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The Booroola fecunditymutation (FecB) in Small Tail Han sheep has been shown to

enhance ovulation rates and litter sizes by affecting the hypothalamic–pituitary–

gonadal (HPG) axis. Despite the pituitary’s role in reproductive regulation, its

involvement in FecB-induced ovulation remains understudied. Our study aimed

to fill this gap by analyzing pituitary tissues from FecB homozygous (BB) and wild-

type (WW) ewes during luteal and follicular phases using tandem mass tag–based

protein quantification and the DIABLO framework for proteomic and

transcriptomic data integration. Significant differences in 277 proteins were

observed across estrus periods, with network analysis highlighting the voltage-

dependent calcium channel L-type alpha-1C as a key convergence point in

oxytocin signaling and GnRH secretion pathways. The DIABLO method revealed

a strong correlation (0.98) between proteomic and transcriptomic datasets,

indicating a coordinated response in FecB ewes. Notably, higher expression

levels of Follicle Stimulating Hormone Subunit Beta (FSHB) and Luteinizing

Hormone Subunit Beta (LHB) were found in BB ewes during the follicular phase,

potentially due to elevated E2 concentrations. Furthermore, our analysis identified

genes related to the Gamma–aminobutyric acid type A receptor family (GABRA2,

GABRG1, GABRB1) in the pituitary, with GABRB1 showing higher expression in BB

ewes. This suggests a role for GABA in modulating GnRH and gonadotropin

feedback loops, potentially contributing to the FecB mutation’s effect on

ovulation. This study provides novel insights into the pituitary’s role in fertility

among FecB sheep, identifying GABA as a potential regulatory factor within the

HPG axis. The findings also open avenues for discovering new biomarkers in

pituitary endocrinology for sheep breeding purposes.
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1 Introduction

The Bone morphogenetic mechanism type 1 B (BMPR1B) gene

was the first major gene reported to increase ovulation rate, which

found in the Booroola prolific sheep strain. BMPR1BQ249R (FecB)

gene mutation significantly increases the number of ovulations per

estrus cycle in ewes (1–3). Recently, Zhou et al. introduced the FecB

mutation into low–fertility sheep using gene editing technology and

observed that this mutation is a crucial causal mutation influencing

high sheep productivity (4, 5). Our laboratory results have found

that Small Tail Han sheep (STH) carrying the FecBmutation exhibit

earlier estrus onset and ovulation time compared to wild–type

(WW) ewes. Additionally, these STHs have smaller mature follicle

diameters but significantly higher rates of ovulation and litter sizes

compared to their WW counterparts (6, 7).

Both in vivo pituitary cell and sheep studies at the in vitro level

showed that follicle stimulating hormone levels were significantly

higher in BB ewes than inWW ewes (P < 0.05) (8, 9). In STH sheep,

at the 3rd hour after the first estrus, follicle stimulating hormone

(FSH) concentrations were significantly higher in BB sheep than in

WW sheep (P < 0.05), while luteinising hormone (LH)

concentrations were significantly lower than in WW sheep (P <

0.05) (6). The FecBmutation have been observed to potentially lead

to a partial attenuation of the transforming growth factor beta

(TGFb) pathway, consequently impacting the follicular response to

FSH and LH. Furthermore, this mutation may change the hormonal

feedback loop between the follicle and the pituitary gland, thereby

influencing the release of FSH and LH (10).

In mammals that ovulate spontaneous like sheep, gonadotropin

(FSH and LH) secretion by the pituitary gland drives follicle

formation and a massive discharge or surge of gonadotropin that

triggers ovulation during a typical ovarian cycle (11). The pituitary,

the “master gland of the body”, secretes hormones that are in

essence peptides or glycoproteins. Thus, transcriptomics and

quantitative proteomics have expanded our understanding of the

pituitary endocrine and pituitary regulation of reproduction (12–

18). However, these studies have mainly focused on pituitary

regulation of estrus, and the molecular mechanisms of pituitary

involvement in follicular development to regulate litter size remain

poorly understood with the FecB mutations. Integration of systems

biology and innovative data can unravel complex biology with new

insights (19).

In this experiment, we collected pituitary tissues from luteal and

follicular phases of STH ewes with different FecB genotypes, and

detected the changes in protein abundance in these tissues by using

tandem mass tagging (TMT) quantitative proteomics and parallel

reaction monitoring (PRM) methods. Previously, our group

obtained transcriptomic data from these tissues. We performed a

combination of these two histological data to screen for core

biomarkers, signaling pathways, and biological processes

associated with FecB gene mutations, in the pituitary gland, that

are involved in ovulation.
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2 Materials and methods

2.1 Study design and tissues collection

TaqMan MGB method was used to detect FecB mutant

genotypes FecB (6) in 2–4 years old, similar weight and non–

pregnant ewes in the core flock of STH in Yuncheng County,

Shandong Province, China. The study was conducted in accordance

with the Declaration of Helsinki, and approved by the Animal

Ethics Committee of the Institute of Animal Sciences, Chinese

Academy of Agriculture Science (No. IAS 2019–49).

Six WW genotyped ewes and six BB genotyped ewes were then

selected based on the FecB genotype and reared under natural light

conditions with ad libitum feeding. Vaginal sponges (progesterone

300 mg) (InterAg Co., Ltd., New Zealand) were used for 12 days of

simultaneous estrus in the above sheep. We set the time of vaginal

sponge removal at 0 h (around 10:00 am), and then euthanized 3

WW ewes and 3 BB ewes at 45 h (follicular phase, F) and 216 h

(luteal phase, L), respectively, and obtained pituitary tissues, and

then transferred those 12 tissues to –80°C for storage after snap–

freezing in liquid nitrogen. Jugular venous blood samples were

collected from sheep at the time of vaginal sponge removal (0

hours) and at the time of euthanasia (45 and 216 hours). The

concentration of estradiol (E2) was measured using an E2 RIA kit

(BNIBT, China) with a sensitivity of <2 pg/mL, while progesterone

(P4) levels were quantified using RIA kits (BNIBT, China) with a

sensitivity of <0.1 ng/mL. To validate the precision of hormone

detection, triplicate assays were conducted for each sample

(Figure 1). The data for P4 and E2 were presented as mean ±

standard error, and differences in hormone concentrations between

genotypes at the same time were assessed using the T-TEST

method, with statistical significance defined as P ≤ 0.05.
2.2 Peptide preparation and TMT labeling

The proteins from the pituitary gland tissues were extracted

using the SDT lysis method (20), and protein concentrations were

quantified using the Pierce™ BCA Protein Assay Kit (Thermo

Fisher Scientific, USA) (21). Each sample was digested with trypsin

using the filter aided sample preparation method, with

approximately 200 µg of protein per sample (22). The peptide

content was quantitated using ultraviolet spectrophotometry

(optical density: 280) for subsequent proteomic experiments.

Peptides (100 mg per sample) were labeled using the six plex

tandem mass tag of TMT Mass Tagging kit (Thermo Fisher

Scientific, USA) according to the manufacturer’s instructions. The

labeling was performed on WW ewes at the luteal phase (WW_L),

BB ewes at the luteal phase (BB_L), BB ewes at the follicular phase

(BB_F), andWW ewes at the follicular phase (WW_F) using TMT–

128, TMT–129, TMT–130, and TMT–131, respectively. Each group

consisted of three biological replicates (Figure 1).
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2.3 Peptide fractionation and Liquid
chromatography–mass spectrometry/mass
spectrometry analysis

The labeled peptides from 12 samples were mixed in equal

volumes and subsequently lyophilized. A quantity of 100 mg of

mixed peptides was dissolved in 300 µL of 0.1% trifluoroacetic acid.

The solubilized peptide solution was then transferred to a High pH

Reversed–Phase spin column (Thermo Fisher Scientific, USA),

which had been pre–equilibrated with 0.1% trifluoroacetic acid

and acetonitrile aqueous buffer. By employing gradient elution

with high pH acetonitrile solutions of increasing concentration,

ten fractions of column–bound peptides were obtained. Each eluted

peptide sample was subjected to vacuum drying, followed by

reconstitution with 12 mL of 0.1% formic acid, and the

concentration were determined by measuring the absorbance at

an optical density of 280.
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Each sample was subjected to separation using an Easy nLC

nanoflow liquid chromatography instrument (Thermo Fisher

Scientific, USA). The column was initially equilibrated with 95%

0.1% formic acid in water (buffer A) employing a Thermo

Scientific Acclaim PepMap100 (100 mm*2 cm, nanoViper C18,

Thermo Fisher Scientific, USA). Subsequently, the samples were

introduced into the column and separated utilizing a Thermo

scientific EASY column (10 cm, inner diameter 75 mm, resin 3 mm,

C18–A2, Thermo Fisher Scientific, USA). A 1–hour liquid

gradient strategy was employed, wherein the concentration of

buffer B, a 0.1% formic acid acetonitrile aqueous solution

(comprising 84% acetonitrile), was gradually increased from 0%

to 35% over the initial 50 minutes. Subsequently, the

concentration of buffer B reached 100% within the time frame

of 50 to 55 minutes. Finally, the concentration of buffer B was

maintained at 100% for the remaining 5 minutes. The flow rate

utilized was 300 nL/min.
FIGURE 1

Proteomic and transcriptomic experiment sample group and process of data acquisition and analysis.
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The fractions of samples conducted through chromatography

were analyzed using a Q–Exactive mass spectrometer (Thermo

Fisher Scientific, USA). Detection was achieved through positive

ions, and the acquisition of peptides and peptide fragments was

performed by collecting Top20 mass spectrometry (MS) 2 scan

fragments subsequent to each full scan. The parent ion scanning

range for the full scan encompassed a range of 300 to 1800 m/z, with

a resolution of 70000 at 200 m/z. The Automatic Gain Control

(AGC) target was set at 1e6, while the Maximum injection time was

limited to 50 ms and the Dynamic exclusion time was set to 60.0 s.

The MS2 scan activation type employed is higher energy

dissociation (HCD), with an isolation window of 2 m/z. The

resolution achieved is 17500 at 200 m/z, while the Normalized

Collision Energy utilized is 30eV. Additionally, the Underfill ratio is

observed to be 0.1%.
2.4 The identification and relative
quantification of proteomic and
transcriptomic data

TheMS/MS spectra data were subjected to analysis using Proteome

Discoverer v.1.4 (Thermo Fisher Scientific, USA) andMASCOT engine

v.2.2 (Matrix Science, UK). The protein reference database was

constructed by translating transcriptome data from sheep used in the

proteomic analysis (PRJNA782215) (23). The library searching

parameters are detailed in Supplementary Table S1. Protein

abundance differences were calculated after applying a filtering step,

where proteins lacking abundance measurements in two or more

samples from each group were excluded. The protein abundances

were log2–transformed and normalized after filtration, and differences

in protein abundance were determined using linear models for

microarray data (LIMMA v 3.52.1) package (24). A factorial design

was employed for the calculations, incorporating the factors of genotype

(two levels: WW and BB) and estrus (two levels: F and L), with

consideration given to interactions between the two factors. Proteins

exhibiting significant differences in abundance were selected based on a

P–value of less than 0.05 and a fold change in abundance comparison

between the two groups greater than 1.2 or less than 0.83 (25).

The transcriptome data (PRJNA782215) was aligned and assembled

with the sheep reference genome (Oar4.0: GCF_000298735.2) using

HISAT2 (v.2.0.5, http://daehwankimlab.github.io/hisat2/) and String

Tie (v.1.3.2d, https://ccb.jhu.edu/software/stringtie/). For the

analysis of differentially expressed genes (DEGs), read counts

were calculated using HTSeq (v0.6.1, https://lira.no-ip.org:8443/

doc/python-htseq-doc/html/index.html). Subsequently, DESeq2

(v1.28.1) (26) was employed to normalize the counts and identify

genes with differential expression. The model utilized was

consistent with the one employed for identifying differentially

abundant proteins (DAPs). The criteria for identifying

differentially expressed genes included a P value less than 0.05, a

corrected P value of less than 0.05, and a fold change greater than

2.0 between the two groups.
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2.5 The integration of proteomic and
transcriptomic data

We analyzed the repeatability and reliability of the test samples

using Pearson’s correlation and Principal component analysis

(PCA). The Data Integration Analysis for Biomarker discovery

using Latent variable approaches for Omics studies (DIABLO)

framework of mixOmics (v.6.20.0) was utilized to integrate

transcriptomic and proteomic data in order to identify correlations

between the two datasets. The DIABLO core algorithm is an

extension of the partial least–squares method (27). Prior to data

integration, transcript count data were normalized to log2 (counts

per million) (logCPM) using the edgeR package (v.3.38.1) (28).

Transcripts with a logCPM value below 0 in more than 75% of the

sample set were excluded. Similar filtering procedures were applied

to the proteomic data during the identification of DAPs. The

DIABLO design matrix incorporated estrus stage and genotype

factors, and block linkage was 0.1. The determination of the ideal

number of components and variables to incorporate in the final

model was accomplished through the utilization of the “perf” and

“tune.block.splsda” functions, and subsequently validated via 3 × 5–

fold cross–validation (times). The model’s performance was

evaluated by calculating the balanced error rate and overall

misclassification error rate, while the model’s discrimination

accuracy was assessed by calculating the area under the curve of

the receiver operating characteristic curve (ROC).
2.6 Functional annotation and enrichment
analysis of biomarkers

To explore the potential role of proteins in the luteal–follicular

phase transition and the role of these biomarkers in FecBmutations

affecting fertility, Gene Ontology (GO) categories (29) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) (30) over–

representation analyses were ran by clusterProfiler (v4.4.4) (31).

The parameter of pAdjustMethod is false discovery rate (FDR). Top

enriched KEGG pathways and GO terms were visualized using the

two clusterProfiler package functions dotplot and cnetplot.
2.7 Quantitative analysis of selected
proteins with PRM

To validate the protein abundance obtained by TMT

quantification method, the abundance of randomly selected

proteins in Pituitary were quantified using PRM analysis (32). The

peptides used for PRMwere shown in Supplementary Table S2. PRM

assay was performed using peptides prepared for TMT analysis,

approximately 1 mg of peptide from each sample, mixed with 20 fmol

of the standard peptide (SAAGAFGPELSR, Thermo Fisher Scientific,

USA). Reversed–phase chromatographic analysis was performed

with the Easy nLC–1200 system (Thermo Fisher Scientific, USA)
frontiersin.org
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For the chromatographic analysis, the C18 Trap Column was 100 mm
* 50mm, with a resin of 5 mm, and the C18 Analytical Column was 75

mm * 200 mm, with a resin of 3 mm. The chromatographic separation

exhibited a flow rate of 300 nl/min, with a gradient characterized by

the following changes in concentration: buffer B experienced an

increase from 5% to 10% within the initial 2 minutes, followed by a

subsequent increase from 10% to 30% between 2 minutes and 45

minutes. From 45 minutes to 55 minutes, there was a further increase

from 30% to 100%, and during the final 5 minutes, the concentration

of buffer B remained constant at 100%. The fractions of samples

conducted through chromatography were analyzed using a Q–

Exactive mass spectrometer (Thermo Fisher Scientific, USA).

Detection was achieved through positive ions, and the acquisition

of peptides and peptide fragments was performed by collecting Top20

MS2 scan fragments subsequent to each full scan. The parent ion

scanning range for the full scan encompassed a range of 300 to 1800

m/z, with a resolution of 60000 at 200 m/z. The AGC target was set at

3e6, while the Maximum injection time was limited to 200 ms. The

MS2 scan activation type employed is higher energy dissociation

(HCD), with an isolation window of 1.6Th. The resolution achieved is

30000 at 200 m/z, while the Normalized Collision Energy utilized is

27eV. The AGC target was set at 3e6, while the Maximum injection

time was limited to 120 ms (33). The peptide were extracted and

calculated by Skyline v.3.5.0 (34)
3 Results

3.1 Overview of pituitary proteomic data

Twelve pituitary samples were randomly divided into three

experimental groups, with four samples in each group. Care was

taken to ensure that each group included one sample from BB_F,

BB_L,WW_F, andWW_L, thus rendering them appropriate for the

six–plex TMT labeling strategy. The triple TMT experiments

yielded 4896, 4860, and 5176 peptides, respectively. The

subsequent integration of these three sets of results and their

annotation ultimately led to the identification of 5836 distinct

proteins, as depicted in Supplementary Figure S1A, for

subsequent analysis. The analysis of protein molecular weight

distribution showed that the molecular weights of 99% of proteins

were between 6 and 312 kD (Supplementary Figure S1B).

Approximately, the protein sequence coverage of 1545 proteins

were > 30% (Supplementary Figure S1C). More than 1541 proteins

included less than two unique peptides. The proteins

XP_004018043.1, XP_014949338.1, XP_012026869.1, and

XP_014952969.1 were identified to have over 100 unique peptides

(Supplementary Table S3).
3.2 Results of PRM quantification

Albumin (ALB), calcium voltage–gated channel auxiliary

subunit alpha 2 delta 2 (CACNA2D2), calcium/calmodulin

dependent protein kinase I (CAMK1), glycoprotein hormones,
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alpha polypeptide (CGA), G protein subunit alpha o 1 (GNAO1),

luteinizing hormone beta polypeptide (LHB), glutathione S–

transferase Mu 1 (LOC101107401), solute carrier family 27

member 1 (SLC27A1), and alcohol dehydrogenase class–2

isozyme 2–like (LOC101110134) proteins were selected for

validation of the differences in protein abundance using the PRM

in the following subgroups: follicular versus luteal phase in BB

genotype ewes (BB_F/L) group, follicular phase in BB ewes

compared to WW ewes (BW_F) group, and luteal phase BB ewes

compared with WW ewes (BW_L) groups, and follicular versus

luteal phase in WW genotype ewes (WW_F/L) group. The

differences in protein abundance obtained from TMT versus

PRM in the above groups were then expressed as log2 (ratio)

values. Comparison of these two methods showed a consistent

trend in the differences in protein abundance between the different

groups they detected (Figure 2, Supplementary Tables S2, S3).
3.3 The profile of the DAPs in
proteomics data

The effects of genotype and estrus, as well as the interactions

between them, were evaluated using the limFit and eBayes functions

of the LIMMA package. Then, the contrast function was used to

further analyze which proteins changed during the transition from

the luteal to follicular phase in WWgenotype (FvsLWW) and BB

genotype (FvsLBB) ewes, respectively. Additionally, the contrast

function was used to determine which proteins responded

differently (interactions) in BB vs. WW Following the thresholds

described in the Material Methods, 170 DAPs were detected in the

FvsLBB group. Out of these, 55 proteins were up–regulated during

the follicular phase, while 115 proteins were down–regulated

(Figure 3A, Supplementary Table S4). In the FvsLWW group

during the follicular phase, 144 DAPs were screened, with 54

being up–regulated and 90 being down–regulated (Figure 3B,

Supplementary Table S5). In the interaction group, 145 DAPs

were detected, with 73 being up–regulated and 72 being down–

regulated for BB genotypes relative to the wild type (Figure 3C,

Supplementary Table S6).

We obtained the intersection of DAPs between the FvsLWW

and FvsLBB groups and plotted the Venn diagram (35). The

intersection of the FvsLWW and FvsLBB groups had 37 DAPs

(Figure 4A). The abundance of a total of 277 unique DAPs in these

two groups was then analyzed by hierarchical clustering heatmap,

and the 37 DAPs in both groups showed the same trend (Figure 4B).

We annotated the unique DAPs in these two groups with GO and

KEGG enrichment (Figure 4C, Supplementary Tables S7, S8).

Network clustering of the top 30 KEGG–enriched terms using

cnetplot (Figure 4D). Pathways of the Oxytocin signaling pathway

and GnRH secretion were linked together with CACNA1C, and this

linkage contained 7 proteins, including LHB. The cnetplot also

describes the corresponding network of three metabolically relevant

KEGG–enriched terms (Glutathione metabolism, Fructose and

mannose metabolism, and Propanoate metabolism) (Figure 4D),

which are related to pituitary endocrine function.
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3.4 DIABLO multi–omics analysis to screen
potential biomarkers associated with
reproduction in STH sheep

The correlation coefficient of the gene expression levels between

samples exceeded 0.85 in one group, suggesting a high degree of

consistency and reliability in the sample selection (Supplementary

Figure S3). Proteomic and transcriptomic data from the same ewes

were integrated using the DIABLO framework. This supervised

learning approach was used to screen for the best classification

feature variables from multifactorial data containing follicular stage

and genotype. In the follicular phase, there was significant variation

in mRNA expression and protein abundance patterns between the

two genotypes of type BB andWW sheep. However, during the luteal

phase, the data patterns of the two omcis of type BB andWW sheep

were found to be similar. This observation is illustrated in

Supplementary Figure S2A. Furthermore, the proteomic and

transcriptomic datasets exhibited a strong positive correlation, as
Frontiers in Endocrinology 06
evidenced by a Pearson’s correlation score of 0.98 on two

components, as shown in Supplementary Figure S2B. Furthermore,

the scatter plots (Supplementary Figure S2B) show that the

biomarkers selected by integrating the two omics data can

effectively discriminate between data from different estrus stages

and different genotypes in the follicular phase. These results suggest

that the FecB mutation primarily affects ovulation during the

follicular phase. The “centroids.dist,” “mahalanobis.dist,” and

“max.dist” are used to estimate the classification error rate. The

findings derived from a 3 × 5–fold cross–validation demonstrate that

the sPLS–DAmodel exhibits superior performance when ncomp = 3

(Supplementary Figure S2C). The circos plot (Figure 5) was

employed to visualize the positive or negative correlation

(Supplementary Table S9) between protein abundance and mRNA

expression, utilizing ncomp = 1–2 and a correlation cutoff of 0.9.

Among these protein–mRNA interaction pairs, 24 exhibited a

positive correlation while 10 displayed a negative correlation.

These proteins and mRNAs exhibited significant interactions, with
B

C D

A

FIGURE 2

Quantitative validation of the abundance of important proteins obtained by tandem mass tag (TMT) by parallel reaction monitoring (PRM). albumin
(ALB), calcium voltage–gated channel auxiliary subunit alpha 2 delta 2 (CACNA2D2), calcium/calmodulin dependent protein kinase I (CAMK1),
glycoprotein hormones, alpha polypeptide (CGA), G protein subunit alpha o 1 (GNAO1), luteinizing hormone beta polypeptide (LHB), glutathione S–
transferase Mu 1 (LOC101107401), solute carrier family 27 member 1 (SLC27A1), and alcohol dehydrogenase class–2 isozyme 2–like (LOC101110134)
were selected for validation of the differences in protein abundance using the PRM in the following subgroups: follicular versus luteal phase in BB
genotype ewes (BB_F/L) group (A), follicular phase in BB ewes compared to WW ewes (BW_F) group (B), and luteal phase BB ewes compared with
WW ewes (BW_L) groups (C), and follicular versus luteal phase in WW genotype ewes (WW_F/L) group (D). The log2(ratio) values were computed
between the aforementioned groups. The protein abundance, as determined by the PRM method, exhibited similar trends to that of the TMT
method for the selected proteins across all four groups.
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three specific mRNAs (COL28A1, LOC106991550, and ST14)

demonstrating connectivity. Notably, the LOC106991550 mRNA

displayed interactions with a noteworthy total of 20 proteins.

The plotLoadings function in the DIABLO package was used to

visualize the degree of contribution of the featured variables in the

three components obtained from the combined analysis. Among

the variables in component 1 (Figure 6A), 90 were from proteomic

data and 5 from transcriptomic data; among the variables in

component 2 (Figure 6B), 20 were from proteomic data and 40

from transcriptomic data; and among the variables in component 3

(Figure 6C), 60 were from proteomic data and 5 from

transcriptomic data (Supplementary Table S10). The auroc()

function is utilized to calculate the Receiver Operating

Characteristic (ROC) curve and Area Under the Curve (AUC) for

comparing one group against the others. The AUC values,

exceeding 0.8, obtained from two blocks of 2 components

indicate that the sPLS–DA analysis conducted in this study is

effective (Figure 6D). The 319 differential expressed genes (DEGs)

(fold change (FC) > 2, pvalue < 0.05, Supplementary Table S11) and

121 DAPs obtained interaction group were then compared with the

f e a t u r e d mRNAs (D IABLO_mRNA) and p r o t e i n s

(DIABLO_protein) selected by DIABLO (Supplementary Table

S10). The four featured datasets obtained by these two methods

differed significantly and did not intersect with each other. CALY

and SPON1 were the three datasets intersected by DAP, DEG, and

DIABLO_mrna. NUDT16, a DAP, also appeared in the

DIABLO_mRNA and DIABLO_protein datasets, respectively.
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These results were visualized by the online tool ChiPlot (https://

www.chiplot.online/) in Figure 6E.

The proteins and mRNAs from the four datasets were annotated

according to KEGG enrichment analysis (Supplementary Tables S12–

15). The top 30 KEGG pathways are presented in Figure 7. It is

interesting to note that some pathways were related to energy and

amino acid metabolic pathways related to reproduction processes,

such as Cortisol synthesis and secretion, Arginine biosynthesis,

Fructose and mannose metabolism, Pyruvate metabolism, and

Tryptophan metabolism. These genes are also enriched for pituitary

signaling molecules and interactions and related pathways of signal

transduction, including the calcium signaling pathway and the cAMP

signaling pathway. There were also several hormone–related

pathways such as Growth hormone synthesis, secretion and action,

Steroid hormone biosynthesis, and estrogen signaling pathway.
4 Discussion

The pituitary is an important regulator involved in the

hypothalamic–pituitary–gonad axis (HPG) axis and it orchestrate

the complex neuroendocrine regulation of reproduction (36). FecB

mutation may be involved in hormonal regulation and signal

transduction during follicular development and ovulation (37).

The combined analysis of proteome and transcriptome data

provides an effective method to explain complex biological

processes and screen valuable biomarkers for breeding (38, 39).
B

C

A

FIGURE 3

Volcano plots were demonstrating the differentially abundant proteins (DAPs) in FvsLBB group (A), FvsLWW group (B) and Interaction group (C). The
threshold for determining upregulated and downregulated DAPs was set at a foldchange higher than 1.2 or lower than 0.83, with a P value lower
than 0.05.
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Due to RNA–mediated transcription regulation and protein post–

translational modification, the correlation between proteome and

transcriptome data calculated by using Pearson correlation alone is

very low, and it is difficult to effectively use the information of the

two omics at the same time (40, 41). We choose DIABLO method,

which mainly uses the principle of machine learning to solve the

problem of multi–omics data integration mining with small sample

size (42). Using this method to reduce the complexity of the two

platforms of pituitary transcriptome and proteome data, we

calculated the correlation of the two omics to be 0.98, and also

screened important signature pathways.

The pituitary gland is an important gland for controlling the

physiologic functions of reproduction, and it consists of the

adenohypophysis and the neurohypophysis (43). In our

proteomic results, we identified reproduction–related hormones

secreted by the pituitary, FSH, LH, growth hormone, prolactin
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and thyroid–stimulating hormone (TSH). We also identified

oxytocin synthesized by the hypothalamus and stored in the

posterior pituitary (44). The process of follicular growth and

ovulation is intricately regulated by interactions between the

hypothalamus, pituitary gland, ovary, and uterus (37). The

hypothalamus secretes gonadotropin-releasing hormone (GnRH)

to stimulate the synthesis and release of FSH and LH from the

pituitary gland (45). These hormones then act on the cells of the

follicle to support its growth and maturation. As the follicle

develops, the granulosa cells utilize androstenedione produced by

the endometrium to synthesize E2, which in turn inhibits the

synthesis and release of FSH and LH from the pituitary gland

through negative feedback regulation (46). During the follicular

phase, there is a shift in the regulation of GnRH/LH by E2 from

negative to positive feedback as the follicle matures, leading to the

LH peak prior to ovulation (47). Our analysis revealed that E2
B

C

D

A

FIGURE 4

The functional annotation and pathway enrichment of differentially abundant proteins (DAPs) during the luteal–follicular phase transition. (A) The
Venn plot that illustrates the overlap of DAPs between the FvsLWW and FvsLBB groups. (B) Additionally, a hierarchical cluster analysis is performed
on the DAPs in the FvsLWW and FvsLBB groups, with all protein abundance values normalized and scaled. (C) Furthermore, a dotplot is presented,
showcasing the top 30 KEGG enrichment terms for the concatenated DAPs in the FvsLWW and FvsLBB groups. The pAdjust parameter used for
statistical analysis is the false discovery rate (FDR). (D) Finally, the networks corresponding to the top 30 KEGG enrichment terms are visualized
using cnetplot.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1417530
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2024.1417530
concentrations were significantly elevated in the BB genotype

compared to the WW genotype during the follicular phase

(Supplementary Figure S4), potentially accounting for the

increased expression levels of Luteinizing Hormone Subunit Beta

(LHB) in the BB genotype. In follicular, via TGFb/BMP signaling

pathway, mutant FecB gene carrier produced small antral follicles

with a reduced number of granulosa cells exhibiting higher sensitive

to FSH, leading to follicular maturation in advance as attested by

precocious LH receptor expression (48).

Pituitary, as the intermediary organ of the reproductive axis,

also regulate follicle–luteal transition by the synergy between

endocrine and local auto/paracrine factors (49). The transition

from follicle to corpus luteum was essential to the reproductive

cycle and establish pregnancy by producing progesterone (50).

During the luteal–follicular phase transition, our Network

clustering analysis of the DAP revealed that Voltage-dependent

calcium channel L type alpha-1C (CACNA1C) serves as a point of

convergence between the Oxytocin signaling pathway and the

GnRH secretion pathway (Figure 4). The CACNA1C gene,

recognized for its role in calcium channel activity, has been
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pinpointed as a significant candidate gene for the initiation of

puberty in Jining grey goats (51). Furthermore, evidence suggests a

strong correlation between CACNA1C and GnRH, which

collaborate to facilitate ERK activation and subsequent elevation

in FSH and LH secretion (52). These observations lead us to

propose that CACNA1C plays a pivotal role in the transition

from the luteal to the follicular phase. The Oxytocin signaling

pathway exhibits enrichment of calcium/calmodulin-dependent

protein kinase I (CAMKI), as well as the CAMKI and CACNA1C

genes, which are enriched in the calcium signaling pathway.

Intracellular Ca2+ concentration serves as a crucial signaling

molecule in the regulation of exocytosis, controlling the release of

neurotransmitters and endocrine hormones (53). The release of

pituitary gonadotropins is stimulated by GnRH from the

hypothalamus through a Ca2+ dependent mechanism (54).

Research has demonstrated that the activation of CaMKI by

GnRH is essential for the derepression of the FSHB gene through

the phosphorylation of various class IIa HDACs. Conversely, the

derepression of the LHB-subunit gene does not rely on CaMKI

activation (55).
FIGURE 5

A circos plot displays the positive (red lines) and negative (blue lines) correlations (r > 0.9) between features variables in the quadrants.
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After annotation and enrichment of DEGs of interaction group.

we identified the Neuroactive ligand–receptor interaction pathway.

This pathway was also enriched in our previous multi–omics analysis

of the hypothalamic in different genotypes of FecB mutation (56).

This pathway was identified in both the hypothalamus and pituitary

in comparative transcriptomic studies of the mammalian and poultry

HPG axis (53). Proteomic analysis of the hypothalamus and pituitary

revealed that Gamma–aminobutyric acid receptor (GABR) related

genes were enriched in the Neuroactive ligand–receptor interaction

pathway, including GABRA2 in the pituitary, GABRA1 and GABRB2

in the hypothalamus. Gamma–aminobutyric acid (GABA) is a major

neurotransmitter in the central nervous system, and it acts mainly

through three receptors, GABAA, GABAB and GABAC. GABAA is a

member of the ligand–gated Cl– channel family, while the GABAB
Frontiers in Endocrinology 10
receptor is coupled to G proteins (57). The GABRB1 gene identified

by the DIABLO method is an important featured variable in the

pituitary transcriptome, and it is highly expressed in follicular BB

ewes than in wild–type, this expressed trend that is consistent with

the LHB abundance trend in the proteome. GABA can regulate

BMP2 gene expression through the BMP pathway by activating the

GABAB receptor (58). BMP2 is a potential ligand for BMPR1B, and

results from in vitro experiments in sheep granulosa cells suggest that

BMP2 affects estrogen secretion (48). It has been shown that GABA

stimulates LH secretion from pituitary cells (59). The knockout of

GABA receptors in the hypothalamus may influence the negative

feedback regulation of estrogen on the gonadotropin-releasing

hormone (GnRH) in mice, consequently impacting the secretion of

luteinizing hormone (LH) (60). In summary, the pituitary gland
B

C

D

E

A

FIGURE 6

The figure showcases the featured biomarkers and the accuracy of models in proteomic and transcriptomic data through the utilization of DIABLO. The
loading vector weights of the prominent biomarkers in different omics are presented individually for component 1–3 (A–C). (D) Additionally, the Receiver
operating characteristic area under the curve result higher than 0.85 demonstrates the high effectiveness of the DIABLO multi–omics joint analysis in
identifying characteristic biomarkers. (E) Furthermore, the intersection between differentially abundant proteins (DAPs), differentially expressed genes
(DEGs), and the featured biomarkers identified by the DIABLO method is illustrated using the upset plot. BB_F, BB genotype ewes at the follicular phase;
BB_L, BB genotype ewes at the luteal phase; WW_F, WW genotype ewes at the follicular phase; WW_L, WW genotype ewes at the luteal phase.
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functions as a central component in the HPG axis, integrating signals

from the GABA system to regulate ovulation through the modulation

of LH or GnRH/LH secretion and interactions with the

BMP pathway.
5 Conclusions

The investigation of protein abundance in the pituitary of sheep

with varying FecB genotypes at distinct estrus stages revealed the

existence of anterior pituitary hormones (FSH, LH, PRL, and TSH).

Mutations in FecB have the potential to impact follicular

development through the regulation of FSH and LH,

consequently leading to alterations in the number of ovulations.

CACNA1C and CaMKI are significant marker genes in the pituitary

gland that play a crucial role in the regulation of LH and FSH

secretion through GnRH. The pituitary integrates signals from the

GABA system to modulate ovulation by influencing LH or GnRH/

LH secretion and interacting BMP pathway. The integrated analysis

of the pituitary gland has yielded novel insights into the significant
Frontiers in Endocrinology 11
endocrine regulatory function performed by the pituitary gland in

the physiological process of FecB mutation impacting ovulation.
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SUPPLEMENTARY FIGURE 1

Distributions of molecular weight, Protein sequence coverage, and number

of unique peptides of proteins identified in the pituitary. (A) Distribution of
protein molecular weights (kDa). (B) Distribution of protein sequence

coverage (%). (C) Venn diagram displaying the overlap of protein
identification by proteomic TMT 6-plex experiments.

SUPPLEMENTARY FIGURE 2

Illustration of N-integration supervised analysis with DIABLO. (A) Sample plot

per data set highlighting the integrated protein and mRNA targets. (B)
Diagnostic scatterplot displaying components 1–2 of each dataset (protein

and mRNA), (C) Classification performance per component (overall and
Balanced Error Rate) for prediction distances (“centroids.dist” ,

“mahalanobis.dist” and “max.dist”) using repeated stratified cross-validation
(3 x 5 fold).

SUPPLEMENTARY FIGURE 3

The Pearson’s correlation (A) and Principal component analysis (B) of

all samples.

SUPPLEMENTARY FIGURE 4

Mean ± SEM of serum P4 and E2, and concentration at vaginal sponge

removal (0 h) and at the time of euthanasia (45 h and 216 h) in different FecB

genotype ewes. Values with different lowercase letters indicate significant
differences between genotypes at the same time. (P ≤ 0.05). (A) Mean ± SEM

of serum P4 (pg/mL), and (B) Mean ± SEM of serum E2 (pg/mL).
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