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This article discusses data showing that mammals, including humans, have two

sources of melatonin that exhibit different functions. The best-known source of

melatonin, herein referred to as Source #1, is the pineal gland. In this organ,

melatonin production is circadian with maximal synthesis and release into the

blood and cerebrospinal fluid occurring during the night. Of the total amount of

melatonin produced in mammals, we speculate that less than 5% is synthesized

by the pineal gland. The melatonin rhythm has the primary function of

influencing the circadian clock at the level of the suprachiasmatic nucleus (the

CSF melatonin) and the clockwork in all peripheral organs (the blood melatonin)

via receptor-mediated actions. A second source of melatonin (Source # 2) is

from multiple tissues throughout the body, probably being synthesized in the

mitochondria of these cells. This constitutes the bulk of the melatonin produced

in mammals and is concerned with metabolic regulation. This review emphasizes

the action of melatonin from peripheral sources in determining re-dox

homeostasis, but it has other critical metabolic effects as well. Extrapineal

melatonin synthesis does not exhibit a circadian rhythm and it is not released

into the blood but acts locally in its cell of origin and possibly in a paracrinematter

on adjacent cells. The factors that control/influence melatonin synthesis at

extrapineal sites are unknown. We propose that the concentration of

melatonin in these cells is determined by the subcellular redox state and that

melatonin synthesis may be inducible under stressful conditions as in plant cells.
KEYWORDS

extrapineal melatonin, circadian rhythms, suprachiasmatic nucleus, mitochondria,
redox homeostasis, free radicals, cerebrospinal fluid, cell metabolism
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1 Introduction

During their early investigative history, the pineal gland/organ

and associated epithalamic structures were morphologically

described in detail in many vertebrate species. A significant

portion of these publications reported that the outgrowths of the

posterodorsal thalamus, i.e., the pineal and the frontal organ (also

collectively known as the pineal complex in amphibians), contain

photoreceptors much like those in the lateral eyes suggesting they

respond directly to light penetrating the area; at that time, the pineal

was often referred to as the third eye (1). Further evidence such as

the presence of a cartilaginous transparent plate enclosing the

occipital fontanel, which allowed the easy penetration of light into

the epithalamus, indicated the same as did electrical activity

recordings from the light stimulated pineal in species such as the

teleost, Salmo irideus (2). With the discovery of a genuine dark-

dependent specific secretory product (melatonin) in the

mammalian pineal gland in the late 1950s, the investigative

landscape of the gland dramatically and rapidly changed with

developments in the field currently occurring at an almost

exponential rate (3).

It is now apparent that melatonin is not exclusively of pineal

origin. There are two major endogenous sources of this molecule,

herein referred to as Source # 1 (pineal melatonin) and Source # 2

(melatonin produced in extrapineal tissues). These melatonin pools

are differentially regulated and, based on current evidence, also have

different primary functions. These are concepts elaborated in the

current review.
2 Pineal melatonin (Source # 1)

2.1 The backstory

N-acetyl-5-methoxytryptamine, commonly known as

melatonin, was isolated and chemically identified in bovine pineal

tissue (4, 5). Prior to that, the pineal gland was considered to be

evolutionarily vestigial. The impetus for this study was actually

published 50 years earlier when it was reported that feeding frog

larvae (tadpoles) minced bovine pineal glands caused their skin to

lighten dramatically due to the aggregation of the melanin pigment

around the nucleus of skin chromatophores (6). Lerner and

colleagues (5), since they were dermatologists, surmised that the

isolated factor of pineal origin might be useful in treating the

human skin disorder known as vitiligo. Unfortunately, after its

isolation and when tested in humans, melatonin did not appreciably

alter the abnormal skin pigmentation in human melanocytes (7).

Shortly after its discovery, the biosynthetic pathway of melatonin

from serotonin was identified; thus, it was shown that serotonin is

first N-acetylated to form N-acetylserotonin which is then O-

methylated resulting in the formation of melatonin (8, 9).

Almost concurrent with the identification of the biosynthetic

pathway for melatonin from serotonin, investigators initiated

studies related to the effects of the light:dark cycle on pineal

melatonin synthesis. These investigations were stimulated by

earlier observations showing that pinealocyte morphology
Frontiers in Endocrinology 02
changed due to alterations in the photoperiod to which animals

were exposed (10, 11). Thus, Wurtman and co-workers (12)

exposed rats to continual darkness for 6 days and reported a

striking rise in the activity of the melatonin synthesizing enzyme

hydroxyindole-O-methyltransferase (HIOMT) (now called

serotonin N-acetyltransferase/ASMT) and surmised that pineal

melatonin production also was elevated during the dark. While

they were correct in their assumption that pineal melatonin

synthesis is elevated during darkness, subsequent studies have not

shown that HIOMT/ASMT rises appreciably during the daily dark

period. Rather, N-acetyltransferase (NAT), which controls the

conversion of serotonin to N-acetylserotonin, exhibits a very large

nighttime rise in activity and is rate-limiting enzyme in pineal

melatonin production (13).

In Figure 1, the enzyme regulating the conversion of serotonin

to N-acetylserotonin is listed as AANAT (arylalkylamine N-

acetyltransferase). The acronym, NAT, is the more broad-

spectrum arylamine N-acetyltransferase that also acetylates

serotonin, which allows for the production of melatonin in

species that are deficient in AANAT and incorrectly defined as

melatonin knock out (14); this enzyme allows for melatonin

production in peripheral organs as described by Slominski and

colleagues (15). In addition, acetylation of serotonin by the

alternative to AANAT was described not only in C57BL/6 mouse

but also in humans, rats and hamsters (16–18).

Quay was the first to document that pineal melatonin synthesis

was cyclic and that its production was clearly higher at night than

during the day (19). Moreover, it was quickly shown that the

function of the pineal gland (20) as well as its biosynthetic

activity (12) are related to the light:dark cycle perceived by the

lateral eyes rather than being dependent on direct photostimulation

as had been reported in some amphibians and reptiles (21). This

dependency was not unexpected considering the already-described

definition of the neural connections between the visual system and

the rat pineal gland (22). The circadian rhythm in pineal melatonin

synthesis and secretion has now been confirmed in dozens of

mammalian species, including in the human (23) and is

considered axiomatic (Figure 1).
2.2 Functions of pineal-derived melatonin
(Source # 1)

While Lerner and Nordlund failed to show that oral melatonin

altered pigment distribution in human melanocytes as with

amphibian larvae (7), interest quickly shifted to pineal

(melatonin)/reproductive interactions. These studies were

performed since even prior to the discovery of melatonin, books

authored by Kitay and Altschule (24) and Thieblot and LeBars (25),

had hinted at the possibility that pineal function may impact

reproductive physiology. Different approaches were taken for

these investigations; Wurtman et al. (26) treated rats with

melatonin, maintained them under long photoperiods and

thereafter examined pubertal development and the estrous cycle,

based on the time of vaginal opening and on daily vaginal smears.

The results were ambiguous with very minor changes seen in
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pubertal onset and estrous cycle perturbations. The choice of the rat

for this study was not optimal, since its reproductive system is

essentially insensitive to pineal removal or to melatonin given that

this highly inbred species is not a seasonal breeder (27). By

comparison, pineal removal (with the loss of the circadian

melatonin rhythm) prevented the dramatic reproductive collapse

that occurs in the photosensitive Syrian hamster (Mesocricetus

auratus) kept under short, winter-type photoperiods; this effect

was observed in both male and female hamsters (28, 29). These were

the first results to unequivocally document an important role for the

pineal gland and melatonin on any aspect of physiology in a

mammal. Furthermore, these findings, along with others, led to

the now well-established theory that seasonal fluctuations in

reproductive capability in photosensitve species are a result of the

changing duration of the elevated nocturnal pineal melatonin

secretion, which is determined by the annual fluctuations in night

length (30, 31). Thus, the melatonin rhythm provides both clock

and calendar information (32).
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One feature that has complicated the identification of the

mechanisms by which the changing melatonin signal regulates

annual reproductive changes in seasonally breeding mammals is the

fact that in the Syrian hamster (a long day breeder) the reproductive

organs are atrophic in the winter which prevents mating, pregnancy

and delivery of the young (30). Conversely, in seasonally breeding

sheep (a short-day breeder) just the opposite occurs; thus, they are

reproductively competent in the short days of the winter but not in the

summer (33). Thus, the long duration daily melatonin rise, typically of

the short days of the winter, can either inhibit or promote reproductive

capability. This suggests that melatonin is neither pro- nor anti-

gonadotrophic; rather it is a passive signal of night length which

provides time of year information (calendar) (32) with the use of the

message being species dependent. A recent review (34) summarizes

some of the hypothalamic mechanisms by which melatonin mediates

seasonal reproductive changes.

Based on the rhythmic secretion of melatonin from the pineal,

the circadian actions of the molecule were quickly investigated and
FIGURE 1

The control of melatonin synthesis in the pineal gland (Source # 1) of vertebrates, especially mammals, has been thoroughly investigated from the
level of the eyes to the release of melatonin from the gland (top panel); numerous excellent articles and reviews have discussed these subjects
which the reader can consult for details. Conventionally, it was thought that the primary route of melatonin secretion was into the perfuse capillary
bed in the pineal with nocturnal blood levels exhibiting a measurable rise (middle panel); blood values are typically in the pg/mL range in this fluid.
Melatonin is also released into the third ventricular cerebrospinal fluid (CSF) with the rhythm in this fluid exhibiting a much greater amplitude than in
the blood. Melatonin diffuses quickly throughout the ventricles and at the base of the third ventricle melatonin presumably has easy access to the
master circadian oscillator (suprachiasmatic nucleus; SCN) either due to simple diffusion or transfer via tanycytes. This feedback effect of melatonin
on the circadian clock, which is receptor mediated, has an important role in synchronizing circadian processes within the SCN helping to ensure
well-regulated 24-hour rhythms throughout the body, e.g., sleep-wake cycle (a primary function of Source # 1 melatonin). The duration of the
nocturnal rise in melatonin which is dependent on seasonally changing day/night length also mediates circannual rhythms. The SCN influences
circadian rhythms via the visceral/involuntary nervous system (the autonomic nervous system) which innervates smooth and cardiac muscle and
many exocrine and endocrine glands. Since all cells are assumed to possess clock genes, the circadian blood melatonin cycle is believed to
influence their expression including cells not directly innervated by the autonomic nervous system. In advanced age, the SCN/pineal/melatonin axis
deteriorates leading to weaken circadian rhythms which negatively impact disease incidence and general health.
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thousands of reports related to this subject have been published

(35). This important research has led to advances in our

understanding of the function of the master circadian pacemaker,

i.e., the suprachiasmatic nucleus (SCN) (36), which melatonin helps

to entrain and to the novel mechanisms of photoreception involved

in the regulation of physiological rhythms generally and the pineal

melatonin cycle specifically (Figure 1) (37).

The melatonin/circadian rhythm field is massive with many

clinical applications already having been proposed or established

(38). Many of these studies relate to melatonin’s ability to promote

sleep (39). It seems likely that there is no system in the organism,

either normal or pathological, that avoids the influence of the SCN

or the melatonin cycle (40, 41). Clock genes related to these actions

are found in essentially every cell (42, 43).

Since the circadian melatonin cycle has been identified in the

blood of every mammalian species where it has been examined

(with the possible exception of some mice which genetically lack the

enzymatic machinery to synthesize melatonin in the pineal gland),

it was a reasonable assumption that the synchronizing actions of

melatonin on the SCN is a result of the variation in day:night blood

melatonin levels (44). Besides releasing melatonin into the

circulation in small amounts (usually levels are in the range of

pg/mL), melatonin is also discharged directly into the cerebrospinal

fluid (CSF) of the third ventricle and is likely an important primary

secretory pathway since the nocturnal elevation in this fluid is

roughly an order of magnitude greater than that in the blood

(Figure 1) (45). Since melatonin in the third ventricular CSF

would have easy access to the nearby SCN, it has been suggested

that the greater amplitude CSF melatonin cycle is actually

responsible for its synchronizing effect at the level of the SCN

(46). Under any circumstances, the relationship between melatonin

and control of circadian rhythms, and thereby also circannual cycles

by the SCN, is indisputable and are major functions of pineal-

derived melatonin (Source #1) (30, 47, 48).

While the circadian melatonin rhythm in the CSF may

synchronize the activity of the SCN, it seems likely that the blood

melatonin cycle regulates the clock genes in peripheral cells

(Figure 1) (49) along with neural information that arrives from

the SCN via the autonomic nervous system innervation. The ability

of the melatonin cycle to adjust circadian biology is also consistent

with the observations that the diminished melatonin levels in the

aged are associated with generalized chronodisruption (35). It is not

known, however, whether the deteriorating melatonin values in the

aged interrupt normal SCN physiology or whether the faltering

SCN function causes the drop in melatonin secretion since these

actions are mutually dependent. Seemingly the major functions of

the cyclic production of melatonin by the pineal gland of vertebrates

relate to circadian biology.

Surgical removal of the pineal gland in mammals is usually

associated with essentially an absence of blood melatonin levels with

no discernible rhythm. Pinealectomy in some poikilothermic

vertebrates, however, does not result in a loss of the circadian

blood melatonin cycle (50). Also, in these species, the melatonin

rhythm may be dictated by day:night ambient temperature

variations. Melatonin is associated with the pineal gland only in

vertebrates since they are the only species that have this organ; still,
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this indoleamine is found (Source #2) throughout the animal and

plant kingdoms including protists and in plants, all species that lack

a pineal gland and have no equivalent homolog. There are also some

vertebrates that lack a morphological discernible pineal gland, but

still exhibit a light/dark-related low amplitude blood melatonin

cycle, e.g., the alligator (Alligator mississippiensis) (51), and other

members of the subclass of Archoasurian reptiles. The authors

surmised that the melatonin cycle in these species is probably not

involved in circadian regulation; moreover, they felt this rhythm

does not originate from pineal tissue, i.e., rather being of extrapineal

origin, since this structure is morphological absent. It seems more

likely, however, that these species have functional pinealocytes

diffusely distributed in their epithalamus that are not organized

into an identifiable discrete gland.
3 Extrapineal melatonin (Source # 2)

3.1 The backstory

Within a year after the discovery of melatonin in the pineal

gland (5), the same group of investigators also found melatonin in

the sciatic nerves of humans and in other mammalian peripheral

nerves (52). While they did not speculate on its origin since they did

not examine its local synthesis, most likely they thought it was

pineal-derived melatonin taken up from the blood.

Since then, melatonin has been identified in many cells not

associated with the pineal gland; this is generally referred to as

extrapineal melatonin (Source#2) (53, 54). The amount of

melatonin found outside the pineal gland is massive in

comparison with what presumably could be produced in this

small neural outgrowth where its synthesis only occurs during the

daily dark period. This also becomes highly relevant in animals

living at extremely high latitudes where persistent darkness for long

periods totally eliminates the blood melatonin rhythm, sometimes

for multiple months of the year (55). If the total melatonin load in

these species was derived exclusively from the pineal gland, they

would be devoid of all melatonin for a significant portion of each

year. Also noteworthy is that non-vertebrate species, that is,

invertebrates, protists and plants, also contain melatonin,

sometimes in much higher concentrations than in vertebrates

(56–58). It seems unlikely that the cells of millions of species that

lack any semblance of a pineal gland would synthesize melatonin,

while vertebrate non-pineal cells would not do so.

The proposed evolution of melatonin also predicts that

melatonin would be produced in many cells/organs in addition to

the pineal gland (59, 60). As currently theorized, melatonin evolved

2.5 to 2.0 billion years ago (bya) in bacteria at a time when

eukaryotes did not yet exist, with its initial function being that of

a reactive oxygen species (ROS) scavenger (61). Its evolution may

have occurred in association with the Great Oxidation Event (2.5-

2.0 bya) when the Earth’s atmospheric concentrations of oxygen

rose profoundly because of its release from the photosynthesizing

microbes, cyanobacteria (Figure 2) (62, 63). Although the

photosynthetic prokaryotes, cyanobacteria, did not possess

chloroplasts, they had membranous photosynthesizing pigments
frontiersin.org
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which could capture and use solar energy for photosynthesis. Due to

the toxicity of the oxygen-based derivatives (ROS), the need for

protective antioxidants increased, presumably resulting in the

evolution of melatonin and other ROS neutralizing or

metabolizing species (64). The evolution of melatonin presumably

occurred concurrently in both photosynthesizing cyanobacteria and

in non-photosynthesizing bacteria, e.g., a-proteobacteria, of which
multiple types share a common ancestor (65).

With the arrival of primitive eukaryotes, they internalized

melatonin-producing bacteria as food or as an energy source. The

phagocytized non-photosynthetic bacteria (symbionts) over eons

evolved into mitochondria while the engulfed photosynthesizing

bacteria became chloroplasts (known as the well-established

endosymbiotic theory) of the early eukaryotes and during this

process the melatonin-synthesizing capacity of the bacteria-

derived organelles, both chloroplasts and mitochondria, was

retained (Figure 2). Moreover, since all present-day eukaryotic

cells (with few exceptions) contain mitochondria, chloroplasts, or

both, they continue to be a source of melatonin (see below). The

pineal gland, which is only found in vertebrates (which did not

appear until the Cambrian explosion about 520 million years ago;

mya), is a rather recently evolved organ for melatonin synthesis.

Thus, melatonin likely existed for millions of years before the pineal

gland even evolved. When melatonin receptors first appeared has

not been thoroughly investigated but is surmised to have occurred

during the Triassic Period (250 mya) (66), so the functions of

melatonin (and its metabolites) prior to that time were receptor-

independent, e.g., they functioned in the modulation of metabolic

processes without an intervening receptor including as a direct ROS

scavenger, etc. (61). Both non-receptor-mediated and receptor-

dependent functions of melatonin are retained in present day

vertebrate species (67).
Frontiers in Endocrinology 05
Numerous papers documenting the presence of melatonin in

invertebrates and in protists, including algae, which are not classified

as plants although most algae species have the capacity of

photosynthesis for energy production. The findings of these reports

prompted investigations into examining the possible presence of

melatonin in photosynthetic land plants. Three reports were

published in 1995 by independent groups of investigators that

simultaneously showed unequivocally that the plants tested contain

melatonin. In these studies, multiple techniques were used to identify

melatonin in the plant species examined (68–70); shortly thereafter, it

was reported that the melatonin concentration in the seeds of edible

plants varies widely (71). Furthermore, melatonin has been identified in

all plant organs: leaves, stems, roots, flowers, etc. (72), some of which

contain cells capable of photosynthesis and others that do not. Since

melatonin produced by plant cells cannot be quickly circulated/

transferred among plant organs, it is likely that all cells generate this

indoleamine, i.e., a single plant tissue does not produce melatonin

which is then distributed to other plant appendages.

Surgical removal of the pineal gland in mammals is always

associated with essentially an absence of blood melatonin levels with

no discernible rhythm. Melatonin is associated with the pineal gland

only in vertebrates since they are the only species that have this organ;

but the indoleamine is found in invertebrates including protists and in

plants, all species that lack a pineal gland and have no pineal homolog.
3.2 The role of extrapineal melatonin
(Source # 2): regulation of
redox homeostasis

Studies on the actions of melatonin in relation to circadian

biology continue to be intensively investigated; this action clearly
FIGURE 2

The presence of melatonin in the mitochondria and chloroplasts of present-day species is consistent with the endosymbiotic theory which explains
the derivation of these organelles, which is diagrammatically summarized in this figure. Proto-prokaryotic organisms (bacteria) are estimated to have
evolved perhaps as early as 3.7 to 3.5 billion years ago; over the next billion and a half years these cells developed intracellular organelles resulting in
the formation of primitive eukaryotes. Melatonin synthesizing capacity in prokaryotes predictably evolved during the geologic period referred to as
the Great Oxidation Event (2.5 to 2.0 billion years ago) which necessitated organisms to develop antioxidants to evade the toxicity of oxygen-based
derivatives. During their evolution eukaryotes engulfed/phagocytized prokaryotes for food. Over time these engulfed organisms, i.e., either
protobacteria (forming mitochondria) or photosynthesizing cyanobacteria (forming chloroplasts), developed a symbiotic relationship with their host
cells. The host cells took advantage of the energy producing network and the melatonin-forming capacity of the engulfed prokaryotes and, because
of these functions were beneficial, both were preserved in all eukaryotic cells that exist today.
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involves the cyclic production and release of melatonin from the

pineal gland (Source #1). More recently, other investigations have

proven that the actions of melatonin far exceed those that influence

clock functions. Mounting evidence in recent years supports the

extensive interaction between the circadian and redox systems. Such

a relationship is not surprising because most diurnal or nocturnal

organisms display daily oscillations in energy intake, locomotor

activity, and exposure to exogenous and internally generated

oxidants (73). The transcriptional clock controls the levels of

many antioxidant proteins and redox-active cofactors. Conversely,

the cellular redox state has been shown to feed back to the

transcriptional oscillator via redox-sensitive transcription factors

and enzymes. Thus, these intrinsic clocks are thought to have co-

evolved with cellular redox regulation (73, 74).

The discovery and repeated confirmation of melatonin as an

oxygen-based free radical scavenger and antioxidant represents a

paradigm shift (61, 75–82), especially since this applied to melatonin

at both the pinealocyte level, and to extrapineal cells (Source # 2). This

provides all cells additional protection against the continual

bombardment and potential molecular destruction caused by ROS as

well as by reactive nitrogen species (RNS) (83–85). Even though

melatonin and its metabolites are highly efficient radical detoxifiers

(86–88), it is apparent that the small quantity of melatonin released

from the pineal gland on a nightly basis would not be sufficient to

combat or neutralize the total radical free load that an entire organism

generates every day. Thus, if melatonin does function as a system-wide

antioxidant, sources of melatonin other than the pineal gland would be

necessary. Obviously, this is even more apparent in invertebrates,

protists, and plants that have no pineal gland. This problem was

solved when melatonin was identified in many peripheral organs (53,

89, 90) and even more so when it is located in the mitochondria of

these cells as has been shown (91).

Not only is melatonin produced by peripheral cells, but

importantly it is likely generated specifically in mitochondria

(Figure 3) (59, 92, 93); this is critical since these organelles are

major contributors to free radical generation. The presence of

melatonin in these organelles is likely of special importance when

there is a rapid deluge of newly produced radicals such as occurs

during exposure to ionizing radiation (94), injurious chemicals such

as paraquat (95), or toxic drugs such as including chemotherapies

(96). During these precarious situations it is essential to have a

multifaceted antioxidant in mitochondria to quickly neutralize the

highly reactive ROS/RNS to avoid functional deterioration of these

critically-important organelles. Moreover, if melatonin is inducible

in animal cell mitochondria, as we suspect it is, it would be even

more beneficial in combatting the acute free radical toxicity of

hazardous processes or toxins. The likely upregulation of melatonin

synthesis in stressed mitochondria is also strongly supported by

abundant data showing that plant cells exhibit a rapid

compensatory upregulated melatonin production when they are

exposed to radical-mediated stresses resulting from multiple events,

e.g., cold or hot ambient temperatures (97, 98), increased salinity

(99) or chemical exposure (100), drought (101), etc. That melatonin

scavenges radicals in mitochondria is well documented (102).

Locally produced melatonin also protects the intramitochondrial

environment from oxidative stress since in addition to acting as a direct
Frontiers in Endocrinology 06
radical scavenger it also stimulates enzymes, i.e., superoxide dismutase

2 (SOD2) and glutathione peroxidase (GPx), that remove ROS from

the mitochondrial matrix (103). The elevated SOD2 activity is achieved

as a result of an upregulation of sirtuin 3 (SIRT3), one member of a

family of epigenetic enzymes located primarily in the mitochondrial

matrix that regulates a variety of metabolic processes (104, 105). Also,

SIRT3 is upregulated by oxidative stress in both mammalian as well as

in invertebrate neurons which in turn stimulates the detoxification of

ROS due to its capacity to promote the activity of SOD (106). This

latter observation suggests the possibility that oxidative stress is

consequential in the reported compensatory rise in subcellular

melatonin production, as commonly observed in plants and which

has also been reported in algae (97, 107), which in turn upregulates the

SIRT3/FOXO/SOD2 pathway, thereby helping to maintain oxidative

homeostasis under elevated oxidative stress conditions. This would

obviously be a very important function of Source # 2 melatonin

in animals.

The normal nocturnal rise in pineal melatonin and its release

(Source # 1) are mediated due to the interaction of postganglionic

neuron norepinephrine (NE) with specific receptors on the

pinealocyte membrane (108). Pineal melatonin production is not

inducible; when stress-mediated circulating NE rise during the day,

the nerve endings in the pineal gland reportedly act as a sink to

sequester high blood NE levels (109, 110). Thus, pineal melatonin

synthesis is not elevated as a result of systemic stress which causes

the discharge of catecholamines from other organs, e.g., the adrenal

medulla. Moreover, pineal melatonin synthesis is not consistently

exaggerated by systemic free radical excesses.

In comparison to what is known about Source # 1 melatonin

regulation, information about the control of extrapineal/

mitochondrial melatonin (Source # 2) production is negligible. It

is unknown whether circulating NE influences mitochondrial

melatonin synthesis in peripheral organs since melatonin is not

usually released from these cells and as a result it would not be

reflected in blood melatonin concentrations. This suggests that the

mechanisms for the regulation of melatonin stimulation probably

differ between these sites.

A recent publication alluded to the possibility that non-visible

near infrared radiation (NIR) may be a factor in the regulation of

melatonin in peripheral cells. NIR has high penetrability through

the skin and into some deeper structures (111). Melatonin is known

to be synthesized in dermal and epidermal cells (112, 113) where it

has critical functions in the protection of the skin from ROS/RNS

induced by ultraviolet radiation exposure or chemical toxins (114).

During exposure to the sun, the skin is exposed to both UVR and

NIR; these electromagnetic radiations theoretically have contrasting

actions in skin cells. Thus, UVR damages dermal and epidermal

cells because it generates destructive free radicals while NIR

promotes melatonin production in the same cells to combat the

associated oxidative stress (115, 116). The beneficial effects of NIR

on human health are well recognized, an action that could involve

its capacity to promote melatonin production (117). The use of NIR

therapy is referred to as photobiomodulation and is widely used for

the treatment of a variety of diseases (116).

Melatonin of Source # 2 means this multifunctional molecule is

always available, during both the day and at night. Historically, it
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was presumed by many that the pineal gland was the only or chief

source of melatonin. Zhao and colleagues (60) recently proposed

that in reality even in those organisms that have a pineal gland less

than 5% derives from this organ. If the pineal was the exclusive

source of melatonin, which it is obviously not, the functions of this

essential agent would be absent during the daily light period when,

at least in diurnally-active animals, oxidative stress is highest

because of UV exposure, psychological and physical stress, etc.

Source # 2 melatonin ensures that it is available during the day

when humans are most likely to experience free radical damage.

Moreover, if the production of melatonin in peripheral cells is

definitively proven to be upregulated by NIR exposure (or any other

stimulus) it could be critical in disease prevention and for deferred

aging. Finally, in addition to melatonin being available from the

pineal and extrapineal tissues, its intake in the diet and contribution

made by microbiota may also prove to be significant (116).

While melatonin is well-documented to directly neutralize ROS

and RNS, it does not function in this regard without assistance.
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When melatonin donates and electron to inactivate a radical

species, it is transformed into cyclic 3-hydroxymelatonin, which is

also a radical scavenger. Figure 4 illustrates the additional melatonin

derivatives that function in scavenging radical species in what is

referred to as the melatonin’s antioxidant cascade (118). Some of

these derivatives and others are better scavengers than melatonin

itself (87, 119, 120). Finally, melatonin chelates transition metals to

reduce the formation of the hydroxyl radical during the Fenton

reaction or Haber-Weiss reactions (Figure 4) (86).
4 Discussion

Melatonin is phylogenetically an ancient molecule which, during

billions of years of evolution, has been repurposed for a variety of

functions. The presently available evidence suggests melatonin first

appeared in prokaryotes. There-after, due to an endosymbiotic

association that the prokaryotes established with primitive
FIGURE 3

During photosynthesis by land plants, chloroplasts released oxygen as a byproduct of photosynthesis. During the Great Oxidation Event more than 2
billion years ago, atmospheric oxygen gradually rose as a consequence of oxygen released by photosynthetic prokaryotes, cyanobacteria. Early in
evolution, engulfed cyanobacteria gave rise to chloroplasts in primitive photosynthesizing eukaryotes which, to this day, contribute highly
significantly to atmospheric oxygen levels along with that derived from land plants. The metabolism of oxygen by mitochondria, which are present in
essentially all animal and plant eukaryotes, generates the superoxide anion (O2

●-) radical which is the precursor of a number of other toxic oxygen-
based and nitrogen-based products. O2●- couples with nitric oxide (NO●) to form peroxynitrite (ONOO-), a powerful oxidizing agent. The enzymatic
dismutation of O2

●- forms hydrogen peroxide (H2O2), a non-radical product that exhibits high diffusibility and which can be metabolically degraded
by either glutathione peroxidase or catalase. In the presence of a transition metal, often Fe2+, H2O2 is converted to the highly reactive and
destructive hydroxy radical (OH●). Cells have no means to enzymatically remove the OH● and its extremely short half-life means it must be formed
in the vicinity of a radical scavenger if it is to be incapacitated before it inflicts molecular damage. Thus, since OH● is formed in high concentrations
in mitochondria, it is important that melatonin also be situated in this organelle to be available for scavenging this reactant. As a direct free radical
scavenger, melatonin reportedly neutralizes the O2

●-, H2O2, OH●, NO● and ONOO-. Additionally, melatonin stimulates the radical metabolizing
enzymes superoxide dismutase, glutathione peroxidase and catalase. It also enhances the concentration of another important antioxidant,
glutathione, by stimulating the rate limiting enzyme, glutamine cysteine ligase, required for glutathione synthesis.
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eukaryotes after their internalization, they evolved intomitochondria.

Melatonin’s use as an antioxidant possibly was a result of the Great

Oxidative Event during which atmospheric oxygen rose profoundly

necessitating the need for molecules that were capable of neutralizing

toxic oxygen derivatives, i.e., free radicals. High free radical

production occurred in primitive animal eukaryotic cells when they

began using oxygen as a basis of their metabolism. Additionally,

photosynthetic eukaryotes generate oxygen as a byproduct of photo-

synthesis that is converted to toxic metabolites under abiotic stress

conditions which could damage biomolecules of the photosynthetic

apparatus. Over subsequent evolutionary periods to the present day,

melatonin retained its ability to detoxify reactive ROS. Moreover,

since this function was inherited from engulfed prokaryotes which

became mitochondria, the melatonin synthesizing capacity was

presumably retained in these organelles to the present day. This

ideally positioned melatonin as a radical scavenger since the process

of oxidative phosphorylation in mitochondria is the site of the

production of the superoxide anion radical, the precursor of all

other destructive ROS as well as reactive nitrogen species

(RNS) (Figure 3).

Many peripheral, perhaps all, cells in tissues of both animal and

plant eukaryotic organisms produce melatonin likely as a protection

against biomolecular destruction by ROS/RNS as well as other

functions. The amount of melatonin synthesized in peripheral cells

is presumed to be cell specific and stress de-pendent, i.e., potentially

upregulated in animal cells as has been well documented in plants
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(121). The skin is an example in which proper production of

melatonin is linked to protection against solar radiation (10, 113).

Mitochondria as the specific site of intracellular melatonin

production is generally supported by the published data and is

consistent with the evolution of these organelles, which were

derived from prokaryotes that presumably had the capacity of

melatonin synthesis (Figure 2). In addition to the rationale related

to evolution of these organelles, compelling arguments for the

association of melatonin with mitochondria come from the elegant

work of Suofu and colleagues (93) and a publication by He et al.

(122). In the latter study, the authors isolated the mitochondria from

mouse oocytes, a cell previously shown to synthesize melatonin (123).

When these mitochondria were incubated with serotonin as a

substrate, they time-dependently generated melatonin; serotonin is

a necessary precursor in the melatonin synthetic pathway (110).

Conversely, when the oocyte mitochondria were incubated in the

absence of serotonin, they failed to produce melatonin. These

findings, considered in conjunction with the known contribution of

oocyte mitochondria to every cell in vertebrate organisms, support

the conclusion that the melatonin synthesizing ability of

mitochondria in all cells has been retained to the present day (60).

Also, melatonin metabolism within mitochondria can play an

important role in their metabolic functions and regulation of

cellular phenotype as illustrated in skin cells (124, 125).

Within which mitochondrial compartment melatonin is

produced is still under debate. An early immunocytochemical
FIGURE 4

This figure summarizes some of the metabolites that are formed (in what is referred to as the antioxidant cascade) when melatonin functions as a
direct free radical scavenger while inhibiting the initiation and propagation of lipid peroxidation. The metabolites of melatonin also function to
neutralized ROS/RNS with some of them being more efficient radical scavengers that melatonin itself. Melatonin reduces the peroxidation of
unsaturated lipids by scavenging the OH● and other radicals that initiate the breakdown of easily oxidizable lipids. As indicated, the metabolites also
interrupt the propagation of lipid peroxidation by neutralizing the lipid peroxyl radical.
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investigation suggested this occurred in the intramembrane space

(126). The results of Suofu et al. (93) showed, however, that removal

of the outer mitochondrial membrane, using digitoxin, while

leaving the inner mitochondrial membrane intact, did not impact

the concentration of melatonin in these organelles indicating that it

is located in the matrix. Similar to He and colleagues (122), they

confirmed that isolated neural mitochondria synthesized melatonin

from its deuterated precursor. Despite the currently available data,

the possibility that melatonin is produced in other subcellular

organelles in addition to mitochondria cannot be precluded (56)

and there is the possibility some cells have lost this capacity.

An interaction between Source # 1 and Source # 2 melatonin has

been identified and thoroughly investigated by one group of

scientists in what is defined as the immune-pineal axis (127).

What this group has found is the nocturnal melatonin surge is

suppressed by proinflammatory cytokines while simultaneously

inducing melatonin synthesis in bone marrow and spleen

macrophages (128). This switch in the primary site of melatonin

synthesis relies on NF-ĸB activation. These highly mechanistic

studies indicate that interleukin-10 (IL-10) levels modulate

downstream immune responses which are operative in impacting

both Source # 1 (pineal) and Source 2 (extrapineal) melatonin

concentrations (89). The alterations in melatonin synthesis are

predictably essential in modulating the immune response with the

locally-synthesized melatonin by immune-competent cells exerting

anti-inflammatory actions at the site of infection (129); the

inhibitory actions of melatonin on inflammation have been

documented in many studies (130). These intriguing results likely

have importance in explaining the efficacy of melatonin as an anti-

inflammatory agent and they deserve more intensive investigation.

In the current survey, only the antioxidative actions of

peripherally generated melatonin were discussed in detail. Free

radical-mediated oxidative damage is a component of many

diseases so preventing this damage, which melatonin is highly

effective in doing, may be a means by which this important

molecule preserves general heath and reduces pathologies. Other

disease conditions in which melatonin may have utility as a treatment

include cancer, cardiovascular disease, neurodegeneration, sepsis,

drug toxicity, and many others. Literature searches will uncover

extensive reviews on each of these subjects in reference to

melatonin. Melatonin from both Source # 1 and Source # 2 is

critical for health maintenance. Moreover, in addition to these two

sources of melatonin, it can also be obtained in the diet and supplied

by microbiota (131, 132).
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