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Insulin resistance (IR) is becoming a worldwide medical and public health

challenge as an increasing prevalence of obesity and metabolic disorders.

Accumulated evidence has demonstrated a strong relationship between IR and

a higher incidence of several dramatically vision-threatening retinal diseases,

including diabetic retinopathy, age-related macular degeneration, and

glaucoma. In this review, we provide a schematic overview of the associations

between IR and certain ocular diseases and further explore the possible

mechanisms. Although the exact causes explaining these associations have not

been fully elucidated, underlying mechanisms of oxidative stress, chronic low-

grade inflammation, endothelial dysfunction and vasoconstriction, and

neurodegenerative impairments may be involved. Given that IR is a modifiable

risk factor, it may be important to identify patients at a high IR level with prompt

treatment, which may decrease the risk of developing certain ocular diseases.

Additionally, improving IR through the activation of insulin signaling pathways

could become a potential therapeutic target.
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1 Introduction

An acceleration of the prevalence of insulin resistance (IR) and metabolic syndrome

(MetS) is becoming a worldwide public health challenge with an increasing rate of obesity (1).

Evidence has indicated that IR has a strong association with the development of the

cardiovascular diseases (2, 3). Insulin resistance is a pathological condition in which the

ability of insulin to influence glucose uptake via insulin-dependent transportation is impaired,

thus a higher-than-normal concentration is required to maintain a normal glucose level (4).

That is, insulin-dependent cells fail to respond to a normal circulatory level of insulin due to

decreased insulin sensitivity. IR is the hallmark of type 2 diabetes mellitus (T2DM) and MetS,

representing a common feature of a cluster of metabolic abnormalities in T2DM and MetS,

such as obesity, hyperinsulinemia, dyslipidemia, and high blood pressure (5).
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In detail, increased IR, conversely correlated with insulin

sensitivity, could be attributed to reduced capacity of insulin

receptors to bind with insulin. At the molecular level, the

explanations for decreased affinity of insulin receptors may

include a declining number of insulin receptors, a mutation in

insulin receptors, and autoimmune antibodies against insulin

receptors (6). The interaction of insulin receptors with their

ligands has been considered a key determinant for functional

signal transduction, any interference in this process would lead to

IR (6). Previous studies mainly investigated the effect of IR on

traditionally thought insulin-sensitive tissues, such as liver, skeletal

muscle, and adipose tissue, but accumulating evidence has

suggested that IR plays a crucial role in the central nervous

system (CNS) and retina (7, 8), since insulin signal pathway is a

key determinant for cell survival, especially for neural cells (9).

Although inconsistent results exist regarding the connection

between IR and ocular diseases, increasing studies have postulated

that IR is associated with glaucoma and several retinal diseases,

particularly diabetic retinopathy (DR) and age-related macular

degeneration (AMD), which account for the majority of vision

loss in middle-aged and elderly populations (10, 11). To the best of

our knowledge, currently established treatment options for retinal

diseases are mainly limited to advanced stages, which only partially

suffice to slow disease progression. Consequently, identification and

treatment of IR in retina, which acts as a potential common

pathogenesis and a modifiable risk factor (12), are imperative for

the early management of these retinal diseases. In this review, we

tend to summarize current evidence supporting the association

between IR and certain ocular diseases, including DR, AMD, and

glaucoma, and further explore the underlying pathophysiological

mechanisms explaining these associations. Given that IR is a

modifiable risk factor, investigating the intrinsic relationships

between retinal diseases and IR would provide new insights for

the administration of certain ocular diseases and even become

potential therapeutic targets.
2 Insulin and insulin receptors in
the retina

Insulin signal pathways are triggered by the binding of insulin to

insulin receptor, a heterotetramer composed of two extracellular a
subunits and two transcellular b subunits linked by disulfide bonds.

Binding of insulin to the a subunit of insulin receptor leads to

structural changes in the b subunit and triggers its intrinsic tyrosine

kinase activity (13). The insulin receptor autophosphorylates its b
subunit in tyrosine residues and initiates a cascade of downstream

effects, such as recruitment of protein substrates of the insulin

receptor kinase including the insulin receptor substrates (IRSs),

SHC transforming protein, and casitas B-lineage lymphoma (Cbl)

(13, 14). IRSs are key substrates in insulin signal transduction by

binding to phosphatidylinositol-3-kinase (PI3K) and inducing

downstream pathways. Indeed, any factors that reduce IRS-1

phosphorylation or induce serine IRS-1 phosphorylation at the 307
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site by some kinases, such as IKKb/NF-kB and c-Jun N-terminal

kinase (JNK), would impair insulin signal transduction and lead to

insulin resistance (15, 16). In addition to common target organs

(liver, skeletal muscles, adipose tissue, etc.), the insulin receptor has

been reported to be expressed constitutively and broadly throughout

the retina on neuronal, endothelial, and retinal pigmented epithelial

(RPE) cells (17). However, different to the fluctuation with circulating

insulin levels during periods of fasting and feeding in the liver and

skeletal muscle, the activity of insulin receptor in retina is maintained

in a relatively stable state owing to the exquisite regulation of blood

retina barrier (BRB) between the plasma and neural retina (18). And

the transport of insulin across the BRB to retinal endothelial cells is

significantly slower than other vascular beds. Collectively, the retina is

not a major target for immediate nutrient metabolism as is skeletal

muscle, but the steady-state transport of insulin to the neural retina

may provide a stable trophic signal (18). In addition, another

interesting observation is that retina and numerous other extra-

pancreatic tissues express insulin and insulin-like molecules as a

paracrine hormone (19).

In general, regardless of insulin action or production site,

insulin signal characteristics in retina resembles what has been

described in other system. Specially, the insulin receptor/IRS/PI3K/

Akt pathway has received much attention and plays a role in many

cellular processes, such as glucose uptake and cellular survival (20)

(Figure 1). Meanwhile, insulin resistance associated with diabetes

and obesity appears to be due to pathway-selective impairment of

PI3K/Akt signaling, whereas SHC/Ras/mitogen activated protein

kinase (MAPK) is largely unaffected, thereby tipping the balance of

insulin’s actions (21). This imbalance would favor abnormal

vasoreactivity, mitogenesis, and other pathways implicated

in microangiopathy.
3 The measurement and
quantification of IR

Methods to quantify IR could be divided into two categories:

dynamic tests and static tests. Dynamic tests mainly encompass the

hyperinsulinemic euglycemic glucose clamp (HEGC), the

frequently sampled intravenous glucose tolerance test (FSIVGTT),

and the oral glucose tolerance test (OGTT) (22). Among these

dynamic tests, the HEGC technique is the gold standard for

measuring IR, and OGTT is the most applied dynamic test.

Nevertheless, dynamic methods are resource and time consuming,

thus limiting their application in clinical practice. On the contrary,

static tests to estimate IR are more available and simpler, among

which the homeostatic model assessment of IR (HOMA-IR) is the

most commonly used, which is calculated just with the parameters

of fasting glucose and insulin (23). Meanwhile, various glycemic

indies and serum biomarkers, including insulin, C-peptide, glucose

levels, and glycated hemoglobin (HbA1c), are measured to assess

pancreatic b-cell function and sensitivity. Other anthropometric

characteristics are also used to evaluate IR, such as body mass index

(BMI), waist-to-hip circumference ratio (24).
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4 The presence and evidence of IR in
the retina

4.1 Diabetic retinopathy

T2DM and MetS are two representative diseases of IR, and the

latter is considered preclinical diabetes. Individuals with MetS were

reported to have a 5-fold increased risk for the development of

T2DM (25). Although the diagnosis of T2DM is definite with blood

glucose values meeting specific requirements, many patients may

experience preclinical diabetes. In this prediabetes period, patients

would undergo an unstable hyperglycemic state with a series of

metabolic disorders, also known as MetS (4). IR is thought to be

involved in the pathophysiology of MetS and diabetes. That is,

T2DM is characterized in the first step by the fact that insulin action

is impaired and pancreatic b-cells need to synthesize and secrete

more insulin to compensate for this IR state, which could lead to

hyperinsulinemia. In later stages, the insulin production is lower

than normal, and hypoinsulinemia would be observed with the

progressive reduced number and functional exhaustion of

pancreatic b-cells (26).
DR, one of the most important microvascular complications in

diabetes, has been regarded as a neurovascular coupling impairment

recently, which includes both retinal neurodegeneration and

vasculopathy (27). Whereas hyperglycemia has long been thought
Frontiers in Endocrinology 03
to be the primary driver in the progression of diabetic

complications, impaired insulin signaling is also suspected to

contribute to the retinal pathology. An experimental study

suggested that both restoration of glycemic control and retinal

insulin signaling can normalize diabetes-induced retinal

abnormality via mediating Akt kinase activity, the expression of

inflammatory mediators, and lipid synthetic pathway (28).

Meanwhile, it is easy to understand that intensive hypoglycemic

therapy in T1DM has been shown to effectively prevent the

occurrence and progression of DR (29). However, previous trials

evaluating the effects of intensive glycemic control in patients with

T2DM have provided inconsistent results (30, 31). The difference of

intensive glycemic control may imply that beyond hyperglycemia,

inherent risk factor of IR could contribute to the microvascular

outcomes in the cohort of T2DM. Similarly, another evidence for

the presence of IR has been shown in a study investigating structural

and functional changes in adolescents with type 1 and type 2

diabetes. Adolescents with T2DM appeared to be more affected

than those with T1DM with more significant multifocal

electroretinography (mfERG) implicit time delays and retinal

thinning (32). The authors attributed the reason for presenting

with more abnormalities in T2DM to the explanation that T2DM

patients are faced with more challenges that are inherent to IR, such

as elevated BMI, hyperinsulinemia, and dyslipidemia. Additionally,

Karaca et al. found that patients of MetS had similar
FIGURE 1

Insulin signaling transduction and insulin resistance. Insulin signaling pathways are complicated, among which the IRS/PI3K/Akt pathway has received
much attention as it is well conserved and plays a role in many cellular processes. Firstly, as the capacity of insulin receptors to bind with ligands is a
key factor in transduction, a downregulated number of insulin receptors and decreased insulin receptor affinity would significantly restrict normal
insulin signaling. The latter could be due to mutations in insulin receptors and autoimmune antibodies against insulin receptors. Subsequently, any
factors that reduce IRS phosphorylation or induce IRS phosphorylation at certain sites (such as serine IRS-1 phosphorylation at the 307 site) would
impair downstream pathway transduction. Collectively, in this process, any abnormalities in these agents may impair normal insulin signaling
transduction and lead to insulin resistance.
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neurodegeneration pattern to those with diabetes with no presence

of DR (4). This indicates that inherent mechanisms of MetS, such as

IR and adipose tissue-derived inflammation, could contribute to

neurodegeneration independent of the diabetic level of

hyperglycemia (4).

In addition to reflecting the role of IR in DR indirectly, recent

studies have also quantitatively evaluated the relevance of IR-related

parameters and DR. It is suggested that IR exacerbates DR, even as

an independent predictor (33–35). Moreover, recent advancements

in optical coherence tomography (OCT) technology have offered a

non-invasive, repeatable monitoring tool for DR with its automated

segmentation function. In a previous study, the insulin secretory/

resistance parameters, including the fasting insulin level and

HOMA-IR and HOMA-B scores in T2DM without DR, revealed

the very early microvascular changes measured by OCT

angiography (24). Likewise, our previous study indicated that IR

(reflected by HOMA-IR values) was an independent risk factor for

retinal ganglion cell-inner plexiform layer (GC-IPL) thinning,

reflecting retinal neurodegeneration in early T2DM (36).

Additionally, a relationship between cystoid macular edema and

IR was found by Zapara et al., as IR is a proinflammatory state (37).

Previous experimental studies at the cellular level can also help

shed light on the role of IR in DR. Müller cells, activated in the

initial stage of DR with increased expression of glial fibrillary acidic

protein (GFAP) and other cytokines, play an important role in

maintaining retinal homeostasis (38). Experimental data have

demonstrated that similar with that in retinal endothelial cells,

hyperglycemia environment incudes increased tumor necrosis

factor (TNF)-a and suppressors of cytokine-signaling 3 (SOCS3)

levels, which subsequently inhabit insulin signaling through the

phosphorylation of IRS-1Ser307, a key component of insulin

signaling transduction (39). Meanwhile, Silence of insulin

receptor substrate (IRS)-1 increases cell death in retinal Müller

cells (40, 41). In turn, the mutation of the serine 307 site on IRS-1

could block the inhibitory actions of TNF-a and SOCS3 in insulin

signaling, and thereby prevent apoptosis of rat retinal Müller cells

(rMC-1) (42). These studies suggests that drug targeted insulin

signaling (such as certain IRS-1 sites) could be effective in

protecting against diabetic damage to retina.
4.2 Glaucoma

Glaucoma represents a group of neurodegenerative diseases

characterized by progressive retinal ganglion cells dysfunction and

death. Although intraocular pressure (IOP) is the only modifiable

risk factor for glaucoma patients, hypotensive therapies are not

sufficient to prevent optic nerve degeneration and visual loss.

Obviously, other pathological mechanisms are involved. Despite

inconsistent evidence of the association between glaucoma and

diabetes (43–45), people with diabetes might be at an increased risk

of developing glaucoma after adjusting for some confounding

values (46–48). The intrinsic mechanism of this connection could

be attributed to IR, a comorbidity of a constellation of metabolic

abnormalities (49). IR in the retina involves damage to neurons,

blood vessels, and glia [(50)]. A Mendelian randomization study
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showed that a genetic predisposition to T2DM was associated with

an increased risk of primary open angle glaucoma (POAG) in the

European population [(51)]. A nationwide population-based

longitudinal cohort study found that diabetes status is a predictor

of glaucoma development in postmenopausal women. In particular,

patients treated with insulin were associated with higher risk of

glaucoma (52). Potential reasons for this phenomenon could be that

the use of insulin may be a marker for diabetes severity indicating

insulin resistance and high glycemic burden (52). The interplay

between diabetes and glaucoma, especially POAG, implies that

underlying physiological mechanism of IR in diabetes may

contribute to this correlation. Possible mechanisms were also

postulated in previous studies, including increased IOP, vascular

mechanism, and tissue remodeling of the trabecular meshwork and

lamina cribrosa (53, 54). An experimental study showed that IR in

the CNS induced by intracerebroventricular injection of S961, a

potent and specific blocker of insulin receptor, existed independent

of systemic IR and overt diabetes (10). In this study, ocular tissue as

an extension of the brain was involved in a series of pathological

processes brought about by downregulated insulin signaling,

including elevated IOP, morphological changes of the trabecular

meshwork, ciliary body dysfunction, and apoptosis in the retina and

optic nerve (10). This suggests that IR plays a critical role in the

pathogenesis of glaucoma, and improving insulin sensitivity could

be a potential therapeutic target.

IR could increase the risk of glaucoma through damage to retinal

ganglion cells (RGCs) and axons directly or through glial dysfunction

and IOP elevation indirectly. Decreasing insulin sensitivity disrupts

the balance of insulin signaling transduction, particularly mediated by

the PI3K/Akt pathway which serves as a central component

modulating insulin-induced neuronal survival (50). In RGCs,

activated Akt prevents the transcriptional activity of p53 and

decreases the expression of pro-apoptotic proteins, such as Bad,

caspase 9, and glycogen synthase kinase 3 beta (GSK3b) (55). And
dendritic retraction of RGCs is one of the earliest pathological

changes in glaucoma (56). Agostinone et al. demonstrated that

insulin signaling promotes dendrite and synapse regeneration after

axonal injury through insulin-dependent mTOR1/2 activation (57).

Other potential biological mechanisms explaining IR-induced RGCs

impairment in glaucoma include mitochondrial dysfunction, Tau

hyperphosphorylation, and amyloid disposition (50).

In addition to RGCs themselves, extracellular environment is

also crucial for RGCs survival and axonal transduction, including

vascular and glial components. In IR conditions, the imbalance

between NO and endothelin-1 via PI3K and MAPK-dependent

signaling may underlie the vascular endothelial disturbances in

glaucoma (58), corresponding to the vascular theory in the

development of glaucoma resulting from decreasing perfusion of

the optic nerve and intraneural ischemia. Insulin can affect glial

activation, participating in neuroinflammation, which is an

inextricable pathological process with IR in neurodegenerative

diseases (59). Müller cells, astrocytes, and microglial cells are

three major types of glia in the retina that maintain retinal

homeostasis by taking part in neuroinflammation and regulating

neurotrophic molecules (60). Under pathological conditions,

reactive activation of Müller cells is involved in inflammation and
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cell survival processes due to their intrinsic role in counteracting

stress damage (61). In addition, Müller cells could regulate the

process of oxidative stress through the expression of glutathione

(GSH) and glutamate transporters (62, 63). Meanwhile, as

mentioned above, insulin signaling pathways (particularly

through the PI3K/Akt pathway) in Müller cells are crucial in the

defense of oxidative and inflammatory damage (41, 42). Astrocytes,

positioned between the vasculature and neurons, form a cellular

network with neurons and other cell types to integrate insulin

signaling responses in retina. Decreasing insulin signaling has been

shown to impact glycogen synthesis (decreasing expression of the

insulin-responsive glucose transporter, GLUT-4) and metabolite

redistribution (decreasing gap junctions composed of connexin 43

(Cx43)) in astrocytes (64–66). Like other neuronal cells in the

central nervous system, RGCs require high energetic and metabolic

support. It is conceivable that any pathological changes in the

extracellular milieu could influence the survival and functions of

RGCs, which would become more susceptible to mechanical (IOP

elevation) and chemical (inflammatory factors) stress. Collectively,

improving IR or insulin signaling activation could be a promising

target for glaucoma treatment.
4.3 Age related macular degeneration

AMD is a leading cause of irreversible vision loss in the elderly

population in developed countries (67). Aging worldwide leads to

an exponential growth of individuals affected by AMD, and the

projected number of this population is 288 million in 2024 (68).

AMD can be classified into two forms: dry (also known as

nonexudative or atrophic) and wet (also known as exudative and

or neovascular). Early AMD is usually asymptomatic, while severe

vision loss occurs rapidly in late AMD, which could be further

categorized into neovascular AMD and geographic atrophy. The

pathogenesis of AMD is complicated with multiple risk factors,

including age, genetic variation, systemic diseases, diet, obesity and

smoking (69). At present, anti-vascular endothelial growth factor

(VEGF) is the first-line treatment for wet AMD, but there is no

effective treatment for early AMD or delaying its progression.

According to the International Diabetes Federation (IDF) criteria,

MetS represents a constellation of metabolic abnormalities involving

centrally distributed obesity, decreased high-density lipoprotein

cholesterol, elevated triglycerides, elevated blood pressure, and

hyperglycemia. Among these components of MetS, IR is a core

feature (70). MetS has long been postulated to be associated with

AMD. A previous study provided evidence that a wild-type mouse

model of MetS fed with a “fast food” diet showed retinal

ultrastructural changes relevant to AMD, including basal laminar

deposits, focal thickening of Bruch’s membrane, and a significant loss

of retinal pigment epithelium (RPE) cells (71). This in vivo study

suggests that a “fast food’’ diet mimicking MetS is sufficient to induce

altered retinal morphology, as some features seen in AMD.

Furthermore, some epidemiologic evidence from the Blue

Mountains Eye Study supported that MetS, obesity, high glucose,

and triglycerides were predictors of progression to late AMD with a

10-year follow-up period (72). In addition to MetS, the interplay
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between AMD and diabetes has attracted increasing attention from

various data sources, designs, and ethnic groups (73–77).

Although the potential mechanisms have not been fully

elucidated, the increased risk of AMD in individuals with MetS or

diabetes is thought to be associated with IR-induced oxidative stress

with the accumulation of advanced glycation end products (AGEs)

in multiple tissues, including photoreceptors, RPE, Bruch’s

membrane, and choroidal circulation (74). Second, IR associated

metabolic abnormalities, like hyperglycemia and dyslipidemia,

disrupt the homeostasis of the retina by inducing inflammatory

responses (78). The accumulation of AGEs and inflammatory

activations would lead to RPE/photoreceptors dysfunction and

even cellular death, outer retinal hypoxia, and a higher likelihood

of developing drusen and abnormal deposits (74, 79, 80). Third,

AGEs accumulation may upregulate VEGF expression in RPE cells,

which plays an important role in the neovascularization of both

exudative AMD and diabetic retinopathy (75, 81). Recently,

relevant studies demonstrated a dose-dependent decrease in

developing AMD among participants who had taken metformin,

the first-line medication used to treat T2DM patients and improve

insulin sensitivity (82, 83). These results provide evidence from

another perspective regarding the key role of IR in the occurrence

and progression of AMD, and improving IR may exert a beneficial

impact on the management of AMD patients. Moreover, a

biomedical study presented that unlike RPE cells obtained from

non-AMD normal control eyes, insulin signaling transduction

through phosphorylated ERK 1/2 was impaired in the

proliferation of RPE cells from patients with AMD (84). Since

insulin is a mitogen for human RPE cells (85), further investigation

of insulin related kinase signaling abnormalities in RPE cells from

AMD patients may help explore new therapeutic targets.

There is no denying that these data provide new insights into

the pathogenesis of AMD, although inconsistent opinions exist

regarding the relationships between MetS/T2DM and AMD

progression (73, 86–88). As mentioned above, either MetS or

T2DM is not a distinct disease entity but a sequence of broader

underlying metabolic abnormalities characterized by IR. Herein, we

may conclude that inherent IR-related molecular mechanisms in

MetS/T2DM patients aggravate the occurrence and progression of

AMD. Taken together, further epidemiological and longitudinal

studies are needed to investigate the exact relationships between

AMD and MetS or T2DM. More biological experiments involving

IR associated signal pathways would help elucidate the molecular

mechanisms behind these relationships and provide additional

strategies for the prevention of AMD.
5 Possible mechanisms of IR
associated with retinopathies

As insulin signaling transduction is complicated, involving

many enzymes and proteins, any disturbances in the transduction

pathways would cause IR. While the exact physiological

mechanisms of the interplay between IR and associated

retinopathies have not been completely ascertained, potential

mechanisms of oxidative stress, subclinical inflammation, vascular
frontiersin.org

https://doi.org/10.3389/fendo.2024.1415521
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zheng and Yu 10.3389/fendo.2024.1415521
mechanisms, and neural impairments may be involved (Figure 2).

In this review, we would explore these mechanisms in detail as

below. In addition, it should be noted that some other mechanisms

have also been postulated previously, including mitochondrial

dysfunction, endoplasmic reticulum stress, etc (6).
5.1 Oxidative stress

Although retinal abnormalities in IR patients could be explained by

chronic dyslipidemia, hyperinsulinemia and adipose inflammation, the

core mechanism of these factors could be attributed to mitochondrial

dysfunction and oxidative stress (89). Indeed, there is emerging

evidence that retinopathy in IR models is initiated and propagated

by multiple metabolic toxicities associated with excess production of

reactive oxygen species (ROS) (90). Fernandes and colleagues observed

increased oxidative stress and peroxynitrite-mediated protein oxidation

in retinas from diabetic GK rats, a model characterized by mild
Frontiers in Endocrinology 06
hyperglycemia, insulin resistance, normolipidemia, and

hyperinsulinemia (91). An increase in markers of oxidative stress,

including gp91phox, MDA and 8OH-dG, was observed in the inner

retina of high-fat diet (HFD) mice, indicating increased oxidative DNA

and lipid peroxidation injury were present in obese and insulin-

resistant animals compared to chow diet (CD) fed controls (92).

Generally, oxidative stress is defined as an imbalance between the

production of reactive oxygen species (ROS) and endogenous

antioxidants, which includes enzymic antioxidants such as

superoxide oxidase (SOD), catalase (CAT) and glutathione

peroxidase, and non-enzymic antioxidants such as GSH (93–95).

Accordingly, when the redox balance is upset, the oxidative damage

would occur in which the level of ROS exceeds the capacity of

antioxidative defense system to neutralize them. Overproduction of

ROS results in oxidative damage to cell structure and subsequently

modifying cell function, including lipids loss and increased membrane

permeability, modifying nucleic acids leading to mutations and

apoptosis, as well as oxidatively modified proteins (96). Collectively,
FIGURE 2

Potential mechanisms of insulin resistance on certain ocular diseases. Possible pathophysiological mechanisms of the interplay between insulin
resistance (IR) and certain ocular diseases may include oxidative stress, inflammation, vasoconstriction and endothelial dysfunction, and
neurodegeneration. Insulin resistance promotes the production of reactive oxygen species (ROS) (malondialdehyde (MDA), advanced glycation end
products (AGEs), 8‐hydroxy‐2′‐deoxyguanosine (8‐OH‐dG), etc.), while the production of antioxidants is decreased, such as glutathione (GSH) and
superoxide oxidase (SOD). The imbalance between the ROS and antioxidants would cause oxidative stress, which in turn induce IR by impairing
insulin signal transduction. Many inflammatory factors and cytokines, particularly tumor necrosis factor-a (TNF-a), monocyte chemotactic protein-1
(MCP-1), and C-reactive protein (CRP), are upregulated in IR. In turn, both inflammatory agents and oxidative stress can induce IR through activating
IKK-b/NF-kB and JNK pathways. Under IR, increasing neuronal apoptosis, glial reactive activation (upregulated neural inflammation), and synapse
degeneration are involved. IR additionally contributes to vascular dysfunction by causing nitric oxide/endothelin-1 imbalance (vasoconstriction) and
endothelial cell dysfunction.
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hyperglycemia, oxidative stress, and redox homeostasis changes are

fundamental events in the pathogenesis of IR associated retinopathies,

contributing to the production of pro-inflammatory cytokines,

abnormalities of multiple retinal cells, and extracellular matrix

remodeling (97).

Under IR circumstances, disturbances of oxidative and

antioxidative products have been reported in the tissues of liver,

skeletal muscle, kidney and brain (22, 98–100). Additionally, the

retina is particularly sensitive to oxidative stress, considering the high

oxygen demand and consumption and its high concentration of

polyunsaturated fatty acids (PUFA) in the outer segments of

photoreceptor (101). Although PUFA are thought to protect against

oxidative and inflammatory damage, they may also serve as a substrate

for free radicals under special conditions as they provide an available

source of electrons (94). Therefore, oxidative stress under IR conditions

with overproduction of ROS plays a prominent role in retinopathies.
5.2 Chronic low-grade inflammation

It is recognized that subclinical chronic inflammation and

activation of the immune system are involved in the pathogenesis

of IR-related metabolic disorders and even seem to be independent

risk factors (102). Pro-inflammatory cytokines (interleukin (IL)-1b,
IL-6, and TNF-a), chemokines, and acute-phase proteins such as C-

reactive protein (CRP) are elevated in IR (103, 104). These pro-

inflammatory makers promote IR by interfering with the c-JUN N-

terminal kinase (JNK), nuclear factor-kappa B (NF-kB), and the

NADPH oxidative pathways (105), which could activate serine

phosphorylation of IRS-1 and further block insulin signaling

proteins (such as PI3K-Akt and AMPK) (106). Meanwhile,

inflammatory reaction and oxidative stress are two interrelated

processes (79). In this process, the activation of oxidative stress may

regulate inflammatory genes and lead to inflammation, which

would in turn aggregate oxidative stress. In addition, it is

reported that SOCS proteins induced by inflammation cytokines

can trigger IR and inhibit pro-survival insulin signaling pathways in

retina (20), supporting that SOCS-mediated IRS degradation

inhabits insulin signaling transduction via insulin receptor.

Accordingly, these studies provide evidence about a link between

IR and inflammation.
5.3 Endothelial dysfunction
and vasoconstriction

Endothelial dysfunction, closely related to IR, is the core of

microvascular complications (107). To some extent, IR has a close

relationship with systemic metabolic abnormalities, such as

hyperglycemia and dyslipidemia, so a link between IR and

microvascular dysfunction is not surprising. Insulin has been

known to play a direct role in microvascular physiology. In

endothelial cells, insulin-mediated Akt activation exerts

antiapoptotic effects via phosphorylation of caspase-9 (108). Insulin

is a potent vasoactive hormone, which is demonstrated to stimulate

the expression and activation of endothelial NO synthase via PI3K
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pathway (50). Endothelial cell-mediated autoregulation of blood flow

is sustained by a balance between NO-dependent vasodilation and

the activation of vasoconstrictor mechanisms, including endothelin-1

(ET-1), sympathetic activity, and the renin-angiotensin system (21).

In IR conditions, impairments of the PI3K and AMPK-dependent

signaling may cause an imbalance between NO and ET-1 and lead to

endothelial dysfunction and ischemic injury (109). Moreover, retinal

leukostasis, an important contributor to capillary occlusion in

ischemic retinopathies, is correlated to endothelial dysfunction and

could be enhanced by IR independently (110).
5.4 Neurodegenerative impairments

Insulin and insulin-like growth factor have been reported to play

a role in the survival of RGCs, which are responsible for transmitting

visual information together with their axons from the eye to the brain

(5). That is, functional insulin and downstream elements in insulin

signaling pathways are required in neurodegenerative diseases. In

addition to vascular theory, neurodegenerative impairments have

been increasingly recognized among the diseases listed above, no

matter whether primary or secondary to primary disorders. With

regard to neurodegenerative diseases, the term “neurovascular unit”

was put forward and first applied to blood-brain barrier and then to

retina, which refers to the functional coupling and interdependency

of neurons, glia, and vasculature (111). Based on this concept, retinal

neurodegenerative diseases not only include neural-cell apoptosis but

also glial activation and neural function impairments. It is suggested

that neuroinflammation and microglial activation play a central role

in the pathophysiology of neurodegenerative diseases (112).

Consistent with that, microglial cells are shown to be the main

source of ROS, TNF-a, and glutamate, all of which are neurotoxic

when released at a high level after glial activation induced by the

stimulus of toll-like receptors (TLRs) and NF-kB (113, 114). As

mentioned above, PI3K and Akt are identified as central components

mediating downstream insulin-induced neuronal survival,

neuroinflammation, and dendritic regeneration (50). In an

experimental study of type 2 diabetic rats, insulin receptors and

downstream Akt signaling were found to regulate neural cell survival

(115). In addition, although the exact mechanism has not yet been

elucidated, IR is suggested to be associated with elevated intraocular

pressure (IOP) (116, 117), subsequently causing mechanical

impairments for RGCs. Therefore, targeting activation of insulin

signaling and improve IR could serve as effective neuro-

protective therapy.
6 Potential treatment target of IR in
retinal diseases

In the CNS, restoring insulin signaling has significantly prevented

cognitive decline in Alzheimer’s disease (AD) through the

administration of intranasal insulin without altering blood insulin

and glucose levels (118). IR is shown to be directly correlated with AD

pathology, including the production and clearance of Ab peptide, tau

hyperphosphorylation, immune function, and inflammatory markers
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(119, 120). As listed above, though the occurrence of DR, AMD, and

glaucoma is multifactorial with distinct clinical features, IR may be a

common risk factor causing retinal impairments through

pathophysiological mechanisms involving oxidative stress, chronic

inflammation, vascular endothelial dysfunction, and retinal neural

loss, etc. Moreover, in addition to above retinal diseases we have

reviewed, retinal vein occlusion has also been proposed to be

inextricably linked to IR (49). Thus, it is conceivable that the

actions of insulin signaling pathway exert an important effect on

the viability of retinal cells through the activation of downstream pro-

survival kinases; thereby, the restoration of insulin signaling

transduction could be an underlying therapeutic target in certain

retinal diseases. This point is of vital importance for the early

management of patients with retinal diseases, given that current

available treatments in retinal diseases could not achieve desired

results. For example, either surgical intervention or retinal

photocoagulation is largely destructive, both of which only delay

disease progression. There is, however, a small percentage of eyes

(15–40%) that fail to respond or only partially respond to intravitreal

injections of vascular endothelial growth factor antagonists (121).

In fact, IR is not equal to hypoinsulinemia, but a decreased

sensitivity of insulin receptors and impaired activation of specific

downstream pathways. As stated in previous studies, in insulin-

responsive tissues such as the heart, liver, and adipose tissue, IR is

an adaptive defense mechanism that, to some extent, could be able

to protect the tissues from nutrient-induced damage (122). Insulin-

induced metabolic stress is likely to occur with systemic high-dose

insulin therapy without nutrient off-loading in refractory patients

(123). Therefore, no matter whether it is systemic treatment or

topical retinal administration, improving IR not only means

intensive exogenous insulin usage, but also improves the

sensitivity of insulin receptors and the transduction of certain

insulin pathways. Undoubtedly, insulin, a primary anabolic

peptide, could play a key role in the regulation of retinal

functions. Nevertheless, it should be emphasized that insulin

signaling pathways are complex, in which selective activation or

specific mutation may cause different phenotypes. Many detailed

mechanisms of insulin signaling molecules remain undiscovered

currently and deserve further investigation. Another alternative

approach to improve IR may be lifestyle modification aimed at

losing weight through restricted calorie intake and increased

physical activity (71, 124). Future prospective longitudinal studies

are also needed to validate whether lifestyle intervention would be

effective to reduce the incidence and delay the progression of

retinal diseases.
7 Conclusion

IR could be defined as reduced insulin sensitivity in target

organs, which represents the comorbidity of a sequence of
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metabolic abnormalities, such as obesity, hyperglycemia, and

dyslipidemia. In addition to common target organs (liver, skeletal

muscle, etc.), the retina has also been demonstrated to be insulin-

sensitive, in which insulin participates in many cellular processes

and plays a key role in retinal cell survival. Previous studies have

provided evidence that IR is closely associated with several retinal

diseases, especially DR, AMD, and glaucoma. Possible explanations

for these associations include oxidative stress, chronic low-grade

inflammation, endothelial dysfunction and vasoconstriction, and

neurodegenerative impairments. Thus, it may be important to

monitor the IR conditions in populations and identify those at

high IR levels. Subsequently, improving IR may provide new

insights for the prevention and treatment of certain retinal

diseases. Nevertheless, it should be noted that, on the one hand,

the insulin signaling pathways are complex, and on the other hand,

current prospective studies regarding the role of improving IR in

the management of certain retinal diseases are relatively lacking.

Consequently, more clinical and experimental studies are warranted

to validate the mutual relationships between IR and certain retinal

diseases, which would be beneficial for the management of certain

ocular diseases.
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