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Updates in the skeletal and
joint protective effects of
tocotrienol: a mini review
Kok-Yong Chin*

Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
Osteoporosis and osteoarthritis continue to pose significant challenges to the

aging population, with limited preventive options and pharmacological

treatments often accompanied by side effects. Amidst ongoing efforts to

discover new therapeutic agents, tocotrienols (TTs) have emerged as potential

candidates. Derived from annatto bean and palm oil, TTs have demonstrated

efficacy in improving skeletal and joint health in numerous animal models of

bone loss and osteoarthritis. Mechanistic studies suggest that TTs exert their

effects through antioxidant, anti-inflammatory, Wnt-suppressive, and

mevalonate-modulating mechanisms in bone, as well as through self-repair

mechanisms in chondrocytes. However, human clinical trials in this field

remain scarce. In conclusion, TTs hold promise as agents for preventing

osteoporosis and osteoarthritis, pending further evidence from human

clinical trials.
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1 Introduction

Vitamin E encompasses a range of compounds falling into two primary families:

tocopherols (TPs) and tocotrienols (TTs). Both families share a common molecular

structure consisting of a chromanol ring and a long carbon tail. However, a key

distinction lies in the carbon tail composition, with TTs featuring three unsaturated

bonds while TPs have a saturated carbon tail. This structural variation confers unique

biological properties to TTs not shared by TPs. Furthermore, each family can be subdivided

into four homologues (a-, b-, g-, and d-) based on the position of the methyl group on the

chromanol ring (1, 2). Natural sources, such as oil palm (~30% aTP, ~70% mixed TTs) (3),

and annatto bean (negligible TP, ~10% gTT, ~90% dTT) (4), contain varying compositions

of TTs and TPs (Figure 1). These differences in composition may influence interactions

between vitamin E homologues and their biological activities within natural mixtures.

TTs or TT-enriched vitamin E fractions have demonstrated protective effects against

bone and joint degeneration (5), which are particularly relevant in societies grappling

with age-related health challenges. Osteoporosis and osteoarthritis are significant
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musculoskeletal conditions associated with aging, contributing

substantially to healthcare burdens, with 16.6 million and 189.49

million disability-adjusted life-years, respectively, according to the

latest Global Burden of Disease Survey in 2019 (6, 7). Despite

lifestyle interventions, there remains a limited array of

pharmacological preventive agents for both conditions (8, 9). TTs

represent a promising avenue to address this gap by potentially

serving as an effective preventive agent.

The skeletal effects of TTs have been extensively reviewed in

previous studies (10–12). This review, however, aims to discuss

recent advancements in establishing TTs as a therapeutic agent

against osteoporosis and osteoarthritis. It will synthesize and

evaluate recent evidence concerning the use of individual TTs or

mixtures in preclinical models and human studies. Additionally, the

review will outline future directions for research in this field.
2 Osteoporosis

Osteoporosis arises from an imbalance in bone remodeling,

characterized by excessive bone resorption by osteoclasts and

inadequate bone formation by osteoblasts. This imbalance leads

to a net loss of bone mass, compromised microarchitecture, and

reduced strength, consequently heightening the risk of fractures

(13). The pathogenesis of osteoporosis involves various endogenous

and exogenous factors, including sex hormone deficiency, excess

glucocorticoids, and oxidative stress (14). Recent research indicates

that increased fat mass may also negatively impact bone health by

inducing inflammation and disrupting the hypothalamic-pituitary-

adrenal axis (15).
2.1 Effects of TTs on osteoporosis

Studies on animals generally suggest that TT mixtures (60 mg/

kg body weight) can improve bone structural histomorphometry in

normal rats and those with induced bone loss from factors such as

estrogen deficiency, testosterone deficiency, nicotine, and
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glucocorticoids (Table 1). These improvements are attributed to

increased osteoblast numbers and bone formation activities, as well

as decreased osteoclast numbers and bone resorption activities (16,

19, 22, 31, 34). Recent investigations employing micro-computed

tomography have explored the effects of TT mixtures on bone

microstructure. Annatto TT significantly improved some trabecular

microstructural indices in rats subjected to orchidectomy and

androgen deprivation therapy (16, 20). Additionally, studies

showed that annatto and palm TTs preserved trabecular

microstructure in rats fed a high-fat, high-carbohydrate diet

(25, 35).

However, the effects of TTs on bone mineral density, calcium

content, and biomechanical strength assessed through various

methods such as dual-energy X-ray absorptiometry and atomic

absorption spectrophotometry, are less consistent. These

inconsistencies may be attributed to variations in the models of

bone loss utilized and the duration of treatment (10).

There is a caveat in the previous studies, whereby most have

utilized sexually mature rats aged three months old as a model.

While commonly employed in osteoporosis research due to their

cost-effectiveness and accessibility, these rats may not fully

replicate osteoporosis in humans. Unlike humans, rats

experience continuous longitudinal skeletal growth because they

do not undergo growth plate closure (36). Thus, the use of

growing rat might represent a stunted bone growth model

rather than an osteoporosis model due to ongoing bone

modeling processes.

Furthermore, the bone protective effects of annatto TT have

been investigated in postmenopausal women with osteopenia. A 12-

week study involving supplementation with 430 mg or 860 mg of

annatto TT showed significant decreases in urine N-terminal

telopeptide (NTX) levels (a bone resorption marker), circulating

receptor activator of nuclear factor kappa-B ligand (RANKL) levels,

and RANKL/osteoprotegerin ratios, as well as an increase in bone

alkaline phosphatase/NTX ratio (a bone formation marker)

compared to a placebo control group (37). However, long-term

studies examining the effects of annatto TT on bone mineral density

have yet to be conducted.
BA

FIGURE 1

The molecular structure of vitamin E homologues (A) and exemplary composition of vitamin E from palm and annatto bean (B).
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TABLE 1 Effects of tocotrienol on bone health indices in several representative animal model of osteoporosis.

Researchers Animals Model of
bone loss

Treatment Outcomes
(improvement vs negative control)

Chin & Ima
(2014) (16)
Chin et al. (2014)
(17)
Chin et al.
(2016) (18)

3-month-old
Sprague- Dawley
male rats

Androgen deficiency
Bilateral orchidectomy

Annatto TT (10% g-TT, 90% d-
TT) 60 mg/kg/day for 2 months

µCT ↓ TbSp

Structural histomorphometry ↑ BV/TV, ↑ TbN, ↓ TbSp

Dynamic histomorphometry ↑ dLS/BS, ↓ sLS/BS

Cellular histomorphometry ↑ ObS/BS, ↓ OcS/BS, ↓ ES/
BS, ↑ OS/BS, ↑ OV/BV

Bone gene expression ↑ ALPL, ↑ COL1a1, ↑ SPP1,
↓ RANKL, ↓ PPARG

Mineral ↓ serum total calcium, ↑ bone
total calcium

Biomechanical strength No difference

Bone remodelling markers No difference

Mohamad et al.
(2018) (19)
Mohamad et al.
(2018) (20)

3-month-old
Sprague-Dawley
male rats

Androgen deficiency
Buserelin (75 mg/kg/day)

Annatto TT (10% g-TT, 90% d-
TT) 60 mg/kg/day for 2 months

µCT ↑ BV/TV ↓ TbSp, ↑ CtTh

Structural histomorphometry ↑ BV/TV, ↑ TbTh

Dynamic histomorphometry ↑ sLS/BS, ↑ dLS/BS (61)

Cellular histomorphometry ↑ ObN/BS

Mineral ↑ Bone calcium content

Biomechanical strength ↑ Max load, ↑ strain, ↑
elastic modulus

Bone remodelling markers No difference

Mohamad et al.
(2021) (22)
Mohamad et al.
(2021) (23)

8-month-old
Sprague-Dawley
female rats

Estrogen deficiency
Bilateral ovariectomy,
followed by 2 months
of resting

Emulsified and non-emulsified
Annatto TT (10% g-TT, 90% d-
TT) 60 mg/kg/day for 2 months

µCT Both: ↑ CtTh; AnTT-SEEDS:
↑ TbTh, ↑ TbN

Dynamic histomorphometry Both: ↓ sLS/BS, ↑ MAR;
AnTT-SEDDS: ↑ dLS/BS,
↑ BFR

Cellular histomorphometry Both: ↑ ObS/BS; AnTT-
SEDDS: ↑ OV/BV

Mineral Both: ↑ Bone calcium content

Biomechanical strength Both: ↑ load, ↑ stress, ↑
Young’s Modulus; AnTT-
SEEDS: ↑ Stiffness

Bone remodelling markers Both: ↓ SOST; AnTT-SEDDS:
↓ RANKL/OPG ratio
Both: ↑ SOD, ↑ GPX;

Redox status AnTT-SEEDS:
↓ malondialdehyde

Ekeuku et al.
(2020) (24)

3-month-old
Sprague-Dawley
female rats

Estrogen deficiency +
osteoarthritis
Bilateral ovariectomy
(osteoporosis)
Monosodium iodoacetate
(osteoarthritis)
*bone health indices
were assessed on the leg
without osteoarthritis

Emulsified (a-TP 6.9%, a-TT
6.6%, b-TT 1.1%, g-TT 9.4%, d-
TT 3.2%) or non-emulsified
palm TT mixture (a-TP 10.3%,
a-TT 12.9%, b-TT 2.0%, g-TT
19.8%, d-TT 6.3%) 100 mg/kg
for 2 months

BMD No difference

Structural histomorphometry ↑ BV/TV, ↑ TbN (NEPT)

Dynamic histomorphometry No difference

Cellular histomorphometry No difference

Mineral No difference

Biomechanical strength EPT: ↓ strain, ↓ displacement,
↑ stiffness, ↑
Young’s modulus

Bone remodelling markers No difference

(Continued)
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TABLE 1 Continued

Researchers Animals Model of
bone loss

Treatment Outcomes
(improvement vs negative control)

Wong et al.
(2018) (25)
Wong et al.
(2018) (26)
Wong et al.
(2019) (27)

3-month-old
Wistar male rats

Metabolic syndrome
High fat high
carbohydrate diet for
20 weeks

Palm TT mixture (21.9% a-TP,
24.7% a-TT, 4.5% b-TT, 36.9%
g-TT, and 12.0% d-TT) 60 and
100 mg/kg/day for 2 months) –
treatment started from week 8
until week 20

BMD No difference

µCT Both doses: ↑ BV/TV, ↓
TbSp. ↓ SMI, ↑ TbN

Structural histomorphometry Both doses: ↑ BV/TV,
↑ TbTh

Dynamic histomorphometry 60 mg/kg/day: ↓ sLS/bS,
↑ MAR

Cellular histomorphometry Both doses: ↑ ObS/BS, ↑
OS/BS

Bone calcium content No difference

Biomechanical strength Both doses: ↑ load, ↑ Young’s
modulus; 60 mg/kg/day:
↑ stiffness

Bone remodelling markers Both doses: ↓ RANKL, ↓
FGF-23; 100 mg/kg/day: ↓
SOST, ↓ DKK1

Circulating
inflammation markers

Both doses: ↓ IL-1a; ↓ IL-6

Wong et al.
(2018) (26)
Wong et al.
(2019) (27)

3-month-old
Wistar male rats

Metabolic syndrome
High fat high
carbohydrate diet for
20 weeks

Annatto TT (10% g-TT, 90% d-
TT) 60 or 100 mg/kg/day) –
treatment started from week 8
until week 20

BMD No difference

µCT Both doses: ↑ BV/TV, ↓
TbSp. ↓ SMI, ↑ TbN,
↑ Conn.D

Structural histomorphometry Both doses: ↑ BV/TV,
↑ TbTh

Dynamic histomorphometry 60 mg/kg/day: ↓ sLS/bS

Cellular histomorphometry Both doses: ↑ ObS/BS

Bone calcium content No difference

Biomechanical strength 100 mg/kg/day: ↑ load, ↑
strain, ↑ Young’s modulus

Bone remodelling markers Both doses: ↓ RANKL, ↓
FGF-23; 100 mg/kg/day: ↓
SOST, ↓ DKK1

Circulating
inflammation markers

Both doses: ↓ IL-1a; ↓ IL-6

Chin et al.
(2020) (28)

3-month-old
male Sprague-
Dawley rats

Proton pump inhibitor
Pantoprazole (3 mg/kg/
day for 60 days)

Annatto TT (10% g-TT, 90% d-
TT) 60 mg/kg/day for 60 days

Gross anatomy No change in femoral length,
diameter, weight

µCT ↑ BV/TV, ↑ TbN, ↓ TbSp,
↑ TbTh

Cellular histomorphometry No difference

Biomechanical strength No difference

Ima-Nirwana &
Fakhrurazi
(2002) (29)

3-month-old
male Wistar rats

Adrenalectomy +
Glucocorticoids
(dexamethasone 120 µg/
kg/day or
deoxycorticosterone 2400
µg/kg/day) started 1
week after adrenalectomy
for 8 weeks

Palm TT mixture (24.82% a-TP,
20.73% a-TT, 26,68% g-TT and
13.32% d-TT) 60 mg/kg –

started 1 week after
adrenalectomy for 8 weeks

BMD No difference but palm TT
sustained age-related BMD ↑

Gross anatomy No difference in
femoral length

Bone calcium content No difference

(Continued)
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Fragility fractures are the consequence of untreated

osteoporosis (38). TT’s potential in facilitating fracture healing

has been explored in several animal models, where TT

administration, alone or in combination with other agents, has

been shown to promote callus formation and increase the

biochemical strength of the fracture site (39, 40). However,

clinical trial evidence regarding TT’s effects in this aspect

remains lacking.
2.2 Bone protective mechanisms of TT

The skeletal protective mechanism of TTs has traditionally been

attributed to their antioxidant and anti-inflammatory activities.

Numerous studies have shown that TTs reduce systemic and

skeletal oxidative stress markers in rats with bone loss (23, 41,

42). In vitro exposure of osteoblasts to TTs has also demonstrated

a mitigation of negative oxidant effects (43, 44). Moreover,

supplementation with TTs has led to a reduction in circulating

inflammatory markers, such as interleukin (IL)-1 and IL-6, in

animals with induced bone loss (35, 45). In women with

osteopenia, metabolic study revealed increased lysophospholipids,

but decreased acylcarnitines and catabolites of tryptophan and

steroids, indicating suppression of inflammation and oxidative

stress (46). However, direct evidence on how TTs influence

immune cell populations and activities to achieve bone protective

effects is lacking. Recent studies have proposed that TTs may
Frontiers in Endocrinology 05
regulate gut microbiota (47), suggesting a potential influence on

the gut-bone axis to achieve their anti-osteoporosis potential.

TTs have been shown to promote osteoblast differentiation and

bone formation activity in both two- and three-dimensional

cultured systems (48–50). Among the homologues, g and d-TT
were found to be most pro-osteogenic (48). Alpha-TT has been

found to suppress osteoclast formation from bone marrow cell and

osteoblast cocultures by inhibiting c-FOS expression, attributed to

the inhibition of ERK and NF-kB activation (51). Multiple animal

studies in ovariectomized mice have demonstrated that TT

supplementation reduces RANKL levels and, consequently, the

RANKL/OPG ratio, reducing osteoclastogenesis and bone

resorption (22, 24). This observation has been supported by

randomized controlled trials (37).

Research on the effects of TTs on osteocyte function is actively

underway. Osteocytes, acting as bone remodeling mediators and

mechanical load sensors, play a pivotal role in regulating bone

metabolism. They secrete RANKL and OPG to influence the bone

remodeling process, as well as inhibitors of the Wnt signaling

pathway critical for osteoblastogenesis, such as Dickkopf-1

(DKK1) and sclerostin (SOST) (52). Studies have shown that

TT supplementation increases skeletal mRNA expression of

b-catenin, the central transcription factor in the Wnt pathway, in

orchidectomized rats (16). Subsequent studies have demonstrated

reduced skeletal levels of SOST and DKK1 proteins upon TT

supplementation in rats with estrogen deficiency and metabolic

syndrome (22, 27). In vitro studies using pre-osteoblasts have
TABLE 1 Continued

Researchers Animals Model of
bone loss

Treatment Outcomes
(improvement vs negative control)

Ima-Nirwana &
Suhaniza
(2004) (30)

4-month-old
male Sprague-
Dawley rats

Adrenalectomy +
Glucocorticoids
(dexamethasone 120 or
240 µg/kg/day) started 2
weeks after
adrenalectomy for
8 weeks

g-TT or a-TP at 60 mg/kg –

started 2 weeks after
adrenalectomy for 8 weeks

BMD No difference

Bone calcium content Both: ↑ in lumbar 4

Hermizi et al.
(2009) (31)

3-month-old
male Sprague-
Dawley rats

Nicotine cessation
Nicotine (7 mg/kg) 6
days a week for
2 months.

Palm TT mixture (a-TT
43%, g-TT 31%, d-TT 14%, and
other oils 12%), g-TT & a-TP at
60 mg/kg/day - treatment for 2
months after nicotine cessation

Structural histomorphometry All treatments: ↑ BV/TV, ↑
TbTh; a-TP: ↑ TbN

Dynamic histomorphometry All treatments: ↓ sLS/BS, ↑
MAR, ↑ BFR/BS

Cellular histomorphometry All treatments: ↓ OcS/BS, ↓
ES/BS

Norazlina et al.
(2007) (32)

3-month-old
male Sprague-
Dawley rats

Nicotine cessation
Nicotine (7 mg/kg) 6
days a week for
2 months.

Palm TT mixture or a-TP 60
mg/kg/day – treatment for 2
months after nicotine cessation

Bone mineral content No difference

Circulating
inflammatory cytokines

↓ IL-6

Abukhadir et al.
(2012) (33)

3-month-old
male Sprague-
Dawley rats

Nicotine cessation
Nicotine (7 mg/kg) 6
days a week for
2 months.

Palm TT mixture 60 mg/kg/day
(composition not disclosed) –
treatment for 2 months after
nicotine cessation

Bone gene expression ↑ BMP-2, ↑ OSX, ↑ RUNX2
ALPL, alkaline phosphatase; AnTT-SEEDS, annatto tocotrienol with self-emulsifying system; BFR, bone formation rate; BMD, bone mineral density; BMP-2, bone morphogenetic protein-2; BS,
bone surface; BV/TV, bone volume over tissue volume; COL1a1, collagen 1 alpha 1; Conn.D, connectivity density; CtTh, cortical thickness; DKK1, Dickkopf-1; dLS/BS, double-labelled surface;
EPT, emulsified palm tocotrienol; ES/BS, eroded surface; FGF-23, fibroblast growth factor 23; GPX, glutathione peroxidase; IL, interleukin; MAR, mineralizing surface; NEPT, non-emulsified
palm tocotrienol; PPARG, peroxisome proliferator activated receptor gamma; ObN/BS, osteoblast number; ObS/BS, osteoblast surface; OcS/BS, osteoclast surface; OPG, osteoprotegerin; OS/BS,
osteoid surface; OSX, osterix; OV/BV, osteoid volume; RANKL, receptor activator of nuclear factor kappa beta; RUNX2, runt related factor 2; sLS/BS, single-labelled surface; SMI, structural
model index; SOD, superoxide dismutase; SOST, sclerostin; SPP1, osteopontin; TbN, trabecular number, TbSp, trabecular separation; TbTh, trabecular thickness; TP, tocopherol; TT, tocotrienol;
µCT, micro-computed tomography; ↑ increase; ↓ decrease.
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shown that d-TT suppresses critical signaling molecules in the Wnt

pathway, stimulating cell proliferation and differentiation (53). Wnt

signaling has also been shown to mediate the action of d-TT in

promoting osteoblast migration (54).

The mevalonate pathway, crucial for protein prenylation

process of GTPase critical for cellular function, is inhibited by

TTs via a mechanism distinct from statins, particularly through

post-translational suppression of 3-hydroxy-3-methylglutaryl-

coenzyme A reductase (HMGR) (55). Exposure of MC3T3-E1

pre-osteoblast cells to d-TT resulted in decreased HMGR protein

expression and increased differentiation markers. Additionally,

annatto TT decreased HMGR mRNA expression while increasing

RhoA activity in MC3T3-E1 pre-osteoblast cells, promoting their

differentiation (49). Co-supplementation of mevalonate reversed

the bone protective effects of d-TT in ovariectomized mice,

indicating the importance of the mevalonate pathway in TT-

mediated bone protection (56).

In summary, TTs can promote bone health directly through

various signaling pathways (Figure 2), beyond their conventional

antioxidant and anti-inflammatory actions. However, more in

depth studies are needed to illustrate the signaling cascades

involved for better understanding of TTs’ actions.
3 Osteoarthritis

Osteoarthritis is characterized by significant articular cartilage

loss, subchondral bone changes, and osteophyte formation, leading

to joint pain, swelling, and stiffness (57). Traditionally categorized

as non-inflammatory arthritis, recent research has underscored the

substantial involvement of inflammation in the local joint

environment (58). Wear-and-tear particles generated from

cartilage due to accumulated mechanical damage attract

macrophages into the joint space. These particles also prompt
Frontiers in Endocrinology 06
chondrocytes to release metalloproteinases, exacerbating cartilage

breakdown. Moreover, these particles serve as damage-associated

molecular patterns, activating toll-like receptor signaling in

synoviocytes and chondrocytes, thereby increasing the synthesis

of pro-inflammatory cytokines. Initially attempting to compensate

for cartilage loss, chondrocytes become hypertrophied before

eventually becoming senescent and losing functionality (59).
3.1 Effects of TT on osteoarthritis

The effects of annatto TT and palm TT have been assessed in

rats induced with osteoarthritis using intra-articular monosodium

iodoacetate (MIA) injection. MIA exposure, acting as a glycolysis

inhibitor, induces mitochondrial stress and chondrocyte death (60),

producing structural and pain response in rodents akin to

osteoarthritis in humans (61, 62). An initial pilot study

demonstrated that at 100 mg/kg, annatto TT prevented

degenerative joint changes and reduced circulating joint

degradation markers, cartilage oligomeric matrix protein, and

hyaluronan (63). At a higher dose (150 mg/kg), annatto TT

decreased osteocalcin levels and osteoclast surface at the

subchondral bone, suggesting suppression of bone remodeling

(63). Subsequent analyses evaluated the effects of palm TT

mixture alone or in combination with glucosamine sulfate in

MIA-induced osteoarthritis in rats (64). Palm TT alone or

combined with glucosamine sulfate effectively suppressed

circulating cartilage oligomeric matrix protein levels but did not

significantly alter Mankin’s scores of the joint. Only combination

therapy increased the retention time of rats on inverted mesh wire, a

surrogate measure of grip strength, albeit not specific to the affected

hindlimb (64). Variations in the anti-osteoarthritis potential

between annatto and palm tocotrienol mixtures may stem from

differences in tocotrienol homologue composition.
FIGURE 2

The protective mechanism of TT on bone and cartilage.
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Given the greater prevalence of osteoarthritis among women

compared to men, the effects of palm tocotrienol were evaluated in

ovariectomized rats (24). After bilateral ovariectomy, rats rested for

one month before receiving intra-articular MIA injections.

Prophylactic treatment with palm TT mixtures (two formulations:

100 mg/kg unformulated or 50% less TT in emulsified version)

commenced immediately post-ovariectomy. Both palm TT

formulations prevented joint swelling and cartilage degradation,

with only emulsified palm TT preventing grip strength decline.

Additionally, both palm TT formulations preserved subchondral

bone volume, but only emulsified palm TT significantly increased

bone formation rate, while unformulated palm TT decreased

osteoclast surface on subchondral bone (24).

Furthermore, the efficacy of palm TT mixture (400 mg/day) on

physical function and pain in osteoarthritis patients was compared

with glucosamine sulfate (1500 mg/day) over 6 months (65). No

significant difference in Western Ontario and McMaster

Universities osteoarthritis index (WOMAC) or visual analogue

scale scores was observed between groups. However, the palm

TT-supplemented group exhibited significantly lower

malondialdehyde levels compared to the glucosamine sulfate-

supplemented group (65).
3.2 Joint protective mechanisms of TT

The protective mechanisms of annatto TT and palm TT on

chondrocytes have been explored in an in vitro study utilizing

SW1353 chondrocytes exposed to MIA (66). The findings suggest

that TTs mitigate oxidative stress in chondrocytes subjected to

MIA-induced damage. Particularly noteworthy is the observation

that concurrent exposure to annatto TT and MIA may activate

a self-repair mechanism in the SW1353 chondrocyte cell line.

This was evidenced by a significant increase in SRY-Related

HMG Box Gene 9, collagen 2a1, and aggrecan protein levels,

along with a decrease in A disintegrin and metalloproteinase with

thrombospondin motifs 4 levels (66) (Figure 2). However, further

mechanistic studies are warranted to elucidate the precise

mechanisms through which TTs protect cartilage in osteoarthritis.
4 Future directions

Our body preferentially absorbs a-TP over other vitamin E

homologues due to the presence of a-TP transport protein (67).

Consequently, the presence of a-TP in the diet or vitamin Emixture

could potentially interfere with the absorption of TTs (68). Several

attempts have been made to enhance the absorption of TTs. One

such approach is the utilization of self-emulsifying delivery systems

(SEDDS), which aims to increase the bioavailability of TTs by

partitioning them into smaller micelles with a larger surface-to-

body ratio to facilitate intestinal absorption (21). However, a study

by Mohamed et al. (23) showed that while SEDDS increased serum

TT levels by fourfold, it did not significantly improve the efficacy of

TT in preventing bone loss (23). These findings suggest a potential
Frontiers in Endocrinology 07
threshold for the skeletal effects of TT. Similarly, in the study by

Shen et al. (37), women with osteopenia who received two doses

of annatto tocotrienol (430 mg/day versus 860 mg/day) did not

exhibit significant differences in bone remodeling markers (37).

Subsequently, Ekeuku et al. (24) compared the bone and joint

protective effects of an unformulated palm TT mixture with a

commercialized emulsified palm TT mixture containing 50% less

TT. They found similar total circulating vitamin E levels and

skeletal and joint effects in ovariectomized rats fed with both

palm TT formulations (24). These findings suggest that SEDDS

could potentially reduce the amount of TTs required to achieve

therapeutic effects.

Clinical evidence regarding the musculoskeletal side effects of

TTs has been limited thus far. The clinical trial conducted by Shen

et al. (37) on women with osteopenia demonstrated the benefits of

annatto TT in suppressing bone resorption (37), but whether it

can slow down the decline of bone mineral density remains

uncertain. Moreover, since all groups in the trials were

supplemented with calcium and vitamin D, it is plausible that

any differences in skeletal parameters between TT-supplemented

and unsupplemented groups may have been minimized.

Furthermore, only one trial has been conducted thus far on the

effects of palm TT on osteoarthritis. Haflah et al. (65) compared

the effects of TT with glucosamine sulfate in improving visual

analogue scale scores, which measure pain intensity, as well as

WOMAC scores, which assess joint pain, stiffness, and function

(65). The lack of difference between the two groups suggests that

palm TT may be as effective as glucosamine sulfate in improving

joint function and reducing joint pain. However, no clinical

studies have been conducted to investigate the structural

changes in the joint caused by TT supplementation.

In summary, further research is needed, including exploration

of innovative delivery systems and conducting more clinical trials,

to fully understand the potential benefits and mechanisms of action

of TTs in musculoskeletal health.
5 Conclusion

The accumulated preclinical evidence thus far strongly suggests

that TTs could protect bone health in individuals at risk of

osteoporosis. However, only one clinical trial has validated the

skeletal protective effects of TT. Similarly, a series of studies have

been conducted to investigate the promising effects of TT in

preventing osteoarthritis, but only one study validated the

preclinical findings using questionnaire-based assessment tools.

On that note, we need more well-planned randomized controlled

trials to translate the putative benefits of TT to patients with

osteoporosis and osteoarthritis.
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