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A review of complex hormone
regulation in thyroid cancer:
novel insights beyond the
hypothalamus–pituitary–
thyroid axis
Liu-han Chen, Tao Xie, Qian Lei , Yan-rui Gu
and Chuan-zheng Sun*

Department of Head and Neck Surgery section II, The Third Affiliated Hospital of Kunming Medical
University, Kunming, Yunnan, China
Like the ovaries and prostate, the thyroid exhibits characteristic hormone

secretion and regulation. Thyroid cancer (TC), especially differentiated thyroid

carcinoma, has typical sex-specific and age-specific hormone-driven clinical

features. Previous research has primarily focused on the effects of thyroid

stimulating hormone, thyroid hormones, and estrogens on the onset and

progression of TC, while the roles of growth hormone (GH), androgens, and

glucocorticoids have largely been overlooked. Similarly, few studies have

investigated the interactions between hormones and hormone systems. In fact,

numerous studies of patients with acromegaly have shown that serum levels of

GH and insulin-like growth factor-1 (IGF-1) may be associated with the onset and

progression of TC, although the influences of age, sex, and other risk factors,

such as obesity and stress, remain unclear. Sex hormones, the GH/IGF axis, and

glucocorticoids are likely involved in the onset and progression of TC by

regulating the tumor microenvironment and metabolism. The aim of this

review was to clarify the roles of hormones and hormone systems in TC,

especially papillary thyroid carcinoma, as references for further investigations.
KEYWORDS

thyroid cancer, hormone, hormone system, growth hormone, insulin-like growth
factor, estrogen, androgen, glucocorticoid
Introduction

Precise production of hormones and regulation of hormone systems are essential for

homeostasis and physical functions. Hormone dysregulation contributes to the onset and

progression of many pathologies, including cancers. The hypothalamus plays a central role

in regulation of both pituitary hormones and important hormone systems, especially the
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hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary-

gonadal (HPG), and hypothalamic-pituitary-thyroidal (HPT)

axes, in various physiological and pathological processes.

Sex steroids control gonadal development, metabolism, and

immunity. The HPG axis regulates secretion of sex hormones via

activation of gonadotropin-releasing hormone, which is followed by

release of follicle-stimulating hormone and luteinizing hormone

from the anterior pituitary. Secretion of sex hormones is dynamic

and influenced by various factors, such as emotional changes, stress,

diet, and obesity.

Growth hormone (GH) secreted by the pituitary regulates

development and metabolism of carbohydrates, proteins, and fats.

Serum GH levels peak during early childhood and puberty, then

gradually decrease with age. Stressors, such as low blood sugar and

intense exercise, stimulate the release of GH (1). Moreover, GH

indirectly stimulates production of insulin-like growth factor-1

(IGF-1) in the liver and kidneys, which regulates DNA

production and cell division. The interaction between GH and

IGF-1 may underlie physiological and pathological cell growth

and proliferation.

The HPA axis regulates stress responses, energy balance, and

immune function. In response to physical or psychological stress,

corticotropin-releasing hormone (CRH) produced by the

hypothalamus binds to receptors on the adrenal cortex to control

the release of glucocorticoids. The HPA axis is regulated by negative

feedback inhibition from glucocorticoids as well as genomic and

non-genomic factors. Glucocorticoids are necessary for

maintenance of normal physiological functions and processes,

including metabolism, immune responses, mood, cognitive

functions, reproduction, and development (2).

Thyroid cancer (TC) is the most common cancer of the

endocrine system (3). The prevalence of TC is influenced by age,

sex, inheritance, and radiation exposure. While most TC patients

have normal levels of thyroid hormones (THs) and thyroid

stimulating hormone (TSH), many studies have confirmed an

association between changes in thyroid function and the onset

and development of TC. Notably, TSH promotes growth of thyroid

follicular cells, which potentially impact the onset and progression

of TC. Similarly, both TSH and THs are associated with certain

invasive clinicopathological characteristics and postoperative

recurrence of TC (4). TH replacement therapy is the primary

approach for long-term management of TC. After total

thyroidectomy or lobectomy, TH replacement therapy is initiated

to restore euthyroidism and serum TSH levels. However, aggressive

TSH-suppressive therapy has limited or no benefits for many

patients with differentiated thyroid carcinoma (DTC) (5).

Therefore, hormonal regulation of TC is not limited to TSH

and THs.

Many malignant tumors exhibit sex-specific differences in

occurrence, malignancy, aggressiveness, and prognosis. Unlike

endocrine organs, such as the mammary glands, prostate, ovaries,

and testes, the thyroid plays a crucial physiological role in both

males and females. Although changes to THs and TSH levels in

patients with TC are very subtle, variations in levels of TSH,

triiodothyronine (T3), and thyroxine (T4) have different effects

on the occurrence and development of TC between males and
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females (6). Although the incidence is higher among females, TC

tends to be more aggressive in males (7). TC in males typically

presents with a higher propensity for extrathyroidal invasion,

lymph node metastasis, and even distant metastasis. A

retrospective clinical study reported that TC was more

invasiveness in children and adolescents (8). Notably, more than

half of adolescent males with TC have lymph node metastasis, while

the number of adults and the elderly with TC and lymph node

metastasis has decreased. In addition, acromegaly, which is

characterized by high GH and IGF-1 levels, and has been

associated with greater risks for thyroid diseases, including TC

(9). Moreover, the association between stress, obesity, abnormal

blood pressure and TC has been increasingly recognized (10).

Therefore, the aim of this review is to clarify the functions of

hormone and hormone systems in TC and the influences of age, sex,

and other risk factors.
Regulation of thyroid development
and hormone secretion

The thyroid is the largest endocrine gland in the human

endocrine system and indispensable for cellular differentiation

and growth. The HPT axis serves as the main regulator of thyroid

growth and the production and release of THs. The physiological

functions of TSH, especially iodide uptake and production of THs,

are activated by binding to the thyrotropin receptor (TSHR) (11).

Additionally, various other factors, such as IGF-1, transforming

Growth Factor b,GH, and prolactin, are involved in development

and growth of the thyroid (12–14).

Exposure to chlordecone, a endocrine-disrupting chemical that

mimics female hormones, has been associated with increased levels

of TSH and sex steroid hormones in utero (15). With sufficient

iodine levels, the thyroid regulates the “growth spurt” that occurs at

the onset of puberty of euthyroid children and adolescents, but

seems to be regulated by significant increases in circulating sex

steroids rather than TSH (16). Meanwhile, variations in sex steroid

levels were reported to impact thyroid growth and TSH regulation

in rats (17).

GH replacement therapy has been shown to increase serum T3

levels and the total volume of the thyroid gland in GH-deficient

adults (18). IGF-1 is a significant modulator of the TSH response in

adult thyroid cell differentiation and has an additive effect with TSH

(19). Cheung et al. (20) found that IGF-1 promoted thyroid cell

proliferation by potentiating the mitogenic activities of TSH.

Goretzki et al. (21) demonstrated that TSH enhanced production

of thyroid-specific autocrine IGF-1, which is crucial to growth of

thyrocytes. Another study by Goretzki et al. (22) supported these

findings and showed that the effects of TSH are concentration

dependent in tumor cells. For example, TSH at 100 mIU/ml

promoted growth of tumor cells, but had an inhibitory effect at

higher concentrations. This study also found that TSH regulation of

thyrocyte growth is controlled by locally produced IGF-1 (22).

These findings emphasize the regulatory role of IGF-1 in the growth

of human thyrocytes. Moreover, T3 is also necessary for secretion of

GH secretion. However, IGF-1 is reported to suppress GH gene
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expression through a short negative feedback loop involving T3.

Moreover, circulating levels of IGF-1 and TSH receptors have been

associated with Graves’ disease (23).

In addition, cortisol levels influence secretion of THs. Cai et al.

(24) demonstrated that serum levels of TSH and free T4 were

significantly decreased in cortisol-producing adenomas (CPAs) as

compared to healthy controls and asymptomatic adrenal

incidentalomas. This study also revealed a negative association of

cortisol, TSH, and T4 serum levels with CPAs. Furthermore,

adrenalectomy was shown to reverse decreased serum levels of

both TSH and free T4. However, GH and prolactin levels remained

unchanged from baseline levels. These findings suggest that GH,

IGF-1, sex hormones, and cortisol control thyroid development and

secretion of THs (Figure 1).
HPG axis and sex hormones

The incidence of TC is 3–5-fold greater in females than males

(7, 25, 26). Endogenous estrogens play complex and ambiguous

roles in the development of DTC, especially among females during

perimenopause (27). Furthermore, higher levels of testosterone and

androstenedione increase the risk of DTC in pre/perimenopausal

women, but not men or postmenopausal women (28), suggesting

that regulation of sex hormones in TC is complex and dynamic.
Estrogen, progesterone, and receptors

Estrogen is an important steroid hormone that regulates

development and immune function. Polymorphisms of the

estrogen receptor (ER) influence the responses of tissue to

estrogens and contribute to oncogenesis (29). The involvement of

the ER and progesterone receptor (PR) in TC has been established.

For instance, a study by Vannucchi et al. (30) found that more than

two-thirds of 182 patients with papillary thyroid cancer (PTC) were

positive for estrogen receptor alpha (ERa) and PR. Meanwhile,

Eldien et al. (31) reported that upregulated expression of ER and

PR, in addition to advanced age, were significantly associated with

primary TC. Additionally, pregnancy and delivery can influence the

persistence and recurrence of TC (32).

The precise functions of female hormones in TC vary across

different studies. A nationwide cohort study conducted in Korea (33)

found that estrogen and related hormone receptors only slightly

promoted progression of TC, while the absence of estrogen did not

protect against disease onset. Although the risk of TC is increased

after hysterectomy and oophorectomy, there is reportedly no

significant correlation between the use of oral contraceptives and

disease incidence (34). Moreover, studies on the effects of

phytoestrogens on the development of TC have reported mixed

results. For example, high intake of coumestrol was correlated to

an increased risk of TC, while moderate intake of genistein provided

some protection against thyroid macrocarcinomas in females (35).

Estrogen regulates the progression of TC through both classical

genomic and non-genomic pathways (26). In the genomic pathway,

estrogen enters the cell and forms a complex with ERa and estrogen
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receptor Beta (ERb), which binds to estrogen-responsive elements

to promote transcription of target genes (36). Additionally,

membrane-associated estrogen receptors are involved in non-

genomic signaling of estradiol (E2), which stimulates activation of

various pathways associated with regulation of the cell cycle, signal

transmission from membrane-based receptors, and immune and

inflammatory responses (37). In PTC, these pathways are activated

either by chromosomal rearrangement of the receptor tyrosine

kinase (RTK),or the BRAFV600E mutation (37).

In TC, estrogen and hypoxia promote generation of reactive

oxygen species (ROS) through various mechanisms (38). Estrogen/

ERa-dependent autophagy has been associated with production of

ROS, activation of extracellular signal-regulated kinases 1 and 2

(ERK1/2), and the survival and growth of PTC cells (39). Excessive

accumulation of ROS or the lack of proper detoxification

mechanisms can be detrimental to cells and contribute to the

occurrence of TC. Oxidative damage, particularly to DNA, can

promote malignant transformation of thyroid tissues, while 2,4-

dienoyl CoA reductase 1 (NADPH) oxidase generates substantial

amounts of ROS, thus potentially enhancing the incidence of

spontaneous mutations. Faria et al. (40) demonstrated that estrogen

via NADPH oxidase 4 stimulates production of ROS, which can

penetrate the nucleus, likely contributing to thyroid carcinogenesis,

and that the thyroid glands of adult female, as compared to male, rats

produce relatively higher amounts of hydrogen peroxide and
FIGURE 1

Hormones and hormone systems both directly and indirectly
regulate thyroid growth, and thyroid hormone secretion. The HPT
axis regulates thyroid proliferation and production of THs. The
GH/IGF-1 axis and sex steroids indirectly promote secretion of THs,
and thyroid growth. HPA axis inhibits secretion of THs and TSH.
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relatively lower levels of antioxidant enzymes. Furthermore, estrogen

and hypoxia have been reported to regulate hypoxia-inducible factor-

1 and influence key molecular, cellular, and metabolic processes

involved in progression of TC (38).

ER mediates production of ROS and promotes cellular

proliferation (41, 42). The expression patterns of ERa and ERb in

TC are complex and multifaceted. PTC tissues have elevated

expression of ERa as compared to adjacent non-tumor tissues

(39). Kim et al. (43) suggested that ERa may play a role in the

association between breast cancer and TC, although ERb has been

shown to act as an oncosuppressor. For instance, Magri et al. (44)

reported that ERb (−), as compared to ERb (+), tumors were more

likely to have vascular invasion. However, Dong et al. (45) found a

positive correlation between ERb2 and Ki-67 in female TC patients

during perimenopause. Nevertheless, ERb2 expression was lower in

females of reproductive age with lymph node metastasis of PTC

than without and positively associated with vascular endothelial

growth factor expression in males aged 18–45 years, but not tumor

size, extrathyroidal extension, or metastasis stage (45). Interestingly,

undifferentiated thyroid stem and progenitor cells exhibited lower

levels of ERb as compared to differentiated human thyrocytes (46).

Thus, low levels of ER expression may indicate dedifferentiation in

TC (26).

ERs are expressed by various immune cells in the tumor

microenvironment (TME) of TC and play various roles in

tumorigenesis and inflammation (41, 47). As important

constituents of the TME, immune cells contribute to tumor

growth by facilitating metastasis of malignant cells. The

BRAFV600E mutation plays an important role in the estrogen

responsiveness of TC by regulating ER expression (48).

Additionally, a detailed comparison of glycosylation patterns of

TC patients and healthy controls provided insights into abnormal

changes to glycosylation of the Fc fragment of immunoglobulin (Ig)

G1. Interestingly, among females, there were distinct changes in the

incidences of most glycosylated forms starting at puberty or

menopause that were associated with sex hormones and IgG

glycans, with a particularly notable impact of E2 (49).
Androgens and receptors

Xu et al. (50) reported associations between serum levels of sex

hormones and the pathological characteristics of PTC in males, as

high serum levels of estrogens promoted proliferation of cancer

cells, while androgens exhibited protective effects, as least to some

extent. This finding is consistent with the clinical phenomenon of

the higher incidence of PTC in females. However, the protective

roles of androgens against the onset and progression of TC remain

controversial (Table 1). Thus, the functions of androgens and

androgen receptors (ARs) in the development of TC are complex

and multifaceted.

Testosterone is an androgen that plays various physiological

roles in the onset and progression of PTC (51). Banu et al. (52)

suggested that testosterone, similar to E2, promotes growth and

metastasis of PTC cells, although the underlying mechanisms

remain unclear. Zhang et al. (25) showed that testosterone
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regulates progression of TC by reducing expression of tumor

suppressor genes and tumor immunity. In addition, Jiang et al.

(51) found that testosterone facilitated growth, invasion, and

migration of PTC cells and epithelial-mesenchymal transition

(EMT). Upregulation of Tnnt1 activates the P38/JNK pathway

and promotes malignant behavior in PTC (51). Furthermore,

Spirina et al. (57) revealed upregulated expression of AR in PTC,

while Magri et al. (44) suggested that AR expression was associated

with higher frequencies of capsular invasion. Similarly, Gupta et al.

(53) observed increased migration, rather than invasion, by TC cells

treated with 5a-dihydrotestosterone, demonstrating that androgens

may contribute to the progression of TC.

However, many investigations found that androgens protective

against TC (55). High expression of programmed death-ligand 1

(PD-L1) has been associated with aggressive forms of TC (58).

O’Connell et al. (54) showed that AR activation decreased PD-L1

expression in TC cells via inhibition of the nuclear factor kB (NF-

kB) signaling. Moreover, Gupta et al. (53) provided evidence that

activation of AR promotes senescence and apoptosis of malignant

TC cells. Similarly, Chou et al. (56) reported that overexpression of

AR decreased cell migration and repressed epithelial-mesenchymal

transition (EMT) in TC, indicating that the androgen-AR axis may

protect males against TC, at least to some extent. The contradictory

effects of sex hormones in TC may be explained by the different

responsiveness to hormones and the influences of other hormones.
HPA axis and glucocorticoids

For the past six decades, there has been a predominant focus on

the immunosuppressive properties of glucocorticoids. However,

recent studies have increasingly demonstrated that glucocorticoids

also enhance inflammation and immunity (59). Nonetheless,

current evidence is insufficient to support the involvement of

glucocorticoids in the formation of the TME in TC. Upon

binding to an appropriate glucocorticoid receptor (GR),

glucocorticoids are involved in various physiological processes,

including cell differentiation, metabolism, and proliferation (60).

Crucially, glucocorticoids play significant roles in responses to

stressors by facilitating energy production, inflammation

suppression, and blood pressure regulation. Afrashteh et al. (10)

demonstrated that stress and short-temperedness were directly

related to the occurrence of TC, while sufficient sleep quantity

and good sleep quality appeared to decrease this risk. The HPA axis

and glucocorticoids, which serve as the primary regulators of stress,

are potential predictors of the risk of TC in individuals experiencing

high levels of stress. Lee et al. (61) found higher GR expression in

males, as compared to females, with TC. Furthermore, GR

expression was significantly higher in TC patients aged >45 years,

suggesting that the pathobiological role of GR in TC might be

associated with changes to the circadian rhythm of thyroid tumors

(61). Additionally, Choi et al. (62) found that urine corticoid levels

were slightly higher in male PTC patients.

Invitti et al. (63) reported that the prevalence of nodular thyroid

disease was significantly higher in patients with Cushing’s disease.

Although the direct cause of thyroid changes in relation to
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glucocorticoid excess remains unclear, other factors could

potentially be involved, such as increased activity of

corticotrophic cells or the presence of a growth factor that

stimulates both corticotroph and thyrocyte proliferation. In

addition, Zhang et al. (64) suggested a possible relationship

between GR expression and thyroid adenomas, although this

association was not established in TC. Conversely, Melnik et al.

(65) reported that the synthetic glucocorticoid dexamethasone

suppressed metastasis of follicular thyroid cancer (FTC) cells, but

had no effect on benign and recurrent FTC. Relatively few studies

have explored potential between the HPA axis and the onset and

progression of TC. Although glucocorticoids have different effects

on the regulation of stress, immunity, and inflammatory responses

in the hormone environment depending on sex and age, these

reactions may directly or indirectly participate in the onset and

development of TC. Therefore, a thorough evaluation involving a

larger patient cohort is needed to clarify the roles of glucocorticoids

and GRs in TC.
GH and GH/IGF axis

Studies investigating the mechanisms of GH in TC have

established that growth hormone-releasing hormone (GHRH), a

peptide hormone secreted by the hypothalamus that regulates GH

synthesis and secretion in the pituitary, plays a role in TC. GHRH

expression and GHRH receptor mRNA have been identified in

thyroid cells, and inhibition of GHRH has been found to suppress

growth and promote apoptosis of TC cells (66). However, the

specific functions of GH in these processes remain unclear.

Studies exploring the roles of the GH/IGF-1 axis in TC have
Frontiers in Endocrinology 05
primarily focused on individuals with acromegaly, who typically

exhibit elevated GH and IGF-1 levels. Nonetheless, the results of

these studies have yielded conflicting findings. Most research in this

area has predominantly concentrated on three main aspects: (i)

whether individuals with acromegaly are at a greater risk of TC; (ii)

whether the onset and progression of TC in acromegaly patients are

associated with GH/IGF-1 levels; and (iii) whether there are any sex

differences of TC among patients with acromegaly. However,

further investigations are still required to precisely address

these questions.
Relationship between GH/IGF excess
and TC

Colorectal cancer and thyroid carcinoma, especially PTC, are

the most frequently occurring malignant tumors among individuals

with acromegaly (67). Most studies (68–71) report an increased risk

of TC in acromegaly patients. More aggressive tumor behavior of

TC has also been associated with acromegaly (72). However, other

studies (73–75) found no significant difference in TC occurrence

between acromegaly patients and the control group, despite a higher

incidence of thyroid diseases (Table 2).

The pathogenesis of TC varies among acromegaly patients.

Some studies (9, 76) suggested a potential link between the

activation of IGF-1 and the development of TC. Several case

series reported that somatostatin receptor ligands reduced IGF-1

levels in acromegaly patients (77). Interestingly, GH and IGF-1

deficiencies have been associated with a lower incidence of

malignancy (78). Additionally, mutations to enzymes involved in

GH/IGF-1 signaling pathways have been linked to increased

carcinogenesis (67), although there are dissenting opinions. For

example, Gullu et al. (79) argued that the development of TC in

acromegaly patients is more closely related to elevated initial GH

levels rather than IGF-1 levels, while Zhao et al. (72) found a high

prevalence of a BRAF mutation in PTC patients with acromegaly,

suggesting the potential pathogenesis of this subgroup. An cohort

study conducted in Italy (80) indicated that the risk of DTC was not

correlated to GH/IGF-1 levels, but might be associated with BRAF

mutations and overexpression of the aryl hydrocarbon receptor.

However, Aydin et al. (81) challenged the notion that the

BRAFV600E mutation is a causative factor of DTC among

acromegaly patients, citing a relatively lower prevalence of

this mutation.
Sex difference and metabolic environment
in TC patients with acromegaly

Females generally are at a greater risk of TC than males.

However, this association has not been verified in females with

acromegaly. A study conducted in Korea (82) reported that TC was

the most common malignancy of patients with acromegaly and

females were at a greater risk of malignancy, consistent with the

prevalence in the overall cohort. However, a similar study (79)

reported that the prevalence of TC was higher in males. In most
TABLE 1 Studies that report the role of androgen/receptors in TC in
addition to the dual effects of risk and protective factors.

Study
TC
type

Androgen/receptors
are risk factor or pro-

tective factor

Effects of
androgen/
receptors

Zhang
et al (25)

FTC risk factor
Inhibit

tumor immunity

Jiang
et al (51)

PTC risk factor
Promote the

migration, invasion
and EMT process

Banu
et al (52)

FTC
and
PTC

risk factor
Promote

proliferation

Gupta
et al (53)

ATC
and
PTC

protective factor Induce senescence

O’Connell
et al (54)

PTC
and
ATC

protective factor
Reduce PD-L1

promoter activation

Jones
et al (55)

ATC protective factor Induce a G1 arrest

Chou
et al (56)

PTC protective factor
Decrease cell

migration and the
EMT process
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studies, the difference in the incidence of TC between the males and

females was not significant. Additionally, in acromegaly patients

with controlled disease, GH levels were higher in postmenopausal

females than males, while IGF-1 levels were comparable (83).

Xiao et al. (69) found that patients with acromegaly have an

increased risk of cancer and acromegaly was associated with

diabetes mellitus. GH plays a significant role in glycometabolism

and exerts an insulin-sensitizing effect that surpasses the effects of

IGF-1 (84). Consequently, long-term exposure to high levels of GH

and IGF-1 may lead to insulin resistance and lipodystrophy (85).

In summary, the inconsistent findings of these studies suggest

that the predisposition of patients with acromegaly to TC is

influenced by factors other than sex hormones. Nonetheless,

elevated levels of GH and IGF-1, which are significant hormonal

features of acromegaly, may have distinct roles in the development

of TC in this population.
IGF signaling in TC

IGF-1/2 and related receptors have been implicated in the

pathogenesis of TC. Studies conducted as early as 30 years ago

confirmed that IGF-1 promotes growth of human FTC cells (21).

More recent data consistently show significant upregulation of IGF-

1 and downregulation of insulin-like growth factor-2 (IGF-2) in TC

as compared to normal thyroid tissues (86). Similarly, PTC, but not

multinodular nontoxic goiter, is associated with elevated

concentrations of circulating IGF-1. Furthermore, IGF-1 receptor

(IGF-1R) levels are relatively upregulated in PTC and anaplastic

thyroid cancer (ATC) (87). In addition, IGF-1 concentrations were

positively associated with the risk of DTC (88). Pidchenko et al. (89)

demonstrated that elevated levels of IGF-1 and IGF-2 were

correlated with increased insulin production in PTC patients.

Furthermore, IGF-1, IGF binding protein-3 (IGF-BP3), and

adiponectin levels were correlated to various histologic types of

TC. For example, IGF-1 and IGF-BP3 levels were upregulated in

patients with intrathyroid invasion and associated with the invasive
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capacity of TC, while IGF-1, IGF-BP3, and adiponectin levels with

type 2 diabetes were correlated with tumor size (90). Interestingly,

IGF-I and IGF-IR expression was observed in children and

adolescents, and malignant features were correlated with IGF-

1R (91).

IGF-1 promotes progression of PTC through the signal

transducer and activator of transcription 3 (STAT3) signaling

pathway (92). A study conducted by Lv et al. (93) to clarify the

mechanisms underlying the onset and proliferation of TC

demonstrated that release of IGF-1 by M2-like tumor-associated

macrophages promoted metastasis and increased the stemness of

ATC cells via insulin receptor-A/IGF1R-mediated activation of the

phosphoinositide 3-kinase (PI3K)/alpha serine/threonine-protein

kinase (AKT)/mammalian target of rapamycin (mTOR) signaling

pathway (93). Furthermore, the long non-coding RNA Linc00210

was reported to enhance the malignant potential of TC cells via

modulation of the miR-195-5p/IGF1R/Akt axis (94). Additionally,

the disrupted in renal carcinoma 3 was shown to alter progression

of DTC by regulating IGF signaling (95).

Despite a compelling preclinical rationale for targeting IGFs in

TC, the findings of clinical studies thus far have been

underwhelming, which could be attributed to the interplay

between IGF signaling and other pathways, leading to resistance

against targeted agents designed to inhibit specific components of

these intricate signaling networks (96).
Overlapping activities and
interconnectedness of
hormone systems

Hormones not only regulate growth of TC cells through shared

pathways, but also interact to modulate regulatory effects. Hormone

levels differ between TC patients and healthy controls, as some TC

patients exhibit abnormal thyroid function, imbalance of sex

hormone levels, and endocrine-related diseases, such as diabetes

and acromegaly. As mentioned earlier, the synthesis and secretion

of these important hormones are regulated by the hypothalamic-

pituitary axis. The unique hormone environment of TC cells

directly or indirectly affects hormone secretion by the

hypothalamus and pituitary gland. However, single hormone

monitoring and management is insufficient to control the

occurrence and development of TC.

In TC cells, sex steroids, GH/IGF-1, and TSH/TH activate the

PI3K/AKT and mitogen-activated protein kinase (MAPK)

pathways (Figure 2). Recent studies have extensively explored the

effects of THs, TSH, and sex hormones of TC, but relatively few

studies have investigated the impact and interactions of cortisol,

GH, and other hormones in TC.
GH/IGF axis and sex hormone/receptors

Centrally, sex hormones regulate pituitary secretion of GH and,

peripherally, modulate related signaling pathways (97). Estrogens,
TABLE 2 Recent single and multicenter retrospective cohort and case-
control studies that report the prevalence of TC in acromegaly (The last
three years of research in PubMed).

Study Year Number
of

patients
in total

Patients with
cancer (n/% in
total cohort)

Patients
with TC
(n/% in
cancer
cohort)

Durmus ̧
et al (68)

2022 179 24 (13.4%) 11(45.8%)

Xiao
et al (69)

2023 1738 67(3.9%) 33(49.3%)

Oguz
et al (70)

2023 394 63(16.0%) 26(41.3%)

Esposito
et al (75)

2021 1296 186(14.4%) 3(1.6%)

Plotuna
et al (71)

2023 34 5(14.7%) 3(60%)
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for example, can reduce IGF-1 levels by inhibiting GH secretion by

hepatocytes, but increase central GH secretion (98). Meanwhile,

estrogens suppress GH receptor signaling via inhibition of cytokine

receptor signaling (98). However, compounds with estrogen-like

properties can inhibit some activities of GH while promoting

others. Androgens, on the other hand, affect both GH secretion

and activities, and also play a role in stimulating the production of

IGF-1 (98). The biological function of estrogens, especially E2, are

mainly exerted by interactions with ERs. This process is subject to

feedback regulation by GH and IGF-1 (99). In men, testosterone

concentrations are positively correlated with the regularity of GH

secretion, although both testosterone and GH concentrations tend

to decrease with increasing age (100, 101).

The close relationship between nutrient metabolism and IGFs

expression was demonstrated as early as 1994 (102). Secretion of

GH under fasting conditions has sex-specific ramifications (101,

103). A pediatric study conducted by Cicognani et al. (104) found

that sex hormones influence IGF-1 levels, which appears to be

mediated through GH secretion. A study by Papatheodorou et al.

(105) revealed an association between circulating levels of E2, sex

hormone-binding globulin (SHBG), and IGF-BP3 in males in the

United States. In addition, both IGF-1and ER mediate various

biological processes via the PI3K signaling pathway that are

crucial for the onset and progression of TC. Additionally,

metformin may be useful for treatment of differentiated or poorly
Frontiers in Endocrinology 07
differentiated TC, which may involve regulation through the ER or

AR signaling pathway, as demonstrated in prostate cancer (106).

The effects of complicated hormone levels on metabolism,

particularly glycoproteins and lipids, have been implicated in

progression of TC. Both IGFs and estrogen have been found to

influence glycolysis in TC. For example, Huang et al. (107)

suggested that the fat mass and obesity-associated protein inhibits

expression of apolipoprotein E through insulin-like growth factor

binding protein 2-mediated m6A modification, which may inhibit

glycolytic metabolism in PTC by modulating the interluekin-6/

Janus kinase 2/STAT3 signaling pathway, consequently suppressing

tumor growth (107). Similarly, Zhu et al. (108) demonstrated that

estrogen increases malignant activities as well as glycolysis in PTC

cells by inhibiting expression of FAM111 trypsin-like peptidase B

(FAM111B) and proposed that the E2/DNA (cytosine-5)-

methyltransferase 3B/FAM111B axis is crucial for regulating the

progression of PTC (108). Collectively, these findings suggest

crosstalk between sex hormones and the GH/IGF axis in TC,

particularly PTC.
TSH/THs and sex hormone/receptors

Extranuclear signaling pathways mediated by THs, estrogens,

and androgens regulate various biological processes (109). In
FIGURE 2

Crosstalk between hormones and hormone systems in the development of TC. Sex hormones, THs, TSH, GH and IGF-1 interact. E2, IGF-1 and TSH
influence thyroid development through PI3K/AKT/mTOM and MAPK signaling pathways. Similarly, E2,THs and testosterone (T) regulate progression
of TC through classical genomic factors. The SRD5A2 enzyme reduces T to dihydrotestosterone (DHT).
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certain types of tumors, THs and sex steroids exhibit interacting

and overlapping effects. For instance, THs have been shown to

influence concentrations of SHBG, as evidenced by elevated

testosterone and SHBG levels in males with hyperthyroidism

(110). Similarly, the estrogen inhibitor tamoxifen was found to

lower serum T3 levels in adult female rats. Moreover, sex-specific

relationships between TSH and TH levels were observed in children

and adolescents (111). Specifically, this study reported that mean

logTSH and freeT3 levels were significantly higher in males than

females, while age was negatively correlated with thyroid function

in both males and females, and with freeT4 levels in males (111).

Currently, there is no evidence linking sex hormones to differences

in TSH and TH levels between males and females.

In cancer cells, THs and estrogen signaling display significant

crosstalk through promoter cross-reactivity (112). Similarly, THs

interact with the AR promoter region and affect the responsiveness

of androgen by increasing AR expression. Thyroid response

elements have been identified in the promoter regions of AR and

several androgen-related genes (113). Estrogens, especially E2, and

THs have overlapped biologic effects in TC, although the underlying

mechanisms remain unclear. Some reports have suggested that

estrogen-related cancers may be permissively modulated by TH

and ER, especially ER-positive TC (27). Administration of estrogens

may negatively influence treatment of relapsed DTC in both males

and females. Estrogens and THs demonstrated an additive effect on

tumor growth and development in postmenopausal females with

recurrent differentiated tumors after estrogen replacement and TSH

suppression (27). Meanwhile, E2 was shown to significantly inhibit

TSH-induced differentiation of progenitor cells and expression of

the sodium/iodide symporter (46). Furthermore, E2 obviously

decreased levels of thyroid differentiation markers, including

TSHR, indicating impaired thyroid differentiation (46).

Estrogens and TSH/TH exhibit significant effects on BRAF and

p53 activities in TC tumor cells. The BRAFV600E mutation was

significantly more common in tumors expressing TSH (114) and

was shown to override BRAF-induced senescence, thereby

promoting tumor progression via downregulation of p53

expression in PTC (115). Additionally, cell lines carrying the

BRAFV600E mutation demonstrated increased metastatic potential

in response to E2 (48). In the BRAFV600E group, the ERa/ERb ratio

was elevated in younger participants (≤50 years) (48). Furthermore,

E2 was found to synergistically activate the tyrosine kinase pathway

in TC cells with the RET fusion and BRAF mutation (37).

Moreover, thyroid transcription factor-1, ER, PR, and p53 were

co-expressed in most young females (15–34 years) with PTC (116).

Additionally, sex hormones and TSH regulate the development

of TC via the MAPK signaling pathway. Estrogen activates MAPK-

dependent serine phosphorylation of nuclear ERa. Similarly, a

study by Jiang et al. (51) showed that testosterone promotes

malignancy via the MAPK (p38/JNK) signaling pathway. TH is a

MAPK-dependent growth factor with anti-apoptotic effects. When

THs are activated, the MAPK (ERK1/2) signaling pathway induces
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serine phosphorylation of several nucleoproteins, including nuclear

ERb (117). An in vitro study reported that microRNA 106a, which

regulates expression of the TSH receptor, is associated with the

proliferation, apoptosis, differentiation, and iodine uptake of TC

cells by modulating the MAPK signaling pathway (118).

Furthermore, ERs have been shown to modulate the PI3K/AKT/

mTOR pathway, thereby influencing proliferation of TC (41).

Similarly, activation of TSH-TSHR signaling has been found to

play a role in increasing mobility and dedifferentiation of TC cells

via crosstalk with the PI3K/AKT/mTOR signaling pathway (119).
IGF1 and TSH/TH

Similar to TSH, IGF-1 is also considered a risk factor in TC

(120). An in vitro study (96) demonstrated that IGF-1R enhances

TSH-induced activation of thyroid-specific genes, particularly the

sodium/iodide symporter. This process is facilitated by the ERK1/2

or AKT pathways. Additionally, TSH interacts with IGF-1 (22). The

co-activities of TSH and IGF-1 promote growth of human FTC cells

(21). Moreover, TSHR and IGF-1R have been observed to co-

immunoprecipitate in both orbital and thyroid tissues, indicating

formation of a functional complex (121). Furthermore, TSH and

insulin/IGF-I act synergistically to increase proliferation and

growth of thyroid cells, which are primarily mediated through the

cyclic adenosine monophosphate, PI3K, and MAPK pathways

(122, 123).
Crosstalk of hormone systems as a
risk factor for TC

Increasing evidence suggests that obesity, stress, and high blood

pressure increase the risk of TC (10, 124). Various hormones are also

activated in response to these stressors (Figure 3). Obesity is a

complex physiological condition that is regulated by various

hormones, but can also lead to hormonal imbalances and

homeostatic disruptions. In general, obesity, central fat distribution,

stress, depression, and unstable blood pressure are closely related and

may contribute to several pathological effects, such as

hyperinsulinemia, increased aromatase activity, chronic

inflammation, altered immune responses, and oxidative stress

(125). IGF-1, sex hormones, TSH, and cortisol directly contribute

to these processes and play significant roles in thyroid tumorigenesis.

Obesity is an established risk factor for DTC in females but not

males (126). Both obesity and TC are more frequent in females than

males worldwide, implying the involvement of estrogens (127, 128).

In fact, serum levels of ERa are increased in obese females (128).

However, various factors other than sex, such ethnicity and age,

especially adolescence, may influence the association between

obesity and the risk of TC (125). An imbalance of estrogens and

androgens may be responsible for the greater risk of TC in obese
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individuals (125). As a well-known risk factor for diabetes, obesity is

characterized by insulin resistance and hyperinsulinemia (128).

IGF-1 and IGF-2 mediate the functions of insulin as well as the

obesity process (129). Marcello et al. (126) reported that higher

consumption of animal proteins and carbohydrates contribute to

obesity and a greater risk of DTC via a mechanism possibly related

to upregulation of IGF-1.

Furthermore, the HPA and HPT axes are also involved in the

regulation of obesity, stress, and depression (130, 131).

Accumulating epidemiological data demonstrate an independent

association between TSH levels and obesity (125). Additionally,

there is a parallel increase in the incidence of TC among both adults

and children in conjunction with the rising levels of stress in

contemporary society. Prolonged secretion of glucocorticoids due

to stress can potentially induce chronic inflammation and suppress

immune responses. Stress can lead to dysregulation of the thyroid

gland through crosstalk between the HPA and HPT axes. However,

further investigations are needed to determine whether this

association is involved in the onset and progression of TC (132).
Hormone regulation in TC at
different ages

Hormone levels change with age. Typically, children and

adolescents experience hormone surges during periods of rapid

growth and development. Adult and middle-aged women usually

have relatively stable hormone levels until perimenopause or

menopause, when hormone levels once again fluctuate. Hormonal

changes may explain why TC cells in adults also exhibit milder

characteristics, with tumors less aggressive and less able to migrate

than in children and the elderly (Table 3).
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Hormone regulation in TC among
younger populations

DTC is the most frequent malignant tumor of the endocrine

system in children and adolescents. TC, especially DTC, is typically

more aggressive in pediatric patients than adults. Nevertheless, the

prognosis of pediatric TC patients is often positive, even for those

with advanced disease. However, the prognosis of persistent or

recurrent disease is often poor (133). Therefore, it is crucial to

elucidate the pathogenesis of TC in young individuals and

effectively manage associated risk factors to optimize treatment.

At puberty, the HPG axis interacts with the GH/IGF-1 axis to

facilitate physical growth spurts (134). In addition, GH and

insulinomimetic signals are regulated by sex steroids. Androgens,

for example, induce IGF-1 activation in bone, muscle, and skin

tissues, while suppressing IGF-1R expression in adipose tissues.

Thus, regulation of GH and IGF-1 is determined by the specific type

of sex hormone and target tissue. In contrast, GH and insulin

upregulate AR and ER in an organ-specific manner. Consequently,

interactions of sex steroids with the GH/IGF axis can increase

susceptibly to TC in children and teenagers.

Sex steroids, rather than TSH, playmore significant roles in thyroid

development in children and adolescents (16). Notably, during puberty

in females, characteristic changes to glycosylation are associated with

sex hormones, particularly E2. These modifications may create a

favorable TME for TC (49). A case-control study conducted by Kim

et al. (135) revealed a relationship between obesity and TC in a young

Korean population (18 years old). Besides obesity, other risk factors for

TC include adolescence (125). A case-control study by Suzuki et al.

(136) demonstrated a positive association between body weight and an

increased risk of TC in children and adolescents, particularity in males.

However, post puberty, the risks of TC and persistent disease decrease.
FIGURE 3

Hypertension, obesity, and stress are closely related to hormonal changes, and promote the onset and progression of TC. Glucocorticoids(GC), THs,
sex steroids, and the GH/IGF-1 axis are directly and indirectly involved in the development of obesity and hypertension. Stress is mainly regulated by
the HPA and HPT axes. These factors are involved in the occurrence and development of TC.
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The post-puberty period is strongly associated with the clinical

behavior of TC and males are at a greater risk for persistent disease

(137). High levels of TSH are generally considered a risk factor for TC.

However, this regulatory mechanism appears to be more prevalent in

adults than teenagers. Suzuki et al. (111) reported that TSH levels were

associated with age and thyroid function in children and adolescents

with pediatric thyroid carcinoma, and age was negatively correlated

with thyroid function in both male and female teenagers. Moreover,

lower logTSH levels and higher antithyroglobulin levels were

independent risk factors for the development of thyroid nodules and

age was positively correlated with free T4 levels in young males (111).

These findings suggest that teenage males may be more susceptible to

TC than adult males.

ERa expression is lower in adolescents with TC, while hormone

receptor levels in females are not related to sex, American Thyroid

Association risk score, persistent structural disease, or pubertal

status (137). Therefore, female hormones and receptors may not

be major factors in the progression of TC at puberty.

Additionally, IGF-1 and IGF-1R are associated with the

development of TC in younger populations, as high expression of

IGF-1R enhances the aggressiveness of cancer cells (91). Circulating

levels of GH, IGF-1, sex hormones, and THs may directly or

indirectly affect the expression levels of IGF-1 and IGF-1R in

tumor tissues.TC tends to be more aggressive in children and

adolescents with higher GH and IGF-1 levels. Moreover, the

unique psychological changes and stress experienced during

adolescence may amplify the interplay between hormonal

systems, particularly the HPA and HPT axes. Hence, further

studies are warranted to investigate the characteristics of TC and

associated risk factors in children and adolescents.
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Hormone regulation in TC among
the elderly

According to the American Joint Committee on Cancer, age at

diagnosis is associated with staging of DTC and advanced age is

associated with compromised prognosis. The pathogenesis of DTC is

complex in older patients and not well understood. Thus, further studies

are needed to explore the roles of hormone systems in the elderly.

Younger people usually have substantial physiological reserves,

which are gradually depleted with aging because of reduced

hormone requirements. During senescence, hypopituitarism may

be a physiological process. Older patients are more susceptible to

growth hormone deficiency, gonadotropin deficiency, and

hypothyroidism (138). Pituitary hormone deficiency increases

with age. DTC cells are regulated by multiple hormones. Older

people experience a relatively nutrient-poor environment due to

lower hormone levels and less physiological reserves, which can

increase the susceptibility of DTC cells to stress, thereby enhancing

invasion and migration.

The prevalence of TC is increased in patients with hypothyroidism

(139). Subclinical hypothyroidism was identified as an independent

risk factor for extrathyroidal extension in patients with PTC. The risk

of extrathyroidal extension associated with subclinical hypothyroidism

is reportedly higher in males than females (140). More importantly,

hypothyroidism is the most frequent endocrine disease in the elderly,

with an increased prevalence in women as compared to men (141,

142). The most frequent cause of hypothyroidism in the elderly is

autoimmune thyroiditis (143). Older men have higher baseline TSH

levels and lower T3 and free T4 serum levels than younger men. Older

people also have lower TSH responses to thyrotropin-releasing

hormone. Furthermore, the inhibitory effect of glucocorticoids on

TSH secretion is reduced with aging in men (144). This evidence

suggests that the elderly, especially older men, may exhibit poorer

hormonal responsiveness. The secretion of hypothalamic-pituitary axis

and target organ hormones, especially glucocorticoids and TSH, may

be chaotic. In this hormone environment, TC cells are more stressful,

and the cancer-promoting effects of hormones may be more obvious.

Undifferentiated TC is more common in the elderly. TSH and

IGF-1 are major regulators of thyroid cell differentiation in adults

(19). IGF-1 is crucial for differentiation of murine embryonic stem

cells to thyrocytes (145). The lower level of IGF-1 in the elderly may

increase the dedifferentiation of tumor cells in TC, which may

explain why 95% of TCs are well differentiated in children and

adolescents. For example, high total IGF-2 levels accompanied by

low serum levels of IGF-I and GH have been associated with poorly

differentiated TC in the elderly (146). In addition, postmenopausal

women have increased ERa expression (147), which may be

involved in more aggressive behavior. Similarly, decreased

estrogen levels and increased levels of follicle-stimulating

hormone are associated with epidermal growth factor receptor

expression and activation in postmenopausal women with DTC

(148). This status is involved in the recurrence of PTC (148). In

summary, differences in the hormone environment, including

fluctuations in thyroid function, suppression of the GH/IGF-

1axis, and changes to estrogen and ER levels, partially explain

why TC is more common and aggressive in older people.
TABLE 3 Characteristics of the hormonal environment and TC in
different age groups.

Children
and

adolescents

Adults Elderly

Hormonal
environmental
characteristics

1, More sensitive
to hormones
2, Have better
reactivity to
hormones
3, Hormone
secretion
significantly
fluctuates

1,Hormone levels
are relatively stable
2,Hormone
secretion is regular

Decreased
hormone
reactivity is
often
accompanied by
decreased
secretion

GH secretion Higher GH level GH levels decrease with age

Sex
hormones
secretion

Sex hormone levels
are significantly
increased
during puberty

Sex hormone levels
reach highest levels

Sex hormone
levels
are decreased

Characteristics
of TC

1, Higher lymph
node metastasis
rate
2, 95% of
pathological types
are PTC
3, Favorable long-
term prognosis

1, Prognosis is
good
2, Tumor
invasiveness and
migration ability
are relatively poor

1, Prognosis is
relatively poor
2, Increased rate
of
undifferentiated
TC
3, Distant
metastasis is
more common
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Conclusion and future perspectives

The thyroid is a complex endocrine gland that produces a variety

of hormones. The onset and progression of TC, particularly DTC, are

regulated by various hormone systems. The interactions of various

hormones influence thyroid tumorigenesis. In pediatric patients, the

development of TC, particularly DTC, is dependent on the

interactions of sex hormones and GH/IGF-1, especially during

puberty due to specific physiological needs. Thus, further

investigations with the use of in vitro and animal models should

focus on the mechanisms underlying the crosstalk between various

hormones and hormone systems in the onset and progression of TC.
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Decreased thyroid follicle size in dwarf mice may suggest the role of growth hormone
signaling in thyroid growth regulation. Thyroid Res. (2012) 5:1–6. doi: 10.1186/1756-
6614-5-7

14. Brix K, Führer D, Biebermann H. Molecules important for thyroid hormone
synthesis and action-known facts and future perspectives. Thyroid Res. (2011) 4:1–6.
doi: 10.1186/1756-6614-4-S1-S9

15. Ayhan G, Rouget F, Giton F, Costet N, Michineau L, Monfort C, et al. In utero
chlordecone exposure and thyroid, metabolic, and sex-steroid hormones at the age of
seven years: A study from the TIMOUN mother-child cohort in Guadeloupe. Front
Endocrinol. (2021) 12:771641. doi: 10.3389/fendo.2021.771641

16. Michalaki MA, Mamali I, Tsekouras A, Vlassopoulou B, Anastasiou E, Koukkou
EG, et al. Thyroid-stimulating hormone is not the primary regulator of thyroid
development in euthyroid children and adolescents living in an iodine-replete area.
Hormones. (2018) 17:391–6. doi: 10.1007/s42000-018-0056-y

17. Banu KS, Aruldhas M. Sex steroids regulate TSH-induced thyroid growth during
sexual maturation in Wistar rats. Exp Clin Endocrinol Diabetes. (2002) 110:37–42.
doi: 10.1055/s-2002-19993
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Glossary

ARE Androgen response element

ARs Androgen receptors

AKT Alpha serine/threonine-protein kinase

ATC Anaplastic thyroid cancer

CPAs Cortisol-producing adenomas

CRH Corticotropin-releasing hormone

DHT Dihydrotestosterone

DTC Differentiated thyroid carcinoma

ER Estrogen receptor

ERa Estrogen receptor alpha

ERb Estrogen receptor Beta

ERE Estrogen response element

E2 Estradiol

EMT Epithelial-mesenchymal transition

ERK1/2 Extracellular signal-regulated kinases 1 and 2

FAM111B FAM111 trypsin-like peptidase B

FTC Follicular thyroid cancer

GH Growth hormone

GC Glucocorticoid

GR Glucocorticoid receptor

GHRH Growth hormone-releasing hormone

HPA Hypothalamic-pituitary-adrenal

HPG Hypothalamic-pituitary-gonadal

HPT Hypothalamic-pituitary-thyroidal

IGF-1 Insulin-like growth factor-1

IGF-2 insulin-like growth factor-2

IGF-1R Insulin-like growth factor-1 receptor

IGF-BP3 Insulin-like growth factor binding protein-3

mTOR Mammalian target of rapamycin

MAPK Mitogen-activated protein kinase

NADPH 2,4-dienoyl CoA reductase 1

NF-kB The nuclear factor kB

PD-L1 Programmed death-ligand 1

PR Progesterone receptor

PTC Papillary thyroid carcinoma

PI3K Phosphoinositide 3-kinase

ROS Reactive oxygen species

STAT3 Signal transducer and activator of
transcription 3

(Continued)
F
rontiers in Endocrinology
 15
Continued

SHBG Sex hormone-binding globulin

T Testosterone

TC Thyroid cancer

TSH Thyroid stimulating hormone

THs Thyroid hormones

TSHR Thyrotropin receptor

T3 Triiodothyronine

T4 Thyroxine

TME Tumor microenvironment.

TRE Thyroid hormone response element
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