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Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting

from diabetes mellitus, predominantly associated with high blood sugar levels

and hypertension as individuals age. DR is a severemicrovascular complication of

both type I and type II diabetes mellitus and the leading cause of vision

impairment. The critical approach to combatting and halting the advancement

of DR lies in effectively managing blood glucose and blood pressure levels in

diabetic patients; however, this is seldom achieved. Both human and animal

studies have revealed the intricate nature of this condition involving various cell

types and molecules. Aside from photocoagulation, the sole therapy targeting

VEGF molecules in the retina to prevent abnormal blood vessel growth is

intravitreal anti-VEGF therapy. However, a substantial portion of cases,

approximately 30–40%, do not respond to this treatment. This review explores

distinctive pathophysiological phenomena of DR and identifiable cell types and

molecules that could be targeted to mitigate the chronic changes occurring in

the retina due to diabetes mellitus. Addressing the significant research gap in this

domain is imperative to broaden the treatment options available for managing

DR effectively.
KEYWORDS
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Introduction

Uncontrolled blood glucose levels for extended durations are linked with multiple

complications such as retinopathy, nephropathy, cardiovascular, cerebrovascular, and

peripheral vascular diseases, leading to high morbidity and mortality rates with diabetes

mellitus (1, 2). Diabetic retinopathy (DR) is a severe microvascular complication of both type I
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and type II diabetes mellitus and the leading cause of vision

impairment. Recent systematic review and meta-analysis revealed

that approximately 1 in 5 persons with diabetes worldwide have

DR, and the total number of people losing vision as a result of DRmay

continue to rise (3). Multiple studies have recognized that risk factors

such as severe hyperglycemia, hypertension, and hyperlipidemia

worsen DR.

DR can be broadly categorized into background retinopathy

(non-proliferative DR, NPDR) and proliferative DR (PDR) with

diabetic macular edema (DME) occurring at any stage of DR.

Presently, the primary treatment for NPDR involves anti-vascular

endothelial growth factor (anti-VEGF) drugs targeting VEGF, a

known cause of DME. However, nearly 30–40% of DR patients do

not respond to these anti-VEGF treatments (4–6). In cases where

neovascularization leads to PDR, characterized by the formation of

abnormal blood vessel growth, photocoagulation stands as the

current treatment option. Clinically, neovascularization is

identifiable by fine loops or blood vessel networks on the retinal

surface extending into the vitreous cavity, often appearing immature

and regressing, resulting in ischemia and further neovascularization.

The pathophysiology of DR is intricate, involving various cell types

and molecules, as evidenced by numerous studies in both human and

animal models (Figure 1). This review delves into distinct

pathophysiological aspects of DR, along with identifiable cell types

and molecules that could serve as targets to alleviate the chronic

changes occurring in the retina due to diabetes mellitus. Identifying
Frontiers in Endocrinology 02
additional targets is significant in expanding the range of treatment

options available for effectively managing DR.
Blood retinal barrier breakdown in
diabetic retinopathy

The blood-retinal barrier (BRB) is the primary defense for the

retinal cells against the external factors damaging them. The inner

BRB forms tight junctions between retinal capillary endothelial cells,

while the outer BRB forms tight junctions between retinal pigment

epithelial cells (7). The inner BRB layer contains endothelial cells

merged in tight junctions and regulated by pericytes, which regulate

transport through retinal capillaries within the inner retina (8, 9).

Since BRB is a part of the neurovascular unit, a complex multi-

cellular structure consisting of vascular cells (endothelial cells,

pericytes), neurons (ganglion, bipolar, horizontal, and amacrine

cells), glia (astrocytes, Müller cells, and microglial cells) and

smooth muscle cells, maintaining its integrity during highly altered

metabolic conditions of diabetes is critical for preventing BRB

breakdown (10). Indeed, the loss of BRB integrity is the primary

feature of DME. To begin with, in the presence of high levels of

mediators that promote inflammation and activated microglia, VEGF

is known to be released by macroglia, thus compromising the

integrity of the barrier (11). Subsequently, endothelial cells begin to

express cell adhesion molecules (CAMS) such as ICAM-1, VCAM-1,
FIGURE 1

Schematic illustration representing differences between a normal retina and a retina with diabetic retinopathy. In the normal retina, a functional inner
blood-brain barrier with intact endothelial cells and pericytes, while in diabetic retinopathy, dysfunction of BRB is evident through loss of pericytes
and endothelial cells and thickening of the vascular basement membrane. Any loss of such retinal barrier integrity is associated with a cycle of
inflammation, vascular damage, and cell death. During the retinal damage, it is likely that activated Microglia and Glial cells release high levels of pro-
inflammatory cytokines. These cytokines act on nearby vasculature and neuronal cells, causing further damage. Classical pathological hallmarks of
DR such as the formation of microaneurysms, abnormal growth of new blood vessels (neovascularization), microvascular leakages (cotton wool
spots, hemorrhages), accumulation of thick yellowish fluids, i.e., exudates and recruitment of leukocytes due to inflammation (leukostasis) are
represented. The figure was created using BioRender.
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E-selectin, and P-selectin (12), a few of which have been linked to the

cause of NPDR (13). On the luminal side of the endothelial cell

anchors provided by CAMs, circulating leukocytes bind to the vessel

wall through CD11a, CD11b, and CD18 (14) and release pro-

inflammatory cytokines. This results in a culmination of cytotoxic

mediators adding to the local pro-inflammatory climate (15) and

weakening barrier integrity by compromising endothelial tight

junction and pericyte-endothelial health (16). Additional studies

have shown that loss of integral membrane protein caveolin-1

causes BRB breakdown, venous enlargement, and mural cell

alteration (17). A possible target to prevent BRB breakdown is

inhibiting cell adhesion molecules or integrins. This is supported

by the fact that BRB breakdown significantly decreases when CAMs

and integrins are inhibited or genetically deleted (14, 18). Indeed,

increased VEGF levels in diabetic mice were shown to be directly

correlated with increased levels of ICAM-1 and a loss in BRB, while

blockade of VEGF suppressed such BRB breakdown (19). Also,

increased VEGF levels activate protein kinase C, which in turn may

directly or indirectly increase occludin phosphorylation, leading to its

internalization and causing the breakdown of BRB (20).

Blood retinal barrier integrity is safeguarded by suppressing

cytokine and chemokine activity (11, 21). The significance of the

immune response in BRB breakdown has also been successfully

proven in studies that combat inflammatory mediators and the

complement system (22, 23). Chronic hyperglycemia polarizes

microglia into a proinflammatory subtype through extracellular-

signal-regulated kinase 5 (ERK5) (24), the levels of which were

shown to be increased in the retina of STZ-induced DR model (25).

Such increased ERK5 is known to elicit the production of cytokines

such as IL-6, IL-1b, and VEGF. In turn, these inflammatory markers

are known to impair vascular permeability. Thus, blocking the

inflammatory pathways downstream of ERK5 through a small

molecule inhibitor XMD8–92 prevented retinal inflammation,

oxidative stress, VEGF production, and retinal vascular

permeability (25). Apart from microglia, other immune cells such

as the circulating T helper-17 (Th 17) in the STZ model of DR,

induce IL-17A production. Few of the Th17 cells in the circulation

were also shown to adhere to the retinal vasculature, thus predicting

to be participating in the breakdown of BRB. The IL-17A secreted

into the retina binds to their receptors on Müller glial cells and

photoreceptors, activating the NF-kb pathway, Fas-associated death
domain (FADD) retinal vascular endothelial cell death, as well as

ERK-dependent oxidative stress resulting in retinal vascular

impairment and BRB dysfunction (26, 27). The role of

photoreceptor cells in maintaining inner BRB in the diabetic

retina is another emerging field. Photoreceptors in STZ-induced

diabetic mice produce soluble factors, including ICAM1, inducible

nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2),

influencing inflammation in the neighboring leukocytes and

endothelial cells to produce TNFa. Additionally, photoreceptor
cells also release several inflammatory mediators such as IL-1a,
IL-1b, IL-6, IL-12, TNF-a, chemokine C-X-C motif ligand 1

[CXCL1], CXCL12a, monocyte chemoattractant protein 1 [MCP-

1], I-309, and chemokine ligand 25 [CCL25] impairing BRB

permeability through partly modulating tight junction protein

claudin (28, 29).
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The outer BRB, formed at the retinal pigment epithelial (RPE) cell

layer, controls the passage of solutes and nutrients from the choroid to

the sub-retinal space but also plays a vital role under physiological

conditions regulating vitamin A and protecting against oxidative

damage. Additionally, RPE releases various growth factors and

cytokines, including pigment epithelium-derived factor (PEDF),

vascular endothelial growth factor (VEGF), fibroblast growth factor

(FGF), insulin-like growth factor-I (IGF-I), tumor necrosis factor a
(TNF-a), transforming growth factor b (TGF-b), interleukins (ILs)
essential for retinal cell survival and immune privilege (30). Indeed,

changes in the expression of these factors lead to destructive

inflammation, neovascularization, and immune reactions under

pathological conditions (31). For example, the essential role of

PEDF, an anti-angiogenic factor in maintaining the integrity of

outer BRB without affecting the structure and functionality

of normal blood vessels, is known (32). Expectedly, PEDF therapy

in diabetic mice reduces microgliosis, boosts tight junction expression,

decreases pro-inflammatory mediator production, lowers vascular

permeability, and is neuroprotective (8, 33). In addition to growth

factors and cytokine release, RPE plays a vital role in solute transport

through its tight junctions, occludin-1, claudins, and ZO-1, which are

similar to those in other tissues (34). The cytokines released, in

particular retinal IL-6 in DR, influence retinal vascular permeability

(35) through microglial recruitment to the RPE layers disassembling

tight junction complexes, including ZO-1 and occludin proteins (11).

Additionally, IL-6-mediated microglial expression of TNF-a is shown

to activate NF-kb and thus reduce levels of ZO-1 in RPE cells. Indeed,

STAT 3 inhibition reverses the disintegration of ZO-1, suggesting the

essential role of IL-6 -STAT 3 pathways in microglial and RPE cells in

regulating outer BRB (11). Lastly, the tight junctions, combined with

the actin cytoskeleton, provide polarity to the RPE cells to regulate

signal transduction and help localize certain proteins to maintain the

outer BRB (36). Several studies using RPE cell lines have reported the

benefits of maintaining the tight junctions as relevant to DR affecting

tight junction permeability (e.g., C-reactive protein and tissue factor)

and promoting tight junction formation (e.g., somatostatin,

nicotinamide, lysophosphatidic acid, and HIWI2-mediated

activation of Akt), highlighting their significance for maintaining

epithelial phenotype (37). However, the relevance of these studies in

animal models remains to be determined. Taken together with outer

and inner barrier function, the integrity of the neurovascular unit of

the retina is of primary importance to prevent BRB breakdown in

preclinical DR and individuals with prolonged diabetes. Future studies

exploring targets that could protect BRB will continue to be of interest

to the field.
Neovascularization in
diabetic retinopathy

Neovascularization refers to the formation of new and

abnormal blood vessel growth. It is one of the most common

critical pathologies of DR. Clinically, neovascularization could be

characterized by fine loops or blood vessel networks on the retinal

surface extended into the vitreous cavity (38). Among the various

growth factors identified, vascular endothelial growth factor
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(VEGF) has been well-established to play a central role in the

neovascularization of DR (39).

VEGF is a homodimer glycoprotein that binds to heparin and

has a molecular weight of 46 kDa. It is synthesized in human cells

through alternative splicing. The transcription factor HIF-1

(hypoxia-inducible transcription factor 1) binds to the hypoxia-

responsive enhancer elements (HREs) at the VEGF gene,

upregulating transcription, which is physiologically regulated by

oxygen tension (40, 41). Apart from enhancing the transcription of

VEGF, HIF-1 also helps its stability by preventing VEGF mRNA

degradation (42, 43). VEGF is biologically active through tyrosine

kinase receptors (RTKs). VEGF family contains VEGF A, B, C, D

and PlGF (Placental growth factor). VEGF receptors include

VEGFR1, VEGFR2 and VEGFR3. VEGF-A can bind and activate

VEGFR1 and VEGFR2, but PIGF and VEGF-B bind only

to VEGFR1. VEGFA has 5 isoforms based on splice variants, and

VEGF 165 is predominantly expressed in the retina (44).

Additionally, it was shown that the transmembrane protein

Neuropilin-1 functions as a coreceptor for VEGF-A (45, 46).

Increased ischemia or hypoxia enhances VEGF production

through hypoxia-inducible factor 1(HIF-1). Apart from

endothelial cells, retinal Müller cells also produce significant

amounts of VEGF in diabetic mice. This increase is associated

with a three-fold increase in leukostasis and two-fold higher levels

of ICAM-1 and proinflammatory marker TNF-a, drastic reduction
in occludin and ZO-1 levels, ~60% increase in retinal vascular

leakage in animal models. Conversely, inhibition of Müller cell-

derived VEGF significantly reduces these effects, suggesting that

VEGF production fromMüller cells could be targeted to control DR

(23). The irregular production and secretion of VEGF induce

vascular endothelial cell proliferation and migration, increasing

vascular permeability (39). Activating endothelial nitric oxide

synthase (eNOS) and generating nitric oxide are further

components of VEGF-A/VEGFR2 ’s control of vascular

permeability and plasma extravasation (47). Multiple VEGF

functions, such as survival, proliferation, migration, vascular

permeability, and gene expression, have been mediated by

activation of the phospholipase C, protein kinase C, Ca2+,

extracellular signal-regulated protein kinase, mTOR, protein

kinase B, Src family kinase, focal adhesion kinase, and calcineurin

pathways (48).

Apart from VEGF, other key molecules involved in

neovascularization in DR include platelet-derived growth factor

(PDGF), placental growth factor (PlGF) and others. Platelet-derived

growth factors are secreted by platelets, endothelial cells, activated

macrophages and smooth muscle cells and are vital players of DR

(49–51); PDGF has 4 polypeptide chains(PDGF-A, PDGF-B,

PDGF-C, and PDGF-D) and becomes active by homodimer

isoform formation such as PDGF-AA, PDGF-BB, PDGF-CC and

PDGF-DD or heterodimeric form PDGF-AB. PDGF ligands will

bind to transmembrane tyrosine kinase PDGF receptors, which

contain homodimeric and heterodimeric isoforms such as PDGFR-

aa, PDGFR-bb and PDGFR-ab (50). Retina-specific expression of

PDGF-B could lead to neovascularization and retinal detachment

(52, 53). In diabetic animal models, PDGF-AA and PDGF-BB levels
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were increased during the development of DR (54). Inhibiting

PDGF-BB levels could prevent neovascularization (55). PDGF-CC

could rescue neurons from apoptosis in the retina by regulating

GSK3beta phosphorylation (56).

PIGF belongs to the VEGF family of growth factors. PlGF has 4

isoforms, and all its isoforms bind to VEGFR1 with different

affinities than VEGF but do not bind to VEGFR2. Reports suggest

that PIGF-1 is highly produced by RPE cells during pathogenesis,

while low levels were detected under normal conditions (57–59),

while PlGF-2 is produced by retinal endothelial cells and pericytes

(60, 61). The 3D structure of PGF-1 shares 42% similarity in amino

acid sequence with VEGF but has a strikingly similar 3D structure

(62). Elevated levels of PlGF were observed in the aqueous humor

and vitreous samples of DR patients and the levels were associated

with retinal ischemia and VEGF-A levels (63, 64). While inhibition

of VEGF increases PIGF levels, it also acts as a redundant inducer of

neovascularization (65). Expression of PlGF is associated with

several early and later features of DR in animal models (66). For

example, inhibition of PlGF reduces neovascularization, retinal

leakage, and associated inflammation and gliosis while preserving

normal vascular development and neuronal architecture (65, 67).

Other than growth factors, Profilin1 (Pfn1), an actin-binding

protein, was discovered through bioinformatic analysis to

transcriptionally upregulated in vascular cells of patients with

PDR and further confirmed in a mouse model that mimics PDR

(68). Mechanistically, in the context of vascular development in the

retina, the deletion of the Pfn1 gene in vascular endothelial cells

postnatally impeded the formation of actin-based filopodial

structures, tip cell invasion, vascular sprouting, and overall

neovascularization, suggesting a crucial role for Pfn1 in

promoting actin polymerization and angiogenesis (68). Inhibiting

this Pfn1-actin interaction by a novel compound, C74, indeed

proved to be a potential therapeutic target for conditions

involving abnormal retinal angiogenesis as in PDR (69).

Furthermore, the transcription factor FOXC1 has been found to

be essential for normal revascularization processes, crucial for

pericyte function, and vital for forming the blood-retinal barrier

(BRB). Therefore, FOXC1 is now recognized as a therapeutic target

for retinal vascular diseases such as DR. Specifically, the loss of

FOXC1 in endothelial cells hindered retinal vascular development

by reducing mTOR activity. However, treatment with the mTOR

agonist MHY-1485 restored disrupted retinal angiogenesis (70).
Microaneurysms in
diabetic retinopathy

Microaneurysms represent a slight expansion of capillary walls,

resulting from the excessive growth of endothelial cells (ECs) and

depletion of pericytes due to prolonged unregulated high blood

sugar levels, weakening blood vessel walls (71, 72). While the mean

diameter of the normal capillaries is ~10µm (72), the mean

diameter of microaneurysms in DR ranges from 43–266µm

and span over more than one retinal layer (71–74). While

intravitreal injection of VEGF into the eyes demonstrated
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microaneurysms, single and repeated anti-VEGF treatments

reduced the microaneurysm levels significantly (71, 75, 76).

Further, nearly 80% of the microaneurysms were identified near

the capillary dropouts, representing focal ischemic regions (77).

These studies suggest a direct link between focal ischemia, VEGF

levels, and microaneurysms. However, microaneurysms are

associated with resistance from anti-VEGF therapy as they are

densely present in refractory areas, and more importantly, retinal

thickness reduction after anti-VEGF treatment is minimal in these

areas (78). Additionally, the areas with a higher density of

microaneurysms were closely associated with residual edema after

anti-VEGF treatment compared to areas with lesser edema (79).

Pericytes, dome-shaped cells found on the outer side of the

basement membrane alongside endothelial cells, play crucial roles

in maintaining capillary structure and function (74). Pericytes

provide mechanical stability to the capillary wall and their

recruitment depends on PDGFb (80). Interacting with endothelial

cells through paracrine signals and making direct cell-cell contact,

pericytes in retinal capillaries assist in preserving barrier function

(81). Indeed, pericyte density is higher in retinal vessels than in

other capillaries to assist in upholding the barrier integrity (82).

Persistent hyperglycemia induces transcription of angiopoietin-2

(Ang-2) mediated by tyrosine kinase receptor Tie-2, which provides

signals to increase the number of migrating pericytes from the

capillaries (83). Adequate endothelial secretion of PDGFb is

essential for pericyte function, as a decrease to less than half the

normal pericyte density can lead to microaneurysm formation (84).

Microaneurysms with pericytes tend to be smaller, though some

contain inflammatory cells. Factors such as capillary nonperfusion,

pericyte number (Figure 1), and inflammatory cells were all

significant contributors to the size of microaneurysms (63). In

animal models, the duration of diabetes correlates with increased

acellular capillaries and pericyte loss (85). In DR, hyperglycemia-

induced pericyte loss is primarily due to the inhibition of PDGF-

BB/PDGFR-b downstream signaling through the activation of the

PKC d-p38 MAPK-SHP-1 pathway (86).

Signals from pericytes may be essential for endothelial cell

survival (87). This includes the production of Angiopoietin-1

(ANG1, a heparin binding protein) (88), and VEGF-A (89). In DR,

disrupted crosstalk between pericytes and endothelial cells leads to

endothelial dysfunction and apoptosis (15). Furthermore, in diabetes,

there is an upregulation of cPWWP2A expression in pericytes,

affecting pericyte and vascular integrity. This dysregulation is

mediated by miR-579 and its target genes, such as angiopoietin 1/

occludin/SIRT1 (90). Overall, impaired pericyte-endothelial cell

communications could lead to enhanced vascular permeability and

leakage, and complications such as microaneurysms, macular edema,

and neovascularization. Indeed, preventing early pericyte loss could

be a possible approach to prevent complications associated with

microaneurysms (90). Additionally, preserving pericyte-endothelial

interaction could potentially mitigate neovascularization-induced

retinal dysfunction (55, 91) by inhibiting PDGF, which is vital for

pericyte function and neovascularization.
Frontiers in Endocrinology 05
Cell death in diabetic retinopathy

Neurodegeneration in the retina precedes vascular

abnormalities, possibly leading to visual dysfunction in DR (92).

In longitudinal examinations of type 1 and type 2 diabetes patients

with no DR or mild NPDR, a progressive inner retinal layer

thinning was found (93). The evolution of retinal thinning over

time and the increase in the severity of the DR stage were also

reported (94). Compared to individuals with normal glucose

metabolism, reduced pericentral macula thickness was observed

as early as in prediabetes conditions. A statistically significant

linear trend was found to link macular thinning to the severity of

glucose metabolism status (95). A further study showing thinner

inner retinal layers and photoreceptor layers in patients with

metabolic syndrome reinforced the notion that retinal

neurodegenerative processes begin before the onset of DR (96).

Retinal layer thinning may imply that variables other than

hyperglycemia-induced thinning, such as insulin resistance and

inflammation produced from adipose tissue, could impact

neurodegeneration. In type 2 diabetic patients with early-stage

DR, diabetes duration was inversely correlated with RNFL

thickness, BMI, lipids, HDL, HbA1c, and albumin-creatinine

ratio (97). Initial thickening of the macular ganglion cell inner

plexiform layer (mGCIPL) and the rate at which the layer thinning

was shown to be independent risk factors for developing DR (93).

Additionally, a clear positive connection between loss of mGCIPL

and decline in vascular density from baseline to 24 months was

found in an investigation of eyes with no DR or mild NPDR.

Thinner baseline mGCIPL and more considerable mGCIPL

thickness reduction were substantially linked with a change in

vessel density, according to multivariable regression analysis (93).

These findings suggest that retinal microvascular integrity is

related to retinal neurodegenerative characteristics.

Neurodegeneration is a prominent aspect of DR (98–100) and may

precede the clinical and morphometric vascular changes of diabetes

(99). In the early stages of DR progression, apoptosis of retinal neurons

reduces the thickness (Figure 2) of the inner retinal layers and the

retinal nerve fiber layer (RNFL), as observed in optical coherence

tomography (OCT) (101). Various types of retinal cells undergo death

in DR (100). Different types of retinal cells undergo distinct forms of

cell demise. Endothelial cells primarily experience apoptosis, while

pericytes undergo apoptosis and necrosis, whereas Müller cells are

expected to succumb to pyroptosis (100, 102–104). Additional

mechanisms of endothelial cell death include hyperglycemia-induced

reactive oxygen species (104) and excessive amounts of adherent

leukocytes in DR (103). Retinal pericyte apoptosis has been linked to

hyperglycemia-induced activation of NF-kB (105) and increased Bax

levels, as observed in the human diabetic retina (106). Sorbitol is known

to accumulate in the diabetic retina, and severe hyperglycemia-induced

increased activity of the polyol pathway promotes retinal neuronal

apoptosis and altered expression of GFAP (107).

In animal models, chronic diabetes reduces the thickness of

inner plexiform and inner nuclear layers with significant ganglion
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cell apoptosis even in the early phases of diabetes. This early cell

death is also evident in human retinas (99). Also, in the late chronic

phase of DR, a significant amount of cell death was observed in

untreated DR rats and DR rats treated with anti-VEGF drugs (108).

In areas with more significant aggregation of activated microglia,

spectral-domain optical coherence tomography found neuronal

thinning in the retinas of diabetic rodents, consistent with this

manifestation (109, 110). Microglia could destroy neurons and

prune synapses, and their activation occurs before neuronal

thinning, while they could also phagocytose damaged but

functional neurons (111), which may help explain the faster loss

of neurons in the early stage of the disease. Caspase activation in the

human diabetic retina is well-known (112), and inhibition of

caspase activation prevents capillary degeneration in DR (113).

Also, inner retinal astrocyte dysfunction was demonstrated during

early diabetes with neuronal functional loss (114). Also, prolonged

increases in the levels of VEGF induce apoptosis. At the same time,

anti-VEGF treatment is concomitant with reduced levels of VEGF

and apoptosis (115). In DR, caspase 3 activated the progressive

death of retinal ganglionic cells and other retina cell types mostly

due to uncontrolled hyperglycemia-induced neurovascular

complications (99, 100, 116–119). Retinal cell death in DR is also

associated with significantly reducing GABA inhibitory

neurotransmitter signaling (120, 121). Treatment with GABA

analog pregabalin significantly suppressed retinal IL-1b, TNF-a,
CD11b, caspase 3, oxidative stress, and glutamate levels, suggesting

GABA requirement for retaining normal retinal function in DR

(121). Direct controlled nano delivery of GABA to the retina for
Frontiers in Endocrinology 06
protecting RGCs in DR needs further evaluation as such deliveries

significantly improved GABA deficiency symptoms in the

brain (122).

Neurotrophic factors such as nerve growth factor (NGF), Brain-

Derived Neurotrophic Factor (BDNF), Ciliary Neurotrophic Factor

(CNTF), and Glial Cell-Derived Neurotrophic Factor (GDNF) in

the retina are essential for the development and survival of retinal

cells (123). NGF levels were significantly elevated in the serum and

tear fluid of PDR patients compared to non-diabetic controls and

NPDR patients (124). In DR, an increase in proNGF and a decrease

in NGF were detected in the retina, correlating with a significant

rise in retinal neuronal death (125). In the retinas of diabetic

humans and rats, substantial levels of lipid peroxidation,

nitrotyrosine, and the pro-apoptotic p75(NTR) receptor were

observed. Hyperglycemia-induced peroxynitrite accumulation in

the diabetic retina impairs NGF neuronal survival by nitrating the

TrkA receptor and increasing the expression of p75(NTR) (126,

127). Peroxynitrite accumulation also hampers the production and

activity of matrix metalloproteinase-7 (MMP-7), which

extracellularly cleaves proNGF, activates RhoA/p38MAPK, and

contributes to neurovascular death in the retina of DR patients

and rat models (125). In a mouse model of PDR, early treatment

with antagonists of p75(NTR) or proNGF or NGF inhibitors

suppressed retinal neuronal cell death and other pathologies,

indicating potential additional therapeutic targets for DR (128,

129). Indeed, it was shown that twice-daily treatment with NGF

eyedrops in DR rats significantly prevented retinal ganglion cell

death (130). Remarkably, a high molecular weight protein like NGF
FIGURE 2

Schematic diagram depicting the changes in the cellular composition of the retina of diabetic retinopathy compared to the normal retina. On the left
is a schematic of the layers of the retina under physiological state demonstrating an intact and significant number of Müller cells, horizontal cells,
amacrine cells, bipolar cells, etc, while adherent leucocytes are not seen. On the right is a schematic of the layers of the retina under diabetic
retinopathy. Note, a reduced number of Müller cells, horizontal cells, amacrine cells, and bipolar cells, while a significant number of adherent
leukocytes are depicted. The figure was created using BioRender.
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can be transported from the anterior to the posterior segment to

reach the retina and optic nerve, providing protection Serum and

aqueous humor levels of BDNF were significantly lower in diabetes

mellitus patients before DR development (131). Additionally,

BDNF levels were significantly reduced in the retina of DR rats

(132, 133). BDNF protects against neurodegeneration in DR, and

the neuroprotection and Müller cell viability it offers are mediated

by VEGF (134). Syn3, a BDNF signaling enhancer, significantly

reduced retinal ganglion cell loss in DR 10 weeks after intravitreal

injection, suggesting a new approach for preventing DR progression

(135). However, conflicting reports exist, with studies showing

higher levels of NGF, BDNF, GDNF, NT3, NT4, and CNTF in

the vitreous of DR patients (136, 137) and elevated levels of NT3

and NT4 in the retina of DR rats (137). In summary, although

several neurotrophins in the retina were shown to be essential for

the development and survival of retinal cells, the specific roles of

individual neurotrophins on retinal cell survival require

further investigation.
Leukostasis in diabetic retinopathy

Leukostasis has been documented in both animal models and

human subjects with DR (13). Leukostasis involves the closure of the

retinal microvasculature and endothelial cell death temporally and

spatially associated with adherent leukocytes in DR (103). Leukocyte

endothelial interactions, which show the escalating inflammatory

response, occur intravascularly during the early phases of DR.

Leukostasis is brought about by activating myeloid cells like

neutrophils, monocytes, and granulocytes. Leukostasis is identified

by immune cells stuck in the narrow retinal blood vessels, leading to

blockage and lack of blood flow. In the microcirculation, the presence

of rolling and adherent neutrophils, their velocity of movement, and

the areas affected by leukostasis worsen with the severity of

hyperglycemia (138). Also, increased leukostasis was demonstrated

in different animal models of DR with short-term and long-term

studies (139). In advanced stages of DR, there is a rise in the systemic

neutrophil count, and these cells exhibit heightened expression of

myeloperoxidase and produce greater amounts of hydrogen peroxide

compared to cells sampled from individuals without diabetes (140).

Leukocyte-endothelium adhesion is characterized by increased

production of endothelial cell adhesion molecules and integrins.

Leukocytes engage in a multi-step process on the surface of

endothelial cells, where they interact with these molecules to stick

to the endothelial wall. For example, intercellular adhesion

molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-

1), and selectins, as well as leukocyte b2-integrins (CD11a, CD11b,

and CD18) (E-selectin) were shown to be elevated in DR. In human

subjects with DR soluble E-selectin and sVCAM-1 as well as CCL17,

CCL19, and TGF-b were shown to be elevated (141). Indeed, the

DR severity was correlated to the plasma levels of VCAM-1 and E-

selectin (142). In DR rats, a significant increase in the capillary

occlusions was noted due to granulocytes and monocytes associated

damage to endothelial cells, thus accumulating extravascular

leukocytes, neovascularization, and tissue damage (143). Not
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surprisingly, diabetic rats demonstrated significantly increased

leukostasis in the chronic phase of DR (108).

A variety of molecules and processes have been implicated in

higher levels of leukostasis in DR. VEGF has been shown to promote

ICAM-1 expression in endothelial cells, thus triggering leukocyte

activation and cytokine release, which in turn creates amplifying

inflammatory response and increasing VEGF expression. In the early

stages of DR progression, the specific endogenous VEGF inhibition

has been shown to reduce retinal leukostasis and BRB breakdown,

attesting to VEGF’s prominent role in leukostasis (19). Additional

studies using sulfonated oligosaccharides to inhibit VEGF in the

retina in diabetic rats resulted in the inhibition of leukostasis and

improved ERG (144). Leukocyte-induced microvascular damage by

physically blocking capillaries results in temporary ischemia,

resulting in increased VEGF or the release of cytokines and

superoxide through the respiratory burst (145). The renin-

angiotensin system, oxidative stress, and various other

abnormalities associated with diabetes are recognized factors that

elevate leukostasis within the retinal blood vessels of diabetic rats,

mice , and monkeys . Indeed, enhanced intravascular

polymorphonuclear leukocyte counts have been observed around

areas of capillary nonperfusion in the retinas of diabetic monkeys

(146, 147). In animal models, the deletion of ICAM-1 and CD-18,

essential for white blood cell adherence to the endothelium, greatly

slowed down diabetes-induced capillary degeneration (103).

Leukocytes from diabetic rats, but not control rats, caused in vitro

endothelial cell death, attesting to the ability of activated leukocytes to

damage the endothelial wall (147). The increased Fas (CD95)/Fas-

ligand pathway is associated with elevated leukostasis to endothelial

dysfunction and BRB impairment. Finally, inducible nitric oxide

synthase (iNOS) isoform is demonstrated as a key mediator of

leukostasis and BRB breakdown in DR (148).
Retinal inflammation in
diabetic retinopathy

Inflammation in the retina is directly linked with the severity of

DR (149, 150). However, to date, no single proinflammatory

molecule has been exclusively associated with the progression of

DR. Using both genetic and induced animal models of DR, it was

demonstrated that low-grade subclinical inflammation promotes

multiple vascular complications such as pericyte and endothelial

cell loss, formation of acellular capillaries, and thickening of the

basement membrane of retinal vessels in DR (18, 145). While

hyperglycemia is directly linked with increased levels of pro-

inflammatory cytokines (151), inflammation in DR is known to

persist from the early stages of diabetes to the vision-threatening

form of the disease (145).

Tumor necrosis factor (TNF-a), a widely recognized cytokine

associated with inflammation, has been demonstrated to have

negative implications in DR (152–156). TNF-a triggers alterations

in endothelial cells, notably promoting the expression of

intercellular adhesion molecule ICAM-1, which is crucial in

recruiting leukocytes. Other than TNF-a, elevated levels of pro-
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inflammatory cytokines such as IL-1b, and IL-6 and chemokines

like MCP-1, CCL2, and CCL5 were documented in mouse models

(153). Not only ICAM-1 but also elevated levels of VCAM-1, draw

monocytes and leukocytes and encourage an ongoing inflammatory

response (157–159). Inflammatory cells invade, and damage tissues

as chronic inflammation builds up, increasing retinal vascular

permeability, vasodilation, and retinal thickness in DR subjects.

Increased levels of TNF-a, IL - 1b, IL - 1a, rantes and MCP-1 were

also demonstrated in the serum/aqueous humor of DR patients

(160, 161). While the elevated levels of these cytokines might have

many downstream effects, increased TNF-a and hyperglycemia are

known to cause endoplasmic reticulum (ER) stress in retinal

endothelial cells (162). Interestingly, the elevation of ER-specific

protein, glucose-regulated protein (GRP78) at the plasma

membrane in endothelial cells interacts with the VE-Cadherin, a

junction protein in the endothelium that is required for cell-to-cell

adhesion in the blood vessels glycosylating VE-Cadherin

(GlcNAcylated VE-cadherin), thus increasing transmigration of

leukocytes across endothelium and increased permeability

creating a perpetual motion of inflammation and ER stress (163).

In both the serum and retinal Müller cells, IL-33 levels are

elevated in diabetic conditions (164, 165), whereas IL-35 levels in

the vitreous are decreased in diabetic retinopathy (DR) (166). In the

peripheral blood mononuclear cells of patients with proliferative

diabetic retinopathy (PDR), IL-35 lowers IL-17 levels and inhibits

Th17 cell differentiation, offering protection against PDR (167). The

proinflammatory cytokine IL-17 is elevated in the plasma and

vitreous of diabetic patients, and the worsening of DR is linked to

increased retinal IL-17A expression through Act1 signaling, which

leads to Müller cell dysfunction (168, 169), and promotes retinal

neovascularization (170). In PDR, vitreous IL-17A levels are

associated with IL-10, IL-22, and TNFa levels in the aqueous

humor and vitreous (171). Administering intravitreal or

intraperitoneal injections of anti-IL-17A antibody or anti-IL-

17RA antibody to type 1 and type 2 diabetic mice significantly

reduces DR pathologies, including Müller cell dysfunction,

leukostasis, leakage, downregulation of tight junction proteins,

and ganglion cell apoptosis in the retina (27, 172).

Other than pro-inflammatory cytokines, various other

molecules are well-known to be involved in DR. For example, in

diabetes patients, elevated intracellular glucose levels were known to

activate the polyol pathway, which metabolizes glucose (173),

resulting in elevated deposition of AGEs. This increased AGEs

activates protein kinase C (PKC), AGE receptor upregulation, and

overactivity of the hexosamine pathway (174). This, in turn,

increases the reactive oxygen species (ROS) within cells, resulting

in irreversible cellular damage and chronic inflammatory stress

(175). Chemokines that control the leukocyte recruitment and

activity play an essential role in the development of DR. To this

end, monocyte chemotactic protein-1 (MCP-1) and macrophage

inflammatory protein-1 alpha (MIP-1a) have been shown to be

higher in diabetic individuals (176, 177).

The retinal glial cells, which encompass supportive structural

elements such as astrocytes, Müller cells, and microglial cells, play a

vital role in maintaining cellular equilibrium. The development and

advancement of retinal inflammation in DR are associated with
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dysfunction within the retinal neuroglia (178). Research from both

laboratory experiments conducted in vitro and studies utilizing

animal models and human post-mortem samples have indicated

that the activation of retinal microglia may play a critical role in

modulating cytokine expression. This regulation of cytokine

expression by activated retinal microglia could have substantial

implications in regulating retinal inflammation associated with

diabetes (179). In the presence of hyperglycemia, glial cells exhibit

dysfunction, leading to an imbalance in oxidative stress and levels of

pro-inflammatory cytokines such as TNF-a, growth factors, IL-1,

and IL-6. Retinal evaluation in the early experimental diabetes

models also revealed selective and progressive accumulation of

FDP-lysine. This, in turn, leads to Müller glial cell dysfunction

and upregulation of VEGF, IL-6, and TNF-a., providing evidence of
the contribution of advanced lipoxidation end-product formation

for the retinal inflammation and pathogenesis of DR (180).

Moreover, the pro-inflammatory cytokines released from glial

cells contribute to migrating monocytes and T lymphocytes.

Persistent inflammation further triggers fibrotic processes, leading

to the formation of scar tissue, which can ultimately result in retinal

detachment (119). While VEGF is a known inducer of

inflammation, various other modulators are also known to

enhance retinal inflammation independent of VEGF (181).

Equally, inflammation is also known to mediate angiogenesis in

DR (182) while the interaction of CD40 Ligand with CD40 is an

intermediate step between Inflammation and angiogenesis in

DR (183).
Advancing therapies for treating
diabetic retinopathy

Over the years, several therapeutic approaches have been

developed to manage DR, ranging from conventional treatments

to cutting-edge advancements in the field of ophthalmology

(Table 1). Some of the main modes of treatment available for DR

are photocoagulation, vitrectomy, steroid, and anti-VEGF

therapies. Two main types of lasers are used in photocoagulation:

pan-retinal photocoagulation (PRP) targets leaking blood vessels,

while focal laser therapy targets specific areas of abnormal growth.

These procedures can slow DR progression but may not always

restore vision. In severe cases such as in PDR with bleeding or scar

tissue in the vitreous, vitrectomy may be necessary to remove these

obstructions and improve vision. Corticosteroids can reduce

inflammation in the retina, while effective in some cases, their use

is limited due to potential side effects like cataracts and glaucoma.

Anti-VEGF therapy through intravitreal injections is preferred

for treating DME associated with vision loss (196–198). Several

anti-VEGF drugs, including Bevacizumab, Ranibizumab,

Aflibercept, Faricimab, and Brolucizumab have been used for the

treatment of DR. These agents improve visual acuity and reduce

retinal thickness due to edema. They continue to be frontline

therapies, building on results from landmark trials. Bevacizumab,

initially developed for cancer therapy (199), has shown efficacy in

treating DR and DME (184, 200). Ranibizumab was the first FDA-

approved anti-VEGF protein for treating DME in 2012. It is a 48
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kDa monovalent monoclonal antibody designed for ocular use and

binding (201). The small size and lack of the Fc domain of this drug

increase the penetration of the drug within the choroid and retina

(202, 203). Phase 3 clinical trials showed that patients with monthly

ranibizumab gained ≥15 letters at 2 years, with higher structural

improvement in optical coherence tomography and resolution of

leakage. They were also less likely to develop PDR (6, 185).

Aflibercept, also known as VEGF trap, is a 115-kda dimeric

glycoprotein and acts as a decoy receptor for VEGF isoforms -A&

B and PLGF. Its improved binding properties help to reduce
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treatment burden and follow-up visits (186). Faricimab is a

humanized antibody that targets both VEGF-A and angiopoietin-

2 (Ang-2). This multitarget profile presents intriguing new options

for treating exudative retinal disorders. In light of this, Faricimab’s

Promising data on the use of Faricimab in DME was provided by

the phase 2 BOULEVARD study, which demonstrated its

superiority over ranibizumab in terms of visual gain (187).

Further, in a phase 3, prospective, randomized, double-masked,

multicenter study, Brolucizumab demonstrated greater fluid

resolution compared with aflibercept (188). Despite the advances
TABLE 1 Salient exploratory therapeutic targets for DR.

Drug/protein/Biologics Target Clinical/preclinical studies and indications References

Bevacizumab
(Avastin)

VEGF-A
Off-label drug for DR, FDA-approved for neovascular (wet) age-related macular
degeneration (AMD) and macular edema following retinal vein occlusion

(184)

Ranibizumab (Lucentis) VEGF A
FDA-approved for the treatment of DR in patients with DME and for other eye
conditions such as neovascular AMD and macular edema following retinal
vein occlusion.

(185)

Aflibercept
(Eylea)

VEGF B, PIGF
1, PIGF-2

FDA-approved for DR in patients with DME and other eye conditions such as
neovascular AMD and macular edema following retinal vein occlusion.

(186)

Faricimab
(VABYSMO)

VEGF-A and
angiopoietin-2
(Ang-2).

FDA-approved for neovascular (wet) age-related macular degeneration (nAMD) and
DME in clinical trials for DR

(187)

Brolucizumab
(Beovu)

VEGF
FDA-approved for the treatment of neovascular (wet) age-related macular
degeneration (AMD) and in clinical trials for DME and DR.

(188)

Infliximab TNF-a
Clinical studies: Decreased macular thickness and improved visual acuity in a
diabetic model.

(189)

SAR 1118
antagonist of
LFA-1

Preclinical studies: Reduced leukostasis and retinal vascular leakage. Potential
therapeutic for DR or other retinal vascular disorders.

(190)

Losartan, an AT1R blocker, or Enalapril,
an angiotensin-converting
enzyme inhibitor

RAS

Clinical studies: Reduced progression of retinopathy by 70%, while treatment with
Enalapril reduced it by 65% in a clinical trial involving type 1 diabetes patients with
normotensive and normoalbuminuria. RAS blockade is potentially therapeutic in
preventing or delaying the development of DR.

(191)

Pigment Epithelium-Derived Factor
(PEDF)

PEDF
Preclinical studies: PEDF overexpression prevented neovascularization in a murine
adult model of retinopathy, indicating a protective effect against abnormal blood vessel
growth in the retina, a hallmark of DR and age-related macular degeneration.

(192)

miR-182–5p
angiogenin
and BDNF

Preclinical studies: miR-182–5p exerts an inhibitory effect on retinal
neovascularization, indicating its regulatory role in the formation of abnormal blood
vessels in the retina, which is a characteristic feature of diabetic retinopathy and
retinopathy of prematurity

(193)

Angiopoietin-like 4 ANGPTL4
Preclinical studies: Gene therapy mediated modulation of ANGPTL4 expression, a
potential therapeutic approach for stabilizing blood vessels and reducing vascular
leakage in diabetic retinopathy.

(194)

Syn3
BDNF
enhancer

Preclinical studies: Syn3 demonstrated significant protection against RGC loss in DR (135)

Anti-IL17A IL 17-A
Preclinical studies: anti 1L-17A injection halted diabetes-mediated retinal
inflammation, vascular impairment, and the onset of diabetic retinopathy (NPDR)

(27)

UPARANT

Urokinase
receptor-
derived
peptide
inhibitor

Preclinical studies: Protected the BRB integrity and prevented neovascularization
in DR.

(195)

XMD8–92 {2-[[2-Ethoxy-4-(4-hydroxy-1-
piperidinyl)-5,11-dihydro-5,11-dimethyl-
6H-pyrimido[4,5-b] [1,4]benzodiazepin-
6-one}

ERK 5
Preclinical studies:
XMD8–92 reduced diabetes mediated retinal inflammation, oxidative stress, vegf
production, capillary degeneration and vascular leakage

(25)
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with anti-VEGF therapies, ~40% of cases are refractory with poor

response to this treatment (4–6, 196), indicating the requirement of

additional dossing or developing new targeting for treating DR. To

this end, repeated intravitreal injection of these drugs demonstrated

significant improvement in the visual acuity and retinal thickness

across studies or delivery of anti-VEGF drugs in nanoformulations

reduced the frequency of intravitreal injections in animal studies

(108). Apart from VEGF, other growth factors, including placental

growth factor (58–60), platelet-derived growth factor (55, 91), and

nerve growth factor (204), are known to play important roles in

neovascularization and neuronal loss. Individual or combined

inhibitions of these growth factors may provide optimal outcomes.

As consistent cell death occurs in different retina layers,

neurodegeneration could be a major factor in vision loss.

Neuroprotective strategies may be required to maintain the

sustained cell density of the retina in DR. Protecting retinal

neuronal cells from damage caused by diabetes is another

promising area of research. These drugs may help preserve vision

even if blood vessel abnormalities persist. For example, diabetic

mice demonstrating elevated NLRP3 inflammasome activation and

increased production of IL-1b by Müller glia could be abrogated

with Müller glia-specific Regulated in Development and DNA

damage 1 (REDD1) deletion, thus improving vision (205). In

another example, changes in the microglial immune ligand-

receptor CD200-CD200R complex were shown to be associated

with neuroinflammation in DR, and CD200Fc, a CD200R agonist,

effectively mitigates microglial activity, providing a novel

immunotherapeutic target for treating DR (206). Finally,

glucagon-like peptide-1 (GLP-1) has been shown to reduce the

intracellular overload of Ca2+ influx through voltage-gated Ca2+

channels, thus protecting RGCs against excitotoxic Ca2+ overload in

an STZ-induced diabetic animal model (207).

As persistent oxidative stress and inflammation initiate and

promote multiple molecular changes, sustained inhibition of

molecular pathways to block oxidative stress and inflammation in

the retinal tissue could provide an essential avenue in developing

therapies. For example, an increase in Takeda G protein-coupled

receptor 5 (TGR5) receptor signaling in diabetes is associated with

an increase in inflammation and ER stress in the retina and is

decreased upon treatment with tauroursodeoxycholic acid (208,

209). ER, stress is also known to augment 12/15-LO-induced retinal

inflammation in DR via activation of NADPH oxidase and

VEGFR2, and thus, perturbation of the 12/15-LO pathway could

help develop DR therapies (210). In a clinical investigation

including four patients who did not improve after laser

photocoagulation treatment, Infliximab, a TNF-a neutralizing

antibody, was shown to decrease macular thickness to enhance

visual acuity (189). In a diabetic rat model, topical administration of

SAR 1118, a minor antagonist of LFA-1(leukocyte function

associated antigen-1) expressed in leukocytes, decreased

leukostasis and retinal vascular leakage in a dose-dependent

manner (190). Apart from these distinct inflammatory molecules,

the AGEs/RAGE pathway is also a potential target for DR due to its

prominent role in inducing retinal inflammation. In animal models

of DR, soluble RAGE blocking the RAGE activation improved

neuronal dysfunction, thus reducing the acellular capillaries and
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pericyte ghosts (211). Blockade of RAS with Losartan, an AT1R

blocker, or Enalapril, an angiotensin-converting enzyme inhibitor,

significantly reduced the progression of retinopathy by 70% and

65%, respectively, in a clinical trial involving type 1 diabetes patients

with normotensive and normoalbuminuria (191). Since NADPH

oxidase activity is dysregulated in DR and contributes to oxidative

stress and inflammatory cascades, blocking NADPH oxidase was

shown to reduce oxidative stress, NF-kB activation, reactive NOS

production, and inflammatory responses in retinal cells treated with

high glucose (212, 213). Also, intravitreal injection of tissue

inhibitor of matrix metalloproteinase-3 (TIMP-3) prevented BRB

breakdown in diabetes and downregulated NF-kB, ICAM-1 and

VEGF (214). Urokinase plasminogen activator (uPA)/uPA receptor

(uPAR) system is another pathway that was shown to disrupt BRB

in DR (215, 216). uPA inhibition with a peptide inhibitor

UPARANT significantly protected the BRB integrity and

prevented neovascularization in DR rats (195). Additionally,

UPARANT also modulates transcription factors responsible for

inflammation (217).

Lastly, anti-inflammatory drugs that have demonstrated a

significant reduction in inflammation associated with other

complications of diabetes mellitus could be evaluated for DR

(218, 219). Similarly, regular use of plant-based phytochemicals

and dietary supplements with antioxidant and anti-inflammatory

properties modulates persistent retinal oxidative stress and chronic

inflammation in the retina and prevents DR progression (220–224).

Recently, Esculeoside A (ESA), a tomato-derived glycoside, has

been shown to alleviate retinopathy in an in-vivo rat model of

T1DM. The protective mechanism is found to be mediated by the

Nrf2/antioxidant axis (225). Overall, research on the drugs that

could reduce oxidative stress and inflammation likely help maintain

the cellular and molecular integrity of the neurovascular unit, and

research along these lines is necessary to prevent complications and

vision loss associated with DR.

The research landscape continues to evolve, with promising

new avenues, such as gene and cell therapies, which may offer new

avenues for managing diabetic eye disease. Gene therapy for

diabetic retina employs gene-specific targeted therapy, which is

split into two categories based on the pathophysiology of the disease

(226): therapies that target pre-existing neovascularization such as

the use of sFlt-1, a soluble splice variant of the VEGF receptor 1

(VEGFR-1 or Flt-1), that acts as a decoy VEGF receptor and

vascular hyperpermeability (227), and therapies that try to

prevent damage to retinal blood vessels such as pigment

epithelium-derived factor (PEDF) (192), angiogenin (193), and

glial fibrillary acidic protein (GFAP) (228) and those that protect

neurons such as the AAV vectors encoding brain-derived

neurotrophic factor (BDNF) (229) and erythropoietin (EPO)

(230). Some research suggests that modulating ANGPTL4

expression through gene therapy could help stabilize blood vessels

and reduce vascular leakage in DR (194). Clinical trials are needed

to evaluate the feasibility and effectiveness of this approach.

Exploratory cell therapies independent of gene therapies in DR

involve the transplantation or manipulation of cells to address the

underlying pathology of the disease. Some of these approaches

include mesenchymal stem cells (MSCs) (231, 232) or induced
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pluripotent stem cells (iPSCs) (233, 234) for their regenerative

properties to replace damaged cells, promote tissue repair, or

modulate the inflammatory response associated with the disease.

Cell therapy approaches involving the transplantation or

stimulation of endothelial progenitor cells (EPCs) and/or

endothelial colony-forming cells (ECFCs) aim to enhance

vascular repair mechanisms and improve blood vessel function in

the retina (235). Clinical trials are ongoing to assess the safety and

efficacy of EPC-based therapies in DR patients (NCT02119689).
Conclusions and future directions

In summary, the future of DR and DME management looks

promising, with ongoing trials aiming to advance treatment options

and improve visual outcomes. Despite the tremendous progress in

understanding various cell and molecular targets in DR, several

challenges need to be addressed soon in the near future. For example,

DR involves multifaceted processes, including inflammation,

angiogenesis, and neurodegeneration. Pinpointing specific targets

within this intricate web of interactions can be challenging.

Additionally, DR progresses over time, with varying molecular

profiles at different stages. Identifying targets that remain relevant

throughout disease progression is essential. Likely, single-target

approaches may not suffice. Combining multiple therapies could yield

better outcomes. We hope that as research progresses, personalized

approaches and innovative treatments may transform the management

of this sight-threatening condition.
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