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Background: Prolonged hyperglycemia causes diabetes-related micro- and

macrovascular complications, which combined represent a significant burden

for individuals living with diabetes. The growing scope of evidence indicates that

hyperglycemia affects the development of vascular complications through

DNA methylation.

Methods: A genome-wide differential DNA methylation analysis was performed

on pooled peripheral blood DNA samples from individuals with type 1 diabetes

(T1D) with direct DNA sequencing. Strict selection criteria were used to ensure

two age- and sex-matched groups with no clinical signs of chronic

complications according to persistent mean glycated hemoglobin (HbA1c)

values over 5 years: HbA1c<7% (N=10) and HbA1c>8% (N=10).

Results: Between the two groups, 8385 differentiallymethylatedCpG sites, annotated

to 1802 genes, were identified. Genes annotated to hypomethylated CpG sites were

enriched in 48 signaling pathways. Further analysis of key CpG sites revealed four

specific regions, two of which were hypermethylated and two hypomethylated,

associated with long non-coding RNA and processed pseudogenes.

Conclusions: Prolonged hyperglycemia in individuals with T1D, who have no

clinical manifestation of diabetes-related complications, is associated with

multiple differentially methylated CpG sites in crucial genes and pathways

known to be linked to chronic complications in T1D.
KEYWORDS

type 1 diabetes, glycemic control, DNA methylation, diabetes-related complications,
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1 Introduction

Type 1 diabetes (T1D) is a chronic autoimmune disease that

involves the autoimmune destruction of insulin-secreting pancreatic

b-cells, resulting in disturbed glucose regulation and overt

hyperglycemia. Therefore, individuals with T1D require lifelong

insulin replacement therapy (1). The long-term dysregulation of

blood glucose levels in T1D can lead to micro- and macrovascular

complications, which are the primary causes of diabetes-related

morbidity and mortality. Complications of diabetes include diabetic

retinopathy, neuropathy, kidney disease, and cardiovascular

diseases (2).

The importance of regulating blood glucose levels was observed

during the Diabetes Control and Complication Trial and its follow-

up observational study Epidemiology of Diabetes Interventions and

Complications. The benefits of intensive insulin treatment were

demonstrated many years after the end of the study despite

equalization of glycemic control between the studied groups. The

phenomenon commonly referred to as metabolic memory is believed

to involve several key factors, including chronic inflammation,

oxidative stress, glycation of proteins, and epigenetic mechanisms

(3, 4).

Epigenetic mechanisms, such as DNA methylation, histone

modifications, and non-coding RNAs, play a crucial role in

regulating gene expression by modifying DNA accessibility or

chromatin structure. Environmental factors, such as nutrition,

drugs, chemicals, stress, and infection, can impact epigenetic

mechanisms, thus influencing various physiological and

pathophysiological processes (5, 6). There is growing evidence

linking late complications of T1D to epigenetic mechanisms (7).

Prolonged hyperglycemia is associated with alterations in epigenetic

marks that persist even after the introduction of a normoglycemic

environment. Alterations in DNA methylation have been found in

the blood and tissues of individuals with T1D with late complications

(8). Alterations have been associated with several chronic

complications (9–11). However, the association between glycemic

control and genome-wide DNAmethylation profile in blood samples

from individuals with T1D without clinical signs of chronic

complications remains unclear. This study aimed to evaluate the

association between persistently dysregulated glycemic control and

early DNA methylation alterations in individuals with T1D.
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2 Methods

2.1 Participants

20 participants (11 males and 9 females) without clinical

manifestations of chronic complications were recruited.

Participants were selected from a National Childhood Registry for

T1D, which contained records of 278 children with T1D, who were

regularly managed at the Department of pediatric endocrinology,

diabetes, and metabolic diseases outpatient clinic at the University

Children Hospital Ljubljana, Slovenia. Participants were recruited

according to selected study inclusion criteria and divided into two

groups. Namely, calculated mean values of HbA1c persistently

below 7% or above 8%, where mean values of HbA1c for the span

of five years (three to four measurements per year) were used. This

was followed by diabetes duration of at least five years and age at

DNA collection between 10 and 23 years. Considering all criteria, 79

children qualified for the participation in the study, 24 children with

mean values of HbA1c<7% and 55 children with mean values of

HbA1c>8%. Among them, ten children with the lowest and highest

mean values of HbA1c were selected into the final cohort for

methylation analysis (Figure 1A). We hypothesize that analyzing

participants from both extremes of mean HbA1c levels may reveal

more apparent DNA methylation effects. Otherwise, uncovering

significant differences in methylation might be obscured in analyses

across the entire HbA1c range with an arbitrary threshold between

groups, to reduce the effect of individual variability.
2.2 Samples and DNA methylation analysis

Participants’ peripheral blood samples were collected in EDTA

tubes and DNA was isolated using the FlexiGene Isolation Kit

(Qiagen, Cat# 51206) and stored at 4°C until further analysis. Since

the participants’ samples were divided into two groups, one of 10

participants with HbA1c<7% and one of 10 participants with

HbA1c>8%, for each group, the participants’ DNA was pooled

together with equal mass. Therefore, each participant

contributed ~10% to the pooled sample. Prior to pooling, DNA

quantities were measured three times using the Qubit HS DNA

Assay (Thermo Fisher Scientific, REF Q32854) and the mean value
B CA

FIGURE 1

Flow charts of recruitment process (A), library preparation and sequencing (B), and filtration criteria for noise reduction (C).
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was used for pooling. Six libraries for the HbA1c<7% group and six

libraries for HbA1c>8% group (twelve in total) were prepared and

sequenced independently for each pooled sample (Figure 1B), to

account for batch effect of library preparation and sequencing runs,

for each pooled sample. Each pooled sample was sonicated to an

average length of 3,000 bp to increase the number of active ends and

improve the sequencing yield. Libraries were prepared using a

Ligation Sequencing Kit (Oxford Nanopore Technologies, product

code SQK-LSK109) according to the manufacturer’s protocol and

sequenced separately on a PromethION flow cell (R9.4.1, Oxford

Nanopore Technologies, product code FLO-PRO002).
2.3 Data preparation

All datasets generated from each sequencing run within the

group were merged and analyzed as a single batch. Modified bases

were called with Guppy basecaller (v6.3.8) using the high accuracy

Remora model (dna_r9.4.1_450bps_modbases_5hmc_5mc_

cg_hac) (12) and the human reference sequence GRCh38 (hg38)

(13). The final BAM files were summarized to a bedMethyl file using

the modbam2bed package (version 0.6.3.) (14). bedMethyl files

underwent several filtering steps as shown in Figure 1C. First,

regions with methylation calls were filtered for low quality data

and prepared for the differential analysis between the two groups.

Second, to avoid inaccurate differential methylation calls due to

genomic structure and variation, only CpG sites present in both

groups were considered for downstream analysis. Although there

was no statistical difference in sex between the two groups, sex

chromosomes were excluded from the analysis due to potential

methylation differences in X chromosome inactivation.

Centromeres were also excluded due to highly repetitive

sequences. Next, to obtain the most accurate methylation call

only CpG sites with coverage greater than 50 were included for

further analysis. bedMethyl file score parameter provides

information on how the calculated DNA methylation frequency is

confounded by alternative calls and indicates the confidence or

reliability of the calculated DNA methylation frequency. Only calls

with a score greater than 900 were analyzed (14). Since the

sequenced samples were pools of DNA, where each individual is

estimated to contribute approximately 10% of the signal, all CpG

sites with the difference in DNA methylation below 10% were

omitted. In the case of a single nucleotide variant at the CpG sites

identified by Clair3 (version v0.1-r12, model: r941_prom_sup_

g5014), these CpG sites were excluded from the downstream

analysis (15). Consequently, more than one billion CpG sites were

reduced to the final 312,847 CpG sites, which were further analyzed.
2.4 Statistical analysis

To characterize the analyzed groups, the Wilcoxon signed-rank

test and c2-test were used. Differential methylation analysis was

conducted using the R package DSS (version 2.46.0), which

implements algorithms based on the dispersion shrinkage method

followed by the Wald test to evaluate each CpG site. Smoothing was
Frontiers in Endocrinology 03
applied, which combined the information from nearby CpG sites to

improve the estimation of methylation levels (16). A p<0.001 was

used to consider statistically significant results. The false discovery

rate (FDR) was calculated with the Bejamini-Hochberg procedure

to correct for multiple comparisons and all differently methylated

sites under selected p-value had FDR value below 0.05. Regions were

formed by merging statistically significant neighboring CpG sites.

The following restrictions were set p<1.0x10–14, a minimum

number of CpG sites is equal or greater than 10, and a minimum

region length of at least 100 bp. If the distance between two regions

was less than 1500 bp, they were merged into one (16).
2.5 Annotation and pathway
enrichment analysis

The R package annotatr (version 1.24.0) (17) was utilized to

annotate differentially methylated CpG sites and regions genomic

features. The CpG annotations source was obtained from the

AnnotationHub package (18), the genetic annotations source was

TxDb.Hsapiens.UCSC.hg38.knownGene (19), and the long-

noncoding RNA source was obtained from the GENCODE

database (https://www.gencodegenes.org). All plots were generated

in R using the DSS, ggmanh (version 1.2.0) (20), and ggplot2

packages (version 3.4.1) (21). Signaling pathway enrichment

analysis was performed using KEGG pathway over-representation

analysis in the R package clusterProfiler (version 4.6.2). The KEGG

database (https://www.kegg.jp) (22) was utilized for this purpose.
3 Results

3.1 Participants

At the time of blood sampling for DNA isolation, the participants

had a median age of 16 years (interquartile range, IQR 13–21) and a

median duration of T1D of 7 years (IQR 6–8). Participants were

divided into two groups according to their average values of HbA1c

(Supplementary Table 1) over a five-years period. Group

characteristics are summarized in Table 1. No statistical differences

in age, duration of T1D, or sex were observed between the groups.
3.2 Identification of significantly
differentially methylated sites and regions

On average 33.4 M (IQR 25.3–38.5 M) reads were generated per

library, resulting in 66.8 Gb (IQR 55.0–84.9 Gb) of data. The

average insert size per library was 3.6 kb (IQR 3.4–3.9 kb). After

filtering the datasets and differential analysis, a total of 8,385

differentially methylated sites, 4,575 hypomethylated, and 3,810

hypermethylated in the group with HbA1c>8% compared to the

group with HbA1c<7%, were identified (Supplementary Table 2).

These CpG sites were annotated to 1,802 genes (Supplementary

Table 3). Of these, 909 genes had hypomethylated sites, 840 genes

had hypermethylated sites and 53 genes had both hypomethylated
frontiersin.org
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and hypermethylated sites. A Manhattan plot showing differentially

methylated sites by chromosomal position is shown in Figure 2.

In the promoter regions or 1–5 kb upstream of the transcription

start site, 270 genes showed hypermethylated sites, 264 genes showed

hypomethylated sites, and 1 gene showed both types of methylation

changes. Among them, hypermethylated sites with significant

methylation difference (p<1.0x10–10) were annotated to MRPS11P1,

LOC107984012, LOC105373526, RNA5S6, RNA5S5, ATG16L2,

GRB10, CLUAP1, and C16orf90. Hypomethylated CpG sites with

significant methylation difference (p<1.0x10–10) were annotated to

the genes LINC00355, CD1D, ELL2P1, RGPD2, KCNK15-AS1,

CDIN1, LOC101928797, LINC00654, mir-6080, GXYLT1, PLAGL1,

FLG-AS1, CCDC144NL, CHRNE, and LOC100996664.

Differentially methylated CpG sites with p<1.0x10–14 were

further analyzed. A total of 188 differentially methylated sites

were retained. The majority of these sites were in close proximity

to each other and were therefore combined into differentially

methylated regions. Finally, four regions were identified, two were

hypermethylated and two were hypomethylated according to the

HbA1c>8% group (Table 2, Figure 3). Hypermethylated regions
Frontiers in Endocrinology 04
were located in the intron of AL592295.3, a long non-coding RNA,

and in the promoter region of AGGF1P1 and 1–5 kb upstream

region of RARRES2P4. Both are processed pseudogenes.

Hypomethylated regions were found in exon 1 of GFD7 gene and

in the promoter region of LINC00355.
3.3 Genomic annotations of differentially
methylated sites and functional
enrichment analysis

The distribution of genomic annotations according to genomic

features was not different between the two groups. Most of the

differentially methylated sites were located in introns and open sea

genomic positions (Figure 4).

The functional relevance of genes annotated at differentially

methylated sites was analyzed by gene enrichment pathway

analysis. No biological pathway was significantly enriched by the

set of genes annotated to hypermethylated sites, whereas genes

annotated to hypomethylated sites were significantly enriched in 48

pathways associated with differentially regulated glycemic control in

participants with T1D (Figure 5). Among these pathways, the

following genes were common: ADCY4, CACNA1A, CACNA1C,

EGFR, GNAI, GNAS, GNG4, GNG7, ITPR2, MAPK10, PDGFRA,

PIK3CD, PIK3R1, PLCB1, PLCG2, and RAF1. Among them,

ADCY4, GNAS, MAPK10, PIK3CD, and RAF1 genes had

hypomethylated CpG sites located in promoter regions or 1–5 kb

upstream of the transcription start site, while other genes had CpG

sites were located in exons and introns.

4 Discussion

Epigenetic modifications represent a dynamic relationship

between the genome and the environment (23). To the best of
FIGURE 2

Manhattan plot of differentially methylated sites including gene annotations of differently methylated regions. The y-axis represents -log10(p-value)
for association of each CpG site with different glycemic control regulation. The horizontal line represents the threshold for genome-wide
significance (p<0.001, FDR<0.05).
TABLE 1 Group characteristics.

HbA1c<7% HbA1c>8% p-value

Number of participants
Male and female (%)

10
4 (40) and
6 (60)

10
7 (70) and
3 (30)

0.1775

Median age
IQR (years)

13
11.25–21

16.5
16–19

0.3206

Median duration of
T1D

IQR (years)

7

6–7

7

6–8

0.613

Median HbA1c
IQR (%)

6.44
6.36–6.46

9.97
9.75–10.34
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our knowledge, this is the first study to investigate the association of

glycemic control with genome-wide differences in DNA

methylation in blood samples from participants with T1D

without evident clinical signs of chronic complications.

Our method of choice for detecting DNA methylation was

novel, comprehensive direct nanopore DNA sequencing using long-

read nanopore sequencing, which allows direct whole-genome

detection of DNA modifications with high accuracy (24).

Compared to traditional bisulfite conversion following short-read

sequencing, the gold standard for DNA methylation detection, our

approach offers many potential advantages. The method omits

conventional DNA-damaging bisulfite treatment and PCR

amplification, unlike short-read sequencing, long-read sequencing

allows the mapping of repetitive or low-complexity regions (25).

Importantly, a high correlation of methylation frequency data

between nanopore sequencing at low depth and bisulfite

sequencing has been reported (26, 27).

The function of DNAmethylation is diverse and depends on the

genomic regions where it occurs. DNA hypermethylation in the

promoter region and 1–5 kb upstream of the transcription start site

is associated with gene silencing (28). Hypermethylated sites with
Frontiers in Endocrinology 05
significant methylation difference (p<1.0x10–10) in these regions

were annotated to the long-noncoding RNAs (lncRNAs)

LOC107984012 and LOC105373526, ribosomal RNA5S6 and

RNA5S5, the genes ATG16L2, GRB10, CLUAP1 and C16orf90,

and the pseudogene MRPS11P1. Only GRB10 has been previously

associated with diabetes-related complications. Polymorphism in

GRB10 has been associated with the risk of coronary heart disease in

individuals with type 2 diabetes (29).

Hypomethylated CpG sites with significant methylation

difference (p<1.0x10–10) in these regions were annotated to the

lncRNAs LINC00355, KCNK15-AS1, LOC101928797, LINC00654,

and FLG-AS1, LOC100996664, the microRNA mir-6080, the genes

CD1D, RGPD2, CDIN1, GXYLT1, PLAGL1, and CHRNE, and the

pseudogenes ELL2P1, and CCDC144NL. CD1D (30), GXYLT1 (31),

LINC00355 (32), FLG-AS1 (33), CCDC144NL (34), and PLAGL1

(35) have been previously associated with diabetes or diabetes-

related complications. For example, loci near the GXYLT1 gene

have been associated with treatment-related reductions in HbA1c in

type 2 diabetes (31). Overexpression of FLG-AS1 has been shown to

attenuate inflammation, oxidative stress, and apoptosis in retinal

epithelial cells exposed to high glucose (33). Additionally,
B

C D

A

FIGURE 3

Differently methylated regions (threshold: p<1.0x10–14). Graphs show the difference in methylation frequencies between the two groups in regions:
(A) chr1:161462342–161463692, (B) chr2:20670644–20670998, (C) chr4:190041210-190041434, and (D) chr13:64076869–64077176. Positive
values show hypermethylation in group HbA1c>8%, whereas, negative values show hypomethylation.
TABLE 2 Differently methylated regions (threshold: p<1.0x10–14).

chr start end length nCG diff.Methy gene annotation

chr1 161462342 161463692 1351 91 -0.16 AL592295.3 intron

chr2 20670644 20670998 355 44 0.16 GDF7 exon

chr4 190041210 190041434 225 23 -0.23 AGGF1P1
RARRES2P4

promotor
1–5 kb upstream

chr13 64076869 64077176 308 28 0.23 LINC00355 promotor
chr, chromosome; nCG, number of CpG sites; diff.Methy, the difference in methylation levels between two groups.
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CCDC144NL was one of the genes selected for a combinatorial

molecular signature as a potential biomarker for early detection of

proliferative diabetic retinopathy (34).

Most of our findings are consistent with previously reported

results. Several pathways, that have been significantly enriched in

our study, have already been reported to be associated with

diabetes-related complications. Phospholipase D signaling

pathway (36), phosphatidylinositol signaling system (37), and

retrograde endocannabinoid signaling (38), endocytosis (39),

MAPK signaling pathway (40), cAMP signaling pathway (41),

calcium signaling pathway (42), and AMPK signaling pathway

(43) are involved in one or more mechanisms that cause diabetes-

related complications, including inflammation, oxidative stress,

apoptosis, and insulin resistance. Conversely, the Rap1 signaling

pathway (44), oxytocin signaling pathway (45), and relaxin

signaling pathway (46) have been shown to play a protective role

in diabetes. Additionally, our analysis revealed enrichment in

neurochemical synapses. Hyperglycemia is known to induce

synaptic dysfunction and disrupt the balance of neurotransmitter

secretion (47). Furthermore, differential gene expression analyses in

various diabetic tissues were similar to our findings, with

overlapping pathways observed in skeletal muscle (48), b-cell-
enriched tissue (49), diabetic kidney (50, 51), and diabetic

peripheral neuropathy (52).

Among the genes common to the identified signaling pathways,

ADCY4, GNAS,MAPK10, PIK3CD, and RAF1 had hypomethylated

CpG sites in the promoter region and 1–5 kb upstream of the

transcription start site, which may imply increase gene expression.

ADCY4 (53) and GNAS (54) are both involved in the cAMP

signaling pathway, which plays an important role in glucose

metabolism (55), inflammation (41), and fibrosis (56), as well as

in diabetic kidney disease (57), diabetic retinopathy (58), and

neuropathy (59).
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GNAS is important for b-cell insulin secretion, with reduced

expression observed in pancreatic islets from individuals with type 2

diabetes (60) and in urine from individuals with diabetes (61).

Downregulation of ADCY4 has been associated to impaired

mitochondrial function in murine hearts (62), while hyperglycemia-

induced cardiac hypertrophy and apoptosis act through endoplasmic

reticulum stress-JNK3 signaling pathway (63). JNK3 has been shown to

play a critical role in diabetes-induced atrial fibrillation in mice (64).

Advanced glycated end products (AGEs) generated during

prolonged hyperglycemia contribute to diabetes-related

complications by promoting oxidative stress and inflammation.

RAF1 activation by AGEs induces oxidative stress and

inflammation in vascular endothelial cells, contributing to diabetic

retinopathy (65). Similarly, PIK3CD plays a significant role in

diabetic retinopathy, with high glucose levels upregulating its

expression and promoting retinal angiogenesis, while its inhibition

suppresses pathological angiogenesis (66, 67). Furthermore,

decreased DNA methylation in the CpG site annotated to PIK3CD

is identified in individuals with proliferative diabetic retinopathy (10).

Hypermethylated regions were located in the intron of

AL592295.3, a long non-coding RNA, and in the promoter region

of AGGF1P1 and 1–5 kb upstream region of RARRES2P4. Both are

processed pseudogenes; whose DNA sequences resemble functional

genes. They cannot produce functional proteins; however, they may

still have regulatory functions and thus play an important role in

biological and pathological processes (68). The parental genes of

these two pseudogenes are AGGF1 and RARRES2. AGGF1 is an

angiogenic factor and plays a critical role in vascular development.

In diabetic mice, AGGF1 counteracts the damaging effect of

hyperglycemia on endothelial progenitor cells (69). RARRES2

encodes chemerin, an adipokine involved in adipogenesis.

Chemerin has been shown to be a risk factor for the development

of diabetic kidney disease (70).
BA

FIGURE 4

Distribution of genomic annotations of differentially methylated sites in the gene structures and CpG sites. (A) Differentially methylated sites per
genic annotations. (B) Differentially methylated sites per CpG annotations.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1416433
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
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Hypomethylated regions were located in exon 1 of theGFD7 gene

and in the promoter region of LINC00355. Hypomethylation in exon

1 of the GDF7 gene was previously reported in an epigenome-wide

association study in whole blood of Ghanaian participants with type 2

diabetes (71). In diabetic nephropathy LINC00355 has been shown to

be upregulated and to increase endoplasmic reticulum stress thus

contributing to podocyte injury (32).

Prolonged hyperglycemia has long been associated with

oxidative stress, AGEs, and inflammation (72). Interestingly, our

results show that hyperglycemia directly affects DNA methylation

before the onset of diabetes-related complications. We observed

alterations in DNA methylation in genes and regions previously

implicated in the pathogenesis of diabetes-related complications.

Furthermore, we identified differentially methylated CpG sites in

genes previously not linked to diabetes or diabetes-related

complications. These includes non-coding RNAs, such as

lncRNAs, microRNAs, and ribosomal RNAs. They play an

important role in the regulation of biological processes and their

aberrant expression has been observed in a wide range of human

diseases, including in diabetes and its complications (73–75).
Frontiers in Endocrinology 07
Several limitations need to be considered in our study. First, the

sample of choice was the whole blood, which include diverse ratio of

several different cell types with their own methylation profile.

Furthermore, since DNA methylation can be tissue specific, our

results do not necessarily reflect the methylation profile in other

tissues that are directly affected in diabetes complications. Second,

the participants’ DNA was pooled and sequenced as a single sample.

Pooling of DNA samples is cost and time effective. However, it can

introduce several potential biases including loss of individual

variability, biological heterogeneity, and difficulty in data

interpretation, due to the slight possibility that each participant is not

equally represented in the pool. All precautions were taken tominimize

these biases. Finally, we did not perform differential expression analysis,

to see the effect of DNA methylation on gene expression.
5 Conclusions

Our study demonstrates that alterations in DNA methylation in

blood samples from individuals with T1D precede the clinical
FIGURE 5

Enriched pathways of genes annotated to hypomethylated sites. Graph shows adjusted p-value and gene count for each enriched pathway. Red
indicates the most significant enrichment and blue less significant while genes count is depicted as bar height.
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manifestation of chronic complications. Differential methylation

was identified in genes and pathways that have been previously

associated with chronic diabetes complications, as well as in genes,

non-coding RNAs, and pseudogenes not previously reported in the

context of diabetes. As DNA methylation alterations after

prolonged hyperglycemia persist also after the normalization of

glycemic control, it could be potentially used as a biomarker for

early detection and molecular phenotyping of individuals at an

increased risk for diabetes-related complications. Furthermore,

direct DNA sequencing methylation studies with long-read

nanopore sequencing have become more commercially available

and the data interpretation has improved in accuracy and efficiency

with advances in bioinformatic tools and algorithms. This could

enable individually tailored clinical diagnostics and interventions.

Future research of DNA methylation in individuals could explore

the specific mechanisms underlying these observed DNA

methylation alterations and provide valuable insights into the

pathogenesis of diabetes-related complications.
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