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Health condition and
socioeconomic status mediate
the causal effect of reproductive
traits on nonalcoholic fatty liver
disease: evidence from
Mendelian randomization study
Qiaoyun Wang1†, Liming Wang2,3†, Rui Hao4, Lijiu Zhang4*,
Wenyan Wang2* and Lingling Xia1*

1Department of Infections Disease, the First Affiliated Hospital of Anhui Medical University, Hefei,
Anhui, China, 2Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui
Medical University, Hefei, Anhui, China, 3Department of Gynecology and Obstetrics, the First Affiliated
Hospital of Anhui Medical University, Hefei, Anhui, China, 4Department of Gastroenterology, the
Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
Background:Observational data posits a correlation between reproductive traits

and nonalcoholic fatty liver disease (NAFLD), but their causal inference is still

unclear. This investigation seeks to elucidate the causal influence of reproductive

traits on NAFLD and determine the intervening role of health condition and

socioeconomic status in these connections.

Methods: Utilizing a Mendelian Randomization (MR) approach, this research

leveraged a comprehensive dataset from the Genome-wide Association Study

(GWAS) database. The study incorporated body mass index, major depression,

educational level, household income and Townsend deprivation index as

intermediary variables. Initially, a bidirectional two-sample MR study was

conducted to explore the genetic associations between reproductive traits and

NAFLD. Then, two-step MR analyses were implemented to quantify the extent of

mediation by these indicators. The weighted inverse variance method was the

primary analytical approach, complemented by several sensitivity analyses to

affirm the robustness of the MR assumptions. Finally, these findings were

validated in the FinnGen research.

Results: The bidirectional MR analysis indicated that earlier reproductive traits

(age at menarche, age at first sexual intercourse, and age at first birth) were

associated with an elevated risk of NAFLD, absent any evidence of the reverse

relationship. Body mass index accounted for 35.64% of the association between

premature menarche and NAFLD. Additionally, body mass index, major

depression, educational level and household income mediated 41.65%, 14.35%,

37.88%, and 18.59% of the connection between early sexual intercourse and

NAFLD, respectively. Similarly, these same variables elucidated 36.36%, 15.58%,
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41.56%, and 22.73% of the correlation between younger age at first birth

and NAFLD.

Conclusion:Our study elucidated the causal relationships between reproductive

traits and NAFLD. Potential underlying mechanisms may involve factors such as

body mass index, major depression, educational attainment and

household income.
KEYWORDS

reproductive traits, nonalcoholic fatty liver disease, body mass index, major depression,
socioeconomic status, mendelian randomization, mediation
1 Introduction

The escalating prevalence of nonalcoholic fatty liver disease

(NAFLD), affecting an estimated 30% of the global population (1,

2), cannot be disregarded. Metabolic syndrome, closely associated

with obesity, insulin resistance, and hyperlipidemia (3), is

recognized as the predominant cause of NAFLD. These

conditions contribute to chronic inflammation, poor lipid, and

hepatocellular carcinoma (4, 5). Regrettably, there is no approved

treatment for NAFLD (6). Hence, it becomes imperative to

promptly detect and address the risk elements linked to NAFLD.

Reproductive health and evolutionary adaptability are

significantly influenced by female reproductive behaviors. This

behavioral aspect encompasses various key factors, such as age at

menarche (AAM), age at first sexual intercourse (AFS), age at first

birth (AFB), age at last birth (ALB), and age at menopause (AMP).

Numerous studies have proposed a correlation between AAM and

NAFLD (7–10). Similarly, a meta-analysis evidence indicates that

menopause is associated with approximately 2.4 times higher odds

of NAFLD (11). Another study has highlighted the impact of

menopause on the severity of fibrosis among individuals with

non-alcoholic steatohepatitis (12). Nonetheless, the genetic links

between AMP and NAFLD remain to be fully understood.

Recent evidence from the NHANES study verified the

interaction between AFB and NAFLD (13). Meanwhile, Zuo et al.

observed a connection between AFB/ALB and the risk of metabolic

syndrome in women (14). However, the causal relationships

between these reproductive factors remain uncertain due to
exual intercourse; AFB,

pause; BMI, body mass

t; GWAS, genome-wide

erse variance weighted;

mization; MD, major

OR, odds ratio; PPD,
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constraints in traditional observational research. Moreover,

research investigating the correlation between AFS and NAFLD is

scarce. Thus, the current understanding of the genetic association

between reproductive factors and NAFLD is limited.

Mendelian randomization (MR) analysis has become

increasingly popular in genetic research for assessing causal

relationships between exposure and outcome variables (15, 16).

This method effectively mitigates confounding factors and infers

causal relationships by randomly assigning alleles exposed to

genetic variation (17, 18). These advantages also extend to

intermediary analysis (19, 20). The potential mediating factors

can be accurately estimated using the two-step MR approach.

Premature menarche is associated with the occurrence of

NAFLD, although there are divergent viewpoints regarding the

role of body mass index (BMI) in this association (7–10). Emerging

research suggests that major depression (MD) correlates with

NAFLD and reproductive behaviors (21–23). In addition, some

cross-sectional studies have shown that lower household income

and educational levels are associated with an increase the risk of

suffering hepatic steatosis in U.S. adolescents (24, 25). However,

there is currently no research that fully reveals the relationship

between health conditions, socioeconomic status (SES), and

reproductive factors. Utilizing a two-step, two-sample Mendelian

randomization study, we aimed to investigate the causal effect

between reproductive traits and NAFLD and explore the potential

roles of health condition and SES.

2 Materials and methods

2.1 Study design

This research aggregated GWAS data and adhered to the MR

analysis guidelines as outlined in previous studies (15), while

working based on three fundamental assumptions: first, the

instrumental variables (IVs) in this study should demonstrate a

robust correlation with the exposures. Second, the IVs should be

uncontaminated by confounding factors. And finally, the IVs

should influence the outcome exclusively through their impact on
frontiersin.org
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the exposure. The research design and results are depicted

in Figure 1.
2.2 Data sources and ethics

2.2.1 Reproductive traits
The AAM-related IVs were acquired from a survey encompassing

182,416 female subjects (26). Summary statistics for AFS and AFBwere

obtained from research conducted by Mills MC (27). This study

identified a whopping number of 16,292,532 single nucleotide

polymorphisms (SNPs) for AFS and 10,766,720 SNPs for AFB. SNPs

for ALB and AMP were downloaded from the IEU Open GWAS

database (https://gwas.mrcieu.ac.uk/), with 170,248 and 143,819

individuals, respectively.

2.2.2 NAFLD
Summary-level data for NAFLD were gathered from the largest

GWAS meta-analysis, which included 8,434 NAFLD cases and

770,180 controls (discovery stage) (28). The validation dataset

consists of 894 cases and 217,898 controls, sourced from the

FinnGen Research Project (https://www.finngen.fi/en).

2.2.3 Mediators
The summary data of BMI were obtained from the IEU

OpenGWAS database, encompassing 461,460 Europeans. MD

related genetic variations were extracted from the Psychiatric

Genomes Consortium (PGC), including 500,199 individuals (29).

Three factors of SES were considered at three levels: individual-

level SES was assessed by educational attainment (EA), specifically,

in years of schooling; household-level SES by average pre-tax

household income; and community-level SES by the Townsend

deprivation index (TDI) (30). IVs for EA, household income, and
Frontiers in Endocrinology 03
TDI were derived from the IEU OpenGWAS project with sample

sizes of 99,970, 397,751, and 461,242, respectively.

2.2.4 Ethics
All sample populations are Europeans, which excluded racial

variability. Details for datasets are listed in Table 1. All data were

collected from publicly available databases and published studies,

which hence obviated the requirement for any additional

ethical clearance.
2.3 IVs selection

SNPs with p < 5×10−8 were prioritized as the potential IVs. For

greater statistical robustness, SNPs (p < 5×10−7) were chosen to

include more IVs for ALB. And SNPs (p < 5×10−6) were used for the

reverse analysis (Supplementary Tables S1–S3). Parameters were set

to exclude SNPs affected by linkage disequilibrium (LD), with r2 =

0.001 and a distance of kb=10,000 (31). Subsequently, we excluded

weak instruments with F-statistics below 10. The computational

formula for F-statistic used here is Beta2/SE2. Harmonization

processes were applied to align datasets on exposure and

outcome, minimizing the inclusion of palindromic and

ambiguous SNPs with non-concordant alleles (Supplementary

Tables S1–S3).
2.4 Mendelian randomization

The standard inverse variance weighted (IVW) method was

primarily employed for this estimation. Supplementary analyses

included MR-Egger, weighted median, simple mode, and weight

mode methods. The IVW is validated a reliable method under the
FIGURE 1

Design and results of the MR analysis. (A) Bidirectional MR analysis; (B) Mediation MR analysis; (C) Replication MR analysis. MR, Mendelian
randomization; AAM, age at menarche; AFS, age at first sexual intercourse; AFB, age at first birth; ALB, age at last birth; AMP, age at menopause;
NAFLD, nonalcoholic fatty liver disease; BMI, body mass index; MD, major depression; EA, educational attainment; TDI, Townsend deprivation index.
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condition that the SNP being used is valid and does not exhibit

significant pleiotropy (32). In addition, MR-Egger provides an

assessment of potential horizontal pleiotropic effects (33). If no

less than 50% of the data from valid instruments is accessible, the

weighted median method provides precise and resilient effect

estimates (34). The reliability and consistency of the results are

verified using both weighted mode and simple mode analyses.
2.5 Mediation MR analysis

In a two-step MR process, three b values were obtained: b0, b1,
and b2. b0 represents the initial MR of exposures on outcome, b1
represents the impact MR of exposures on mediators, and b2
represents the effect of mediators on outcomes. The calculation of

the indirect effect determines the mediation proportion of each

mediator, which can be achieved through the formula: (b1×b2)/b0.
Delta methods were employed to compute standard errors and

confidence intervals (CIs) (35).
2.6 Sensitivity analysis

Heterogeneity computation was evaluated by Cochran’s Q

statistic (36). The MR results were analyzed using a random-

effects model of IVW if the p-value is less than 0.05. If not, a
Frontiers in Endocrinology 04
fixed-effects model was used (37). The heterogeneity of IVs was

evaluated by examining the p-value of MR-Egger’s intercept. To

further validate the potentially abnormal SNPs and address the

issue of horizontal pleiotropy, the MR-PRESSO approach was

integrated (38).
2.7 Replication MR analysis

In order to improve the statistical ability and accuracy of our

causal estimation, replication bidirectional MR analysis was

performed between reproductive characteristics and NAFLD

using the FinnGen Research Project. SNPs with a significance

threshold of p < 5×10−8 were prioritized as potential IVs. Given

the relatively small sample size of NAFLD, the SNP threshold for

AAM and MD was adjusted to p < 5×10−6. In the reverse analysis,

the SNP threshold for NAFLD and AAM analysis was set at p <

5×10−5, while the thresholds for other analyses were maintained at

p < 5×10−6. Finally, the mediation effect was estimated using the

replication analysis datasets.
2.8 Statistical analysis

All data analyses were performed using the Two Sample MR

packages (39) in R version 4.2.1. Results were presented as an odds
TABLE 1 Data sources used in the MR analyses for the current study.

Traits Consortium/
Author

Sample size Population Year Pubmed ID

Exposures

Age at menarche ReproGen 182,416 European 2014 25231870

Age at first sexual intercourse Mills MC 182,791 European 2021 34211149

Age at first birth Mills MC 418,758 European 2021 34211149

Age at last birth MRC-IEU 170,248 European 2018 /

Age at menopause MRC-IEU 143,819 European 2018 /

Outcome

Nonalcoholic fatty
liver disease

Ghodsian N 778,614 European 2018 34841290

Nonalcoholic fatty
liver disease

FinnGen 218,792 European 2021 /

Mediators

Body mass index MRC-IEU 461,460 European 2018 /

Major depression PGC 500,199 European 2019 30718901

Years of schooling Within family
GWAS consortium

99,970 European 2022 /

Average total household
income before tax

MRC-IEU 397,751 European 2018 /

Townsend deprivation index
at recruitment

MRC-IEU 462,464 European 2018 /
/ represented PubMed id not retrieved in IEU database.
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ratio (OR) with 95%CI per standard deviation. P < 0.05 was deemed

to indicate statistical significance.
3 Results

3.1 Causal effect of reproductive traits
on NFLD

3.1.1 Causal effect of AAM and AMP on NAFLD
The initial analysis explored the impact of AAM on NAFLD.

The results, as depicted in Figure 2, the IVW analysis indicated a

negative causal relationship between AAM and NAFLD with an

odds ratio (OR=0.828, 95%CI: 0.749 - 0.916, p=2.557×10−4). The

Cochran’s Q test revealed the absence of significant heterogeneity

(Q=54.110, p =0.656). Moreover, no evidence of pleiotropy was

observed (MR-Egger intercept = -5.821×10−3, p =0.528). The

robustness of these findings was further validated through the

Leave-one-out sensitivity analysis (Figure 3A).

Next, we assessed the causal effect of AMP on NAFLD

(Figure 2). The IVW method indicated no significant effect of

AMP on NAFLD (OR=1.028, 95%CI: 0.940 - 1.124, p=0.545).

The presence of heterogeneity was not detected by Cochran’s Q

test (Q=97.774, p=0.653). And no pleiotropy was observed in the

study (MR-Egger intercept=0.008, p=0.051). The Leave-one-out test

was shown in Figure 3E.

3.1.2 Causal effect of AFS and AFB on NAFLD
Additionally, the IVW analysis revealed a negative causal

relationship between AFS and NAFLD (OR=0.654, 95% CI:0.518 -

0.825; p=3.484×10−4) (Figure 2). Cochran’s Q test did not indicate any
Frontiers in Endocrinology 05
heterogeneity (Q=43.018; p=0.677). Additionally, there was no evidence

of pleiotropy based on the MR-Egger intercept (MR-Egger intercept =

−0.003; p=0.828). A “leave-one-out” test was conducted to confirm the

reliability and consistency of the results, which can be seen in Figure 3B.

Similarly, the causal link between AFB and NAFLD was

assessed using IVW (Figure 2), which indicated a negative causal

effect (OR=0.857, 95%CI:0.801 - 0.918; p=8.741×10−6).

Heterogeneity was not observed through Cochran’s Q test

(Q =53.078; p=0.471), and no pleiotropy was detected (MR-Egger

intercept= 0.004; p=0.712). The results remained stable based on the

Leave-one-out test (Figure 3C).

3.1.3 Causal effect of ALB on NAFLD
Finally, we investigated the potential association between ALB

and NAFLD. As shown in Figure 2, IVW results revealing no

significant causal connection between ALB and NAFLD (OR=0.698,

95% CI:0.426 - 1.144; p=0.154). Then, neither heterogeneity nor

pleiotropy were detected. Leave-one-out analysis for ALB on

NAFLD is depicted in Figure 3D, with detailed results of

sensitivity analyses were depicted in Supplementary Table S4.
3.2 Causal effects of NAFLD on
reproductive traits

The analysis on MR in reverse revealed that the presence of

genetic predisposition towards NAFLD did not influence any of the

reproductive characteristics. And no heterogeneity or pleiotropy

were detected. The results maintained robust based on the Leave-

one-out and MR-PRESSO test (Figure 4 and Supplementary

Table S5).
FIGURE 2

The causal effects of reproductive traits on NAFLD. NAFLD, nonalcoholic fatty liver disease; AAM, age at menarche; AFS, age at first sexual
intercourse; AFB, age at first birth; ALB, age at last birth; AMP, age at menopause; WM, weighted median; IVW, inverse-variance weighted; OR, odds
ratio; LCI, lower confidence interval; UCI, upper confidence interval; P-het, P value for heterogeneity using Cochran Q test; P-intercept, P value for
MR-Egger intercept.
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FIGURE 4

The causal effects of NAFLD on reproductive traits. NAFLD, nonalcoholic fatty liver disease; AAM, age at menarche; AFS, age at first sexual
intercourse; AFB, age at first birth; ALB, age at last birth; AMP, age at menopause; WM, weighted median; IVW, inverse-variance weighted; OR, odds
ratio; LCI, lower confidence interval; UCI, upper confidence interval; P-het, P value for heterogeneity using Cochran Q test; P-intercept, P value for
MR-Egger intercept.
FIGURE 3

Leave-one-out analysis for causal effects of reproductive traits on NAFLD. (A) Leave-one-out analysis plots for age at menarche on NAFLD.
(B) Leave-one-out analysis plots for age at first sexual intercourse on NAFLD. (C) Leave-one-out analysis plots for age at first birth on NAFLD.
(D) Leave-one-out analysis plots for age at last birth on NAFLD. (E) Leave-one-out analysis plots for age at menopause on NAFLD. NAFLD,
nonalcoholic fatty liver disease.
Frontiers in Endocrinology frontiersin.org06

https://doi.org/10.3389/fendo.2024.1419964
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2024.1419964
3.3 Two-step MR analyses

3.3.1 Causal effects of reproductive traits
on mediators

Our investigation explored the causal relationships between

AAM, AFS, and AFB, as ALB and AMP were found to have no

causal effect on NAFLD. Additionally, due to the lack of a

significant correlation between TDI and NAFLD (OR =1.641,

95% CI =0.871 - 3.089; p=0.125), it was not considered as a

mediator in the relationship. Figure 5 presents the results of the

IVW analysis.

Through a two-step MR analysis, we discovered that AAM was

causally related to BMI (OR=0.878, 95% CI =0.827 - 0.932;

p=1.881×10−5). Additionally, AFS exhibited a causal relationship

with BMI (OR =0.709, 95% CI =0.651-0.771; p=1.341×10−15), MD

(OR=0.738, 95% CI=0.659 - 0.826; p =1.272×10−7), EA (OR =1.468,

95% CI =1.341 - 1.608; p =9.959×10−17), and household income

(OR =1.282, 95% CI =1.206 - 1.363; p=1.890×10−15). Finally, the

causal effects of AFB on mediators is as follows: BMI (OR =0.896,

95% CI: 0.874 - 0.919; p =6.782×10−18), MD (OR =0.886, 95%

CI =0.858 - 0.915; p =1.546×10−13), EA (OR =1.166, 95% CI =1.138

- 1.194; p =3.000×10−35), and household income (OR =1.115, 95%

CI =1.096 -1.135; p =3.728×10−33).

3.3.2 Causal effects of mediators on NAFLD
Figure 5 also presents the assessment of the potential mediators’

impact on NAFLD. Our findings indicated a positive association

between these mediators and NAFLD, encompassing BMI

(OR =1.673, 95% CI: 1.496 - 1.870; p =1.376×10−19), MD

(OR =1.221, 95% CI =1.026 - 1.453; p =0.025), EA (OR =0.658,

95% CI =0.545 - 0.968; p =0.020), and household income

(OR =0.726, 95% CI =1.142 - 1.706; p =0.029). Despite the

existence of heterogeneity was observed, the random-effects IVW

method we selected remains reliable (37). Moreover, the

consistency of these associations was confirmed through MR-
Frontiers in Endocrinology 07
PRESSO analysis after removing outlier data. the detailed results

and sensitivity analyses are listed in Supplementary Tables S6–S9.

3.3.3 Mediation proportion
As shown in Table 2, BMI (35.64%, 95%CI : 18.62%, 54.79%) is

considered mediator of the impact of AAM on NAFLD. Four

mediating factors revealed the correlation between AFS and

NAFLD as follows: BMI (41.65%, 95%CI : 28.94%, 56.24%), MD

(14.35%, 95%CI : 1.65%, 29.18%), EA (37.88%, 95%CI : 5.88%,

72.71%), and household income (18.59%, 95%CI : 1.88%, 37.18%).

Regarding the link between AFB and NAFLD, the mediators

identified include BMI (36.36%, 95%CI : 25.97%, 48.70%), MD

(15.58%, 95%CI : 1.95%, 31.17%), EA (41.56%, 95%CI : 6.49%,

77.92%), and household income (22.73%, 95%CI : 2.60%, 44.16%).
3.4 Replication MR analysis

A replication analysis conducted using the FinnGen database

yielded consistent results. The findings revealed that earlier AAM,

AFS, and AFB were associated with an increased risk of NAFLD,

with no evidence supporting the reverse relationship. Figure 6

presents the results of the IVW analysis, and no indications of

pleiotropy were detected. Specified results and sensitivity analyses

are provided in Supplementary Tables S10–S12.

Subsequently, a two-step mediation analysis was undertaken.

Unfortunately, efforts to replicate the link between household

income and NAFLD was unsuccessful, attributed to the limited

sample size of the Finnish database. Nevertheless, the influence of

education level on personal income remains significant, and a clear

correlation exists between financial income and NAFLD (24, 25, 40,

41), thereby reinforcing the validity of our findings. As illustrated in

Figure 6, BMI played a significant role in mediating 37.90% of the

relationship between AAM and NAFLD. Moreover, BMI, MD, and

EA acted as mediators for 35.52%, 15.98%, and 51.93% of the
FIGURE 5

The causal effects of mediating factors in the relationship between AAM, AFS, and AFB and NAFLD. NAFLD, nonalcoholic fatty liver disease; AAM, age
at menarche; AFS, age at first sexual intercourse; AFB, age at first birth; BMI, body mass index; MD, major depression; EA, educational attainment;
TDI, Townsend deprivation index; OR, odds ratio; LCI, lower confidence interval; UCI, upper confidence interval; P-intercept, P value for MR-
Egger intercept.
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FIGURE 6

The results of replication MR analysis. (A) The causal effects of stepwise MR mediation analysis; (B) The mediation proportions of mediators. AAM,
age at menarche; AFS, age at first sexual intercourse; AFB, age at first birth; ALB, age at last birth; AMP, age at menopause; NAFLD, nonalcoholic fatty
liver disease; BMI, body mass index; MD, major depression; EA, educational attainment; TDI, Townsend deprivation index; LCI, lower confidence
interval; UCI, upper confidence interval; P-intercept, P value for MR-Egger intercept.
TABLE 2 The detailed mediation proportions of mediators.

Exposures Mediators Outcome b0(95% CI) b1(95% CI) b2(95%CI) Mediation
effect(95%CI)

Mediated
Proportion (%)

(95%CI)

AAM Body
mass index

NAFLD -0.188
(-0.289,-0.087)

-0.130(-0.190,-0.070) 0.514(0.403,0.626) -0.067(-0.103,-0.035) 35.64(18.62,54.79)

AFS Body
mass index

NAFLD -0.425
(-0.658,-0.192)

-0.345(-0.429,-0.260) 0.514(0.403,0.626) -0.177(-0.239,-0.123) 41.65(28.94,56.24)

Major
depression

NAFLD -0.425
(-0.658,-0.192)

-0.304(-0.417,-0.191) 0.200(0.025,0.374) -0.061(-0.124,-0.007) 14.35(1.65,29.18)

Educational
attainment

NAFLD -0.425
(-0.658,-0.192)

0.384(0.294,0.475) -0.419(-0.770,-0.067) -0.161(-0.309,-0.025) 37.88(5.88,72.71)

Household
income

NAFLD -0.425
(-0.658,-0.192)

0.248(0.187,0.310) -0.320(-0.607,-0.033) -0.079(-0.158,-0.008) 18.59(1.88,37.18)

AFB Body
mass index

NAFLD -0.154
(-0.222,-0.086)

-0.109(-0.135,-0.085) 0.514(0.403,0.626) -0.056(-0.075,-0.040) 36.36(25.97,48.70)

Major
depression

NAFLD -0.154
(-0.222,-0.086)

-0.121(-0.153,-0.089) 0.200(0.025,0.374) -0.024(-0.048,-0.003) 15.58(1.95,31.17)

Educational
attainment

NAFLD -0.154
(-0.222,-0.086)

0.153(0.129,0.178) -0.419(-0.770,-0.067) -0.064(-0.120,-0.010) 41.56(6.49,77.92)

Household
income

NAFLD -0.154
(-0.222,-0.086)

0.109(0.091,0.127) -0.320(-0.607,-0.033) -0.035(-0.068,-0.004) 22.73(2.60,44.16)
F
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crinology
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b0, the initial MR of exposures on outcome; b1, the step one MR of exposures on mediators; b2, the step two MR of mediators on outcome; CI, confidence interval; NAFLD, nonalcoholic fatty
liver disease; AAM, age at menarche; AFS, age at first sexual intercourse; AFB, age at first birth. Although the b1 value of AFB and BMI was -0.1096, we marked it as -0.109 here to ensure the
accuracy and consistency of the mediation analysis results.
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correlation between AFS and NAFLD. Similarly, the mediators for

the association between AFB and NAFLD included BMI (33.47%),

MD (19.07%), and EA (61.44%). The results of the stepwise MR

analysis can be found in Supplementary Table S13.
4 Discussion

Our investigation represents the initial endeavor to analyze the

causal relationships between reproductive factors (AAM, AFS, AFB,

ALB, AMP) and NAFLD using a bidirectional two-sample, two-step

MR analysis. Initially, we discovered that individuals experiencing

early AAM, AFS, and AFB face an elevated risk of NAFLD

development. And there is no evidence establishing a causal

connection between ALB, AMP and NAFLD. Furthermore, two-

step mediation analyses elucidated that BMI acts as a mediator in

the association between AAM and NAFLD. The relationships

between AAM, AFS, AFB, and NAFLD are partially mediated by

four factors: BMI, MD, EA and household income.

Consistent with prior studies, we found a positive correlation

between early menarche age and NAFLD (7–9, 42). Research has

demonstrated that early menarche tends to be more prevalent

among girls living in urban areas, associated with higher BMI,

and intake of high-energy nutrients (43, 44). Moreover, obesity in

childhood accounts for much of the cross-national variation in age

at menarche (45). Young women who experience early menarche

may exhibit pre-existing metabolic abnormalities, such as insulin

resistance, poor lipids and blood pressure change (46–49).

Therefore, obesity or subsequent weight gain may mediate the

linkage between AAM and NAFLD. Our research further

indicated that BMI mediates the connection between menarche

and NAFLD, which emphasized that we should pay attention to the

BMI of adolescents in early menarche age and be alert to the risks of

adult obesity and NAFLD.

Then, our research demonstrated an association between AFS

and an increased risk of NAFLD. A finding applicable to AFB, as girls

who experience AFS at a young age may predispose to earlier AFB.

However, the literature currently lacks studies examining the

connection between AFS and NAFLD. Previous findings suggest a

causal protective effect of education on NAFLD, with individuals of

lower socioeconomic status (SES) exhibiting higher incidence rates of

NAFLD, particularly in regions such as the United States and Europe

(50, 51). It is worth noting that the role of educational attainment and

household income on the AFS/AFB-NAFLD relationship also can be

interpreted through risky behaviors. Individuals with early

reproductive behavior frequently exhibit externalizing behaviors

like smoking and alcohol misuse (52–55), which are also

recognized predisposing factors for NAFLD (56). In addition, lower

educational and income levels among young women who become

mothers for the first time often contribute to mental disorders, as well

as smoking and alcohol abuse during pregnancy (13, 57). These

behaviors further increase the vulnerability to developing NAFLD.

Additionally, emerging evidence indicated that early sexual activity is

a risk factor for MD, with our MR analysis corroborating this

association (58). MD is believed to facilitate NAFLD development

through various mechanisms, including inflammation, chronic stress,
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and gut microbiota (59, 60). Significantly, adolescents experiencing

NAFLD exhibited a significant prevalence of clinically diagnosed

anxiety and depression (61). Therefore, MD could be a critical

metabolic companion in the development of NAFLD caused by

AFS. Nevertheless, the exact mechanisms through which AFS

impacts BMI remain uncertain, potentially including factors such

as AFB.

Previous research has provided evidence linking AFB with an

increased risk of NAFLD in women (13). A plausible explanation

may involve the influence of weight gain and retention during

pregnancy. Even for women who gain weight within expected limits

during pregnancy, the accumulated weight during this period and

the sustained postpartum weight can contribute to future obesity

(62, 63). In obese individuals, abdominal fat accumulation in obese

individuals disrupts lipid and glucose metabolism, fostering insulin

resistance, thought to be involved in the advancement of NAFLD

(64). In terms of the relationship between AFB and MD, a negative

correlation has been observed (65). There is a heightened possibility

of postpartum depression (PPD) among younger mothers due to a

notable decline observed in all opregnanolone levels (66, 67). Our

MR analysis further supports the causal influence of early AFB on

increasing PPD risk, thereby enhancing the likelihood of NAFLD.

Therefore, it is crucial to focus on women’s reproductive health to

reduce the incidence of NAFLD.

Numerous factors, including physiological, genetic,

environmental, and social influences, contribute to the

development of NAFLD (68). Research indicates that individuals

from lower socioeconomic backgrounds are disproportionately

affected by liver disease, underscoring it as a significant issue of

health inequality (69). A cohort study conducted in Iran has

demonstrated that a more vulnerable SES is associated with an

increased risk of NAFLD (70). Furthermore, a protective effect of

higher educational attainment on the risk of NAFLD has been

reported (71). Our findings also suggest that social status plays a

critical role in the relationship between AFS/AFB and NAFLD.

These insights are crucial and imply that guidelines for the

prevention and management of NAFLD should be formulated

with consideration for the disparities among different

socioeconomic status groups.

Our study is characterized by several strengths. Firstly, we

introduced a total of five distinct reproductive traits for the first

time. The examination of these traits and their correlation with

NAFLD was rigorously analyzed using extensive data from many

GWAS. By integrating genetic instruments and deploying diverse

MR approaches, our investigation enables a comprehensive

investigation into the causal inference between reproductive

characteristics and the susceptibility to NAFLD. Furthermore, our

application of a two-step MR analysis, thereby enhancing our

understanding of the underlying mechanisms and provided solid

evidence to substantiate prevention strategies. This pioneering effort

holds substantial significance in understanding the potential impact

of female reproductive characteristics on the risk of NAFLD.

This research acknowledges specific restrictions that must be

considered. Firstly, our study was confined to participants of

European descent. Further studies should include a broader

ethnic range to validate the universality of our findings. Secondly,
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the reliance on recall data for reproductive age introduces the

possibility of bias. This dependence on memory has the potential

to introduce recollection partiality, which must be considered while

interpreting the outcomes (72, 73). Thirdly, the utilization of

GWAS data restricted our ability to investigate potential non-

linear connections or variations in stratification effects relating to

age or gender. Meanwhile, the sample size from the Finnish

database constrained the outcomes of our replication analysis,

highlighting the need for larger datasets in future studies.

Although we observed pleiotropy in the causal effect of AAM on

NAFLD risk in our repeated MR analysis, the magnitude and

direction of this causal effect remained consistent with the

findings from the primary analysis. In conjunction with previous

literature reports, we believe that these results are still significant

(74). Finally, given that NAFLD encompasses multiple subtypes,

and whether the subtype analysis results are consistent with our

research requires more study to understand how reproductive

characteristics modulate the risk of NAFLD and its subtypes.

In conclusion, this groundbreaking research indicates early

AAM, AFS, and AFB as risk factors for NAFLD. Factors such as

BMI, MD, educational level, and house income may mediate these

causal relationships, offering valuable insights for targeting

interventions at obesity, mental health, and educational disparities

to mitigate NAFLD’s burden.
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