

developing PCOS.

In this study, we evaluated the potential causal relationship

between fertility nutritional components, using GWAS data, and

the risk of PCOS. The components assessed included DHA,

calcium, DHEA, vitamin D, betaine, D-Inositol, metformin. The

results suggest that DHA may reduce the risk of PCOS (OR=0.73,

95% CI: 0.57-0.94, P=0.016), while betaine may increase the risk of

PCOS (OR=2.60, 95% CI: 1.09-6.17, P=0.031). No significant
Frontiers in Endocrinology 06
associations were found between the other nutritional

components and PCOS.

Women with PCOS often exhibit insulin resistance,

characterized by excessive insulin secretion and reduced glucose

utilization by insulin (33). Numerous basic and clinical studies have

shown that DHA (omega-3 polyunsaturated fatty acids) can

beneficially impact PCOS through various pathways and

mechanisms, including reducing insulin resistance, modulating

adipokine production, exerting anti-inflammatory effects, and

enhancing endothelial function (34–36). Consistent with these

findings, our study also indicates that DHA intake decreases the

risk of PCOS.

Metformin, as an insulin sensitizer, is widely used to ameliorate

insulin resistance in patients with PCOS. However, the reduction in

gastrointestinal glucose absorption caused by metformin can lead to

symptoms such as nausea, vomiting, and diarrhea, which may

interrupt PCOS treatment (33). Hence, alternatives with fewer

side effects would be beneficial for the recovery of PCOS patients.
FIGURE 4

Mendelian Randomization results for DHA and PCOS. (A) Scatter plot of SNP effects on PCOS, X-axis: Effect values of SNPs on DHA; Y-axis: Effect
values of SNPs on PCOS. (B) Volcano plot, bIV: Instrumental variable effect value; 1/SEIV: Inverse of the standard error.
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D-Inositol has long been considered a potential substitute for

metformin in the treatment of PCOS. A meta-analysis has

indicated that D-Inositol supplementation for PCOS can help

normalize the ovarian cycle, regulate carbohydrate metabolism,

and significantly improve hyperandrogenemia symptoms by

reducing free and total testosterone levels and increasing sex

hormone-binding globulin levels (37). However, our study’s

findings show that increased levels of metformin and D-Inositol

do not have a significant causal relationship with the risk of PCOS,

indicating that the currently reported GWAS data related to those

compounds are limited. Therefore, MR serves as a predictive tool,

and its results have suggestive value, and further observational

studies and clinical trials are warranted.

During the treatment of patients with PCOS, in addition to

improving insulin resistance, reducing homocysteine levels may

also enhance reproductive outcomes (38, 39). As a methyl donor,

betaine works in conjunction with betaine-homocysteine

methyltransferase to convert homocysteine into methionine,

thereby lowering homocysteine levels (40). This suggests that

betaine supplementation could improve symptoms of

hyperhomocysteinemia in PCOS patients, thereby improving

PCOS outcomes. However, our MR study results indicated that

increased levels of betaine might exacerbate the risk of PCOS, which

contradicts previous research. The causal relationship between

betaine levels and PCOS lacks direct clinical evidence and

requires further investigation to explore this relationship.
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For the fertility nutritional components without GWAS data—

berberine, curcumin, and EGCG—we conducted the analysis using

drug target genes as instrumental variables. Our findings suggest that

the elevated expression of the target gene BIRC5 for berberine is linked

to a heightened risk of PCOS, while increased expression of target genes

for curcumin and EGCG is associated with a reduced risk of PCOS.

Berberine is an alkaloid with a variety of pharmacological

effects, including anti-inflammatory, antioxidant, and insulin

sensitivity-improving actions (41, 42). This study identified that

the elevated expression of the berberine target gene BIRC5 across

various tissues is associated with an increased risk of PCOS. The

protein encoded by BIRC5, SURVIVIN, is a member of the cell

cycle regulatory proteins involved in inhibiting apoptosis and

promoting cell proliferation (43). Elevated expression of BIRC5 is

associated with the development of various cancers, and abnormal

expression of BIRC5 has also been found in the ovarian granulosa

cells of PCOS patients (44, 45). Hao et al. have indicated that

alkaloids like berberine and cantharidin may reduce the levels of

proteins such as BIRC5, CDK1, and CCNB1 to combat chronic

hepatitis B virus (46). Thus, berberine might exert its therapeutic

effects on PCOS by suppressing the expression of the BIRC5 gene,

thereby decreasing the expression of SURVIVIN, ultimately

improving PCOS outcomes. However, this hypothesis requires

further validation through more cellular and animal studies.

Curcumin, the principal active component of turmeric, is

known for its extensive anti-inflammatory and antioxidant
FIGURE 5

Forest plot of the results of MR Analysis of berberine (BIRC5) and EGCG (AHR and DNMT1) target gene SNPs and PCOS. Gene, Target gene; Tissue,
Tissue where SNPs are located; nSNPs, Number of effective SNPs (P<5e-5); OR, Odds Ratio; 95% CI, 95% Confidence Interval; P, p-value
corresponding to SNPs in MR results; an asterisk “*” denotes P<0.05 as a statistically significant result in the Mendelian Randomization analysis.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1420004
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shao et al. 10.3389/fendo.2024.1420004
properties and has been shown to play a role in the management of

diabetes and cardiovascular diseases (47, 48). In our study, the

expression of the curcumin target gene CBR1 in stomach tissue was

associated with a reduced risk of PCOS. CBR1 is a reductase

involved in drug metabolism and cellular antioxidative defense

mechanisms (49). The regulatory effect of curcumin on CBR1
Frontiers in Endocrinology 08
may be linked to its potential in ameliorating metabolic

abnormalities in PCOS patients, but the specific mechanisms and

efficacy of this action remain to be further explored.

Epigallocatechin gallate (EGCG), one of the most active

components in green tea, exhibits significant antioxidant, anti-

inflammatory, and potential anticancer effects (50, 51). In this
FIGURE 6

Forest plot of the results of MR Analysis of curcumin target gene (ABCC5 and GSTP1) SNPs and PCOS. Gene, Target gene; Tissue, Tissue where SNPs
are located; nSNPs, Number of effective SNPs (P<5e-5); OR, Odds Ratio; 95% CI, 95% Confidence Interval; P, p-value corresponding to SNPs in
MR results.
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study, the expression of the target gene AHR for EGCG in adrenal

tissue was significantly associated with a reduced risk of PCOS.

However, studies have shown that Bisphenol A induces insulin

resistance, a potential factor in the development of PCOS, by

activating the AHR receptor to inhibit GLUT4 expression, leading
Frontiers in Endocrinology 09
to aberrant glucose metabolism (52). This finding is inconsistent

with our MR results, and the specific mechanism by which AHR

affects PCOS requires further research.

The aforementioned findings provide potential directions for

both clinical and basic research into the treatment and prevention
FIGURE 7

Forest plot of the results of MR Analysis of curcumin (CBR1 and VDR) target gene SNPs and PCOS. Gene, Target gene; Tissue, Tissue where SNPs are
located; nSNPs, Number of effective SNPs (P<5e-5); OR, Odds Ratio; 95% CI, 95% Confidence Interval; P, p-value corresponding to SNPs in MR
results; an asterisk “*” denotes P<0.05 as a statistically significant result in the Mendelian Randomization analysis.
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of PCOS. These nutritional components may improve clinical

outcomes in PCOS by affecting the expression of specific genes

and related biological pathways.

Mendelian randomization analysis is a powerful tool for

studying causal relationships, addressing confounding and reverse

causality issues in traditional observational studies by using genetic

variants as instrumental variables. In our study, we employed

multiple MR methods to test causal relationships and conducted

heterogeneity and pleiotropy tests, as well as sensitivity analyses, to

ensure the robustness of our results. Despite the enhanced

credibility of our analyses through these methods, our study still

has some limitations.

Firstly, our analysis relies on existing GWAS datasets, which

may lack diversity in terms of ethnicity, geography, and

environmental background, thereby potentially limiting the

generalizability of our findings. For example, the PCOS GWAS

data utilized in our study are derived solely from European

populations, rather than global populations. Additionally, due to

the limitations of GWAS summary data, Mendelian randomization

analysis can only estimate odds ratios (OR), even though relative

risk (RR) is more appropriate for estimating risk.

Secondly, the association between the nutrients we studied and

PCOS might be influenced by other genetic and environmental

factors that were not fully controlled for in our analysis. For

example, calcium’s effect approached borderline significance

(P = 0.067) and was favorable in reducing PCOS. The larger

standard error and wider confidence interval could be due to the

sample size, suggesting calcium as a potential beneficial factor

warranting further investigation. Our results may be limited by

the strength of the association between the genetic variants used as

instrumental variables and the exposure to nutritional components,

as well as the number of these genetic variants.

Nevertheless, our study provides new insights, identifies

potential genetic variants, and offfers targeted research

recommendations for further clinical research and the development

of therapeutic strategies.
5 Conclusions

In conclusion, our research suggests that specific fertility

nutritional components, such as DHA, berberine, and curcumin,

may reduce the risk of PCOS by improving metabolic and

reproductive abnormalities. Future research should focus on

verifying the therapeutic efficacy and mechanisms of action of

these nutrients on PCOS, while also assessing their potential

values in the prevention and treatment of PCOS. Attention

should also be given to the relationship between nutrient

supplementation and other phenotypes of PCOS. Furthermore,

direct intervention studies, such as randomized controlled trials,

can better elucidate the impact of nutritional supplementation

strategies on PCOS and provide more specific guidance for

patients. It is important to note that our current data are derived

from European cohorts and may not be broadly representative. The
Frontiers in Endocrinology 10
applicability of our conclusions to populations outside Europe

requires further validation and analysis.
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