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Association between blood
metabolites and basal cell
carcinoma risk: a two-sample
Mendelian randomization study
Bingliang Wu1†, FuQiang Pan1†, QiaoQi Wang2†, Qian Liang1,
HouHuang Qiu1, SiYuan Zhou1 and Xiang Zhou1*

1Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University,
Nanning, Guangxi, China, 2Department of Health Examination Center, The Second Affiliated Hospital
of Guangxi Medical University, Nanning, Guangxi, China
Background:Circulatingmetabolites, which play a crucial role in our health, have

been reported to be disordered in basal cell carcinoma (BCC). Despite these

findings, evidence is still lacking to determine whether these metabolites directly

promote or prevent BCC’s progression. Therefore, our study aims to examine the

potential effects of circulating metabolites on BCC progression.

Material and methods: We conducted a two−sample Mendelian randomization

(MR) analysis using data from two separate genome-wide association studies

(GWAS). The primary study included data for 123 blood metabolites from a GWAS

with 25,000 Finnish individuals, while the secondary study had data for 249 blood

metabolites from a GWAS with 114,000 UK Biobank participants.GWAS data for

BCC were obtained from the UK Biobank for the primary analysis and the

FinnGen consortium for the secondary analysis. Sensitivity analyses were

performed to assess heterogeneity and pleiotropy.

Results: In the primary analysis, significant causal relationships were found

between six metabolic traits and BCC with the inverse variance weighted (IVW)

method after multiple testing [P < 4 × 10−4 (0.05/123)]. Four metabolic traits

were discovered to be significantly linked with BCC in the secondary analysis,

with a significance level of P < 2 × 10−4 (0.05/249). We found that all the

significant traits are linked to Polyunsaturated Fatty Acids (PUFAs) and their

degree of unsaturation.

Conclusion:Our research has revealed a direct link between the susceptibility of

BCC and Polyunsaturated Fatty Acids and their degree of unsaturation. This

discovery implies screening and prevention of BCC.
KEYWORDS

genome-wide association studies, Mendelian randomization, circulating metabolites,
basal cell carcinoma, unsaturated fatty acids
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Introduction

Basal cell carcinoma (BCC) is the most common malignant

tumor worldwide, with its incidence continuing to rise annually.

Reports indicate that BCC incidence in the United States increases

by 4% to 8% each year, and the World Health Organization projects

nearly 1.2 million new BCC cases globally in 2020 (1, 2). BCC

primarily affects individuals with Fitzpatrick skin types I and II.

BCC risk factors include light eye color, freckles, and blonde or red

hair. The most significant environmental risk factor is UV radiation

exposure. Additionally, other potential risk factors include

exposure to arsenic and other carcinogens, ionizing radiation,

photosensitizing drugs, and chronic immunosuppression. BCC

considerably impacts patients’ well-being and creates financial

strain for affected individuals and society (2, 3). However, it

remains unclear whether lifestyle and metabolic characteristics

contribute to the development of BCC. Given the uncertain

influence of daily diet and metabolic traits on BCC, investigating

the relationship between metabolites and BCC is crucial.

In recent decades, mounting evidence has highlighted the

crucial role of metabolic reprogramming and energy metabolism

in cancer cell proliferation and metastasis (4, 5). Alterations in

normal cell metabolism can promote cell growth and affect cell

differentiation, rendering them more susceptible to cancer

development (5). Moreover, targeted modulation of metabolites

holds promise for cancer treatment by increasing the sensitivity of

cancer cells to therapy (6, 7). Therefore, investigating the

metabolites associated with BCC can aid in early detection and

prevention of BCC, as well as provide insights into the underlying

biological processes for effective treatment. Previous research has

highlighted the impact of specific blood metabolites, such as

prostaglandins and leukotrienes, on skin cancer development by

influencing the inflammatory response. Additionally, associations

have been found between BCC and the human prothrombin

complex, 25-hydroxyvitamin D, vitamin D, and PUFAs (8–11).

Consequently, serum metabolites likely play a crucial role in BCC

occurrence and progression. However, conducting randomized

controlled trials (RCTs) to investigate this relationship is

challenging due to ethical considerations and limitations

inherent in observational studies, such as susceptibility to

confounding factors and reverse causality. Novel methods that

minimize the impact of confounding factors are needed to

advance our understanding.

The Mendelian randomization (MR) approach utilizes genetic

variants as proxies for exposure variables to investigate their effect

on particular outcomes (12). Due to the random allocation of

single-nucleotide polymorphisms (SNPs) at conception, they are

less susceptible to confounding influences, while reverse causality

bias is reduced because genetic markers do not affect outcomes (13).

This makes MR analysis an excellent method for exploring the

relationship between metabolites and BCC. Therefore, we employ

several MR techniques in this article and integrate extensive human

genomic datasets to estimate the potential causal effects between

metabolites and BCC.
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Materials and methods

Study design

The design of the study is illustrated in Figure 1. We utilized

instrumental variables derived from two distinct metabolomics

datasets for our primary and secondary analyses. Notably, the

datasets we chose include a variety of similar metabolites, allowing

for cross-validation between our two discovery cohorts. This

approach has been similarly employed in other studies (14, 15).

The central focus of our research was to scrutinize the causal

influence of genetically predicted serum metabolite concentrations

on BCC susceptibility. Our Two-Sample MR analysis was designed

with variables that meet the criteria for credible genetic instrumental

variables. We conducted a thorough evaluation of blood metabolites

for their potential causal effects on BCC using several criteria: (1) A

significant p-value in the primary analysis (IVW, p < 0.05); (2)

Consistency in direction and magnitude across the three MR

methods; (3) Absence of heterogeneity or horizontal pleiotropy in

the MR results; (4) MR estimates were not significantly influenced by

a single SNP (16). This approach reflects our adherence to the three

key assumptions of MR analysis: Assumption 1, a robust association

between genetic variants and exposure; Assumption 2, no association

between genetic variants and confounding variables; Assumption 3,

no influence of genetic variants on outcomes outside the specific

exposure. Notably, this analysis used the STROBE-MR checklist for

reporting MR studies (17).
Metabolic profile for primary analyses

The primary analysis of metabolic profiles was conducted using

data from a large, diverse cohort of 24,925 individuals from Finland,

the Netherlands, and Estonia, as reported in the 2016 study by

Kettunen et al. published in Nature Genetics (18). The dataset

includes information on 123 different metabolites currently

circulating in the body, such as specific lipids from lipoprotein

subclasses, amino acids, fatty acids, and glycoproteins related to

inflammation, among other measurements. Metabolite

concentrations were assessed using high-throughput NMR

spectroscopy. Data from each cohort were analyzed separately

using an additive model and then combined through a fixed-effect

meta-analysis, incorporating up to 12,133,295 SNPs. All metabolite

concentrations were adjusted for age, sex, time since the last meal

and the first ten principal components. The study findings are

accessible through the Integrative Epidemiology Unit (IEU)

OpenGWAS project.
Metabolic profile for secondary analyses

The GWAS datasets from the Phase 1 release of the Nightingale

Health Metabolic Biomarkers study were used for a secondary

analysis of 249 human metabolite measurements. This study
frontiersin.org
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encompassed a selection of 115,078 participants from the UK

Biobank cohort. The participants provided baseline plasma

samples in a non-fasting state, preserved in EDTA, which were

then subjected to metabolic profiling through high-throughput

NMR technology. The profiling generated data on 168

metabolites presented in absolute concentrations (mmol/L) and

81 metabolite ratios (https://biobank.ndph.ox.ac.uk/ukb/label.cgi?

id=220, accessed February 1, 2024). The panel included metrics on

the metabolism of triglycerides and cholesterol, diverse fatty acid

profiles, and various low-molecular-weight metabolites such as

amino acids, ketones, and glycolysis-related substances. It offered

differentiated measurements for triglycerides, phospholipids, total

cholesterol, cholesterol esters, free cholesterol, and total lipid

concentration across 14 distinct lipoprotein subclasses. For

population structure considerations within the UK Biobank, the

BOLT-LMM (linear mixed model) was employed, with further

adjustments for variables such as age, sex, the interval since the

last meal or drink, and the genotyping chip used (UKBB Axiom

array or UK BiLEVE array). The full set of summary statistics is

available on the IEU OpenGWAS project database.
Basal cell carcinoma

The GWAS summary data for BCC in Europeans (GWAS ID

ebi-a-GCST90013410, consisting of 17,416 cases and 375,455

controls) was acquired from the IEU Open GWAS database. The
Frontiers in Endocrinology 03
primary data source is the UK biobank, released in a 2021

publication in Nature Genetics by Adolphe C et al. (19). This is

currently the largest GWAS dataset on BCC available in the IEU

database. We used it as the outcome group data for our primary

analysis to avoid population sample overlap. Our secondary analysis

used BCC data from FinnGen (18,982 cases and 287,137 controls)

as the outcome variable (20). This allows our exposure and outcome

data to avoid population overlap, further strengthening our

research’s credibility. We used data from two independent studies

for replication analysis and meta-analysis to validate our results

further. Both datasets can be obtained from the GWAS catalog

(https://www.ebi.ac.uk/gwas/). The first dataset was published by

Jiang L et al. in Nature Genetics in 2021, including 456,276

individuals from the British European population (GWAS catalog

ID: GCST90041916) (21). The second dataset was published by

Seviiri M et al. in Nature Communications in 2022, including

307,684 individuals from European populations in the United

States, the United Kingdom, and Australia (GWAS catalog ID:

GCST90137411) (22) (Table 1).
IV selection

We followed several steps to select genetic variants related to

metabolites. These SNPs were selected based on a stringent

genome-wide significance threshold (p < 5×10−8). We specifically

chose these SNPs due to their low linkage disequilibrium (LD) with
FIGURE 1

MR study overview. MR, Mendelian randomization; IV, instrumental variables; SNPs, single nucleotide polymorphisms; LD, linkage disequilibrium;
WM, weighted mode; LOO, leave one out; SM, simple mode; BCC, Basal cell carcinoma; MVMR, Multivariate Mendelian randomization.
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other SNPs (r2 < 0.1, clump window 500 kb), which ensured their

role as independent instrumental variants for the corresponding

metabolites. This strategy was common in previous serum

metabolite MR studies (23–26). Next, we calculated F statistics for

each SNP to evaluate their statistical significance. To guarantee

sufficient variance for the metabolites, we discarded SNPs with an F

value less than 10, considering them as inadequate instruments (27,

28). Then, we aligned the SNPs for both exposure and outcome. We

used the allele frequency data for palindromic SNPs to infer the

forward-strand alleles. Lastly, we did MR analysis on metabolites

with more than two SNPs. We used proxies in high LD (r² > 0.8)

from the European reference panel of the 1000 Genomes Project for

SNPs missing in the outcome. We discarded those without proxies.
LDSC and Steiger

To examine if the causal links we found were affected by

common genetic factors, we used LDSC to measure the genetic

correlation between BCC and the metabolites we identified. MR can

often produce false positives when there is a genetic correlation

between traits (29, 30). We also used the Steiger test to check if the

causalities we observed were distorted by reverse causation. The

Steiger test can tell us if the SNPs we included accounted for more of

the BCC variation than the metabolites (31). If the SNPs had a

higher contribution to the BCC risk than the metabolites (Steiger P

> 0.05), it would suggest that the causal direction might be wrong.
Replication and meta-analysis

We conducted another IVW analysis with two separate BCC

GWAS datasets from the aforementioned GWAS Catalog

consortium to ensure the validity of the metabolites we had

selected. A subsequent meta-analysis was carried out to ascertain

the definitive metabolites causally linked to BCC.
Frontiers in Endocrinology 04
Multivariable Mendelian
randomization analysis

We used MVMR to calculate the direct influence of multiple

exposures on a specific outcome while also adjusting for other

exposures in this study. MVMR analysis allowed us to assess the

causal connections between potential metabolites/ratio index and

the risk of BCC, taking into account various common BCC risk

factors (32).
Statistical analyses

Using IVW analysis, we assessed the causal impact of blood

metabolites on BCC. Depending on the presence of heterogeneity in

the MR analysis, we applied either the fixed-effects or random-

effects IVW model. If the random-effects analysis shows statistical

evidence of causal effects, it indicates consistent support for the

causal influence of exposure on the outcome, taking into account

the heterogeneity of causal estimates due to variation specificity (33,

34). We also conducted a sensitivity analysis to assess any potential

bias in the MR assumptions. We used a range of MR models,

including MR-Egger regression, weighted median, simple mode,

and weighted mode (WM), as additional methods. MR-Egger

regression can provide reliable estimates while adjusting for

pleiotropy, even when all instruments are invalid (35). The

weighted median assumes that at least 50% of the instruments are

valid (36). The weighted mode estimation method is effective in

detecting causal effects, showing less deviation and a lower Type I

error rate than the MR–Egger regression when the Instrument

Strength Independent of Direct Effect (InSIDE) assumption is not

met (37). Although the simple mode is not as robust as IVW, it is

resistant to pleiotropy (38). We used the Cochran Q test to detect

the presence of heterogeneity. A Cochran-Q derived P-value less

than 0.05 suggests the presence of heterogeneity (39). The

assessment of horizontal pleiotropy is based on Egger intercepts
TABLE 1 Information on the sources of the data included.

Traits Sample size Year Population PMID Web source

123 Circulating metabolites (primary analyses) 24,925 2016 European 27005778 https://doi.org/10.1038/ncomms11122

249 Circulating metabolites
(secondary analyses)

115,078 2020 European 35692035
https://europepmc.org/article/
MED/35692035

basal cell carcinoma
(Adolphe C)

392,871 2021 European 33549134 https://doi.org/10.1186/s13073–021-00827–9

basal cell carcinoma
(FinnGen)

306,119 2023 European NA https://r9.risteys.finngen.fi/

basal cell carcinoma
(Seviiri M)

307,684 2022 European 36496446 https://doi.org/10.1038/s41467–022-35345–8

basal cell carcinoma
(Jiang L)

456,276 2021 European 34737426 https://doi.org/10.1038/s41588–021-00954–4
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(35). Finally, to identify influential points that affect the pooled

IVW estimates, we performed a Leave-one-out (LOO) analysis (40).

In our IVW analysis, we employed the Bonferroni correction

(41). For the primary analysis, a P value less than 4×10−4(adjusted

for Bonferroni) was deemed statistically significant, while a P value

between 0.05 and 4×10−4 was considered indicative. For the

secondary analysis, we interpreted a P value less than 2×10−4

(adjusted for Bonferroni) as statistically significant and a P value

between 0.05 and 2×10−4 as suggestive.

We conducted all Mendelian Randomization analyses and tests

utilizing the “TwoSampleMR”, “ggplot2”, and “meta” packages in R

software (version 4.3.1) and the LD Score Regression (LDSC)

software (version 1.0.1).
Results

Primary analyses

The causal influence of 123 metabolic traits in circulation on the

risk of BCC was assessed in our primary analysis. After strictly

controlling the quality of IVs, the MR study finally captured 118

metabolites. Some metabolites were discarded because they could

not obtain enough SNPs. The filtered IVs contained 2 to 72 SNPs

(3-hydroxybutyrate contains 1 SNP; Glycoproteins produce the

most genetic proxies: 72 SNPs). All F-statistics of SNPs related to

metabolites are greater than 10, indicating that IVs have strong

power. After Bonferroni correction, 6 out of 123 traits showed

statistical significance. Notably, these six traits are all ratio

indicators related to the degree of fatty acid unsaturation or

unsaturation, and 4 of them are associated with the degree of

fatty acid unsaturation (Figures 2, 3). Specifically, biomarkers
Frontiers in Endocrinology 05
indicating a higher degree of unsaturation, including the ratio of

bisallylic groups to double bonds (OR=1.099, 95% confidence

interval (CI) 1.060–1.139, P =2.41×10-7), polyunsaturated fatty

acids other than 18:2 (OR=1.085, 95%CI 1.051–1.120,

P =3.75×10-7), the average number of double bonds in a fatty

acid chain (OR=1.132, 95%CI 1.072–1.196, P =7.76×10-6), and the

ratio of bisallylic groups to total fatty acids (OR=1.097, 95%CI

1.053–1.142, P =8.12×10-6), significantly increase the risk of BCC.

In contrast, traits leading to a decrease in the level of

unsaturation, including the average number of methylene groups

per double bond (OR=0.887, 95%CI 0.846–0.929, P =6.19×10-7) and

the average number of methylene groups in a fatty acid chain

(OR=0.849, 95%CI 0.796–0.906, P =9.52×10-7), are negatively

correlated with BCC susceptibility. In all sensitivity analyses, a

consistent direction was observed (Additional File 1). Additional

Files 2, 3 display the presence of horizontal pleiotropy and

heterogeneity in causal estimates. Detailed information regarding

the utilized SNPs is available in Additional File 4. LOO analysis did

not identify any SNPs likely to bias pooled effect estimates

(Additional File 5).
Secondary analyses

Our secondary analysis evaluated the causal effect of 249 metabolic

traits on BCC risk. After strictly controlling the quality of IVs, the MR

study finally captured 249metabolites. The filtered IVs contain 9 to 315

SNPs (Acetoacetate contains 9 SNPs; Cholesterol in large HDL

produces the most genetic proxies: 330 SNPs). Metabolite-related

SNPs have greater than 10 F-statistics. The findings revealed that,

among the 249 traits examined, nine serum metabolites maintained

statistical significance following Bonferroni correction (Figure 4). After
FIGURE 2

In the primary analysis, the volcano plot indicates the causal relationship between metabolic traits and basal cell carcinoma, using the inverse-
variance weighted method.
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the sensitivity and pleiotropy analysis, these nine serum metabolites

exhibited significance (Figure 5). Among them, the ones associated

with an increased incidence of BCC were Ratio of docosahexaenoic

acid to total fatty acids (OR= 1.130, 95%CI 1.073–1.191, P =4.17×10-6),

Degree of unsaturation (OR=1.095, 95%CI 1.052–1.140, P =9.01×10-6),

omega-3 fatty acids (OR=1.087, 95%CI 1.046- 1.130, P =1.86×10-5),

Docosahexaenoic acid(OR= 1.100, 95%CI 1.049–1.153, P =6.39×10-5)

and Ratio of omega-3 fatty acids to total fatty acids(OR= 1.074, 95%CI

1.034–1.116, P =6.21×10-4). On the other hand, the ones associated

with a decreased incidence of BCC were Ratio of linoleic acid to total

fatty acids (OR=0.816, 95%CI 0.765–0.871, P =1.07×10-9), Ratio of

omega-6 fatty acids to omega-3 fatty acids (OR=0.910, 95%CI 0.875–

0.947, P =2.39×10-6), Phospholipids to total lipids ratio inmedium LDL

(OR= 0.893, 95%CI 0.850–0.939, P =9.98×10-6), Tyrosine (OR= 0.866,

95%CI 0.812–0.924, P =1.33×10-5), Average diameter for LDL particles

(OR= 0.844, 95%CI 0.774–0.919, P =1.08×10-4). In all sensitivity

analyses, a consistent direction was observed (Additional File 6).

Additional Files 7, 8 display the presence of horizontal pleiotropy

and heterogeneity in causal estimates. Detailed information regarding

the utilized SNPs is available in Additional File 9. Also, no high-impact

SNPs were identified in the LOO analysis that might influence pooled

effect estimates (Additional File 10).
Genetic correlation and direction validation

LDSC and Steiger
We used LDSC to estimate the genetic correlation between BCC

and 15 identified traits. Most showed no evidence of genetic
Frontiers in Endocrinology 06
correlation (rg P > 0.05), indicating that the MR results were not

confounded by shared genetic factors. However, we observed a

possible genetic correlation between BCC and the Ratio of

docosahexaenoic acid to total fatty acids (rg = 0.088, se = 0.041, P

= 0.033) and Ratio of linoleic acid to total fatty acids (rg=0.102,

se=0.043, P =0.016) and BCC. This suggests genetic correlation,

which measures shared genetic influences between traits. A positive

correlation indicates that the same genetic variants affect both traits

similarly, implying horizontal pleiotropy — where one variant

influences multiple traits through different pathways. This can

challenge MR assumptions and lead to misleading causal

inferences (29, 30). Consequently, because of their false-positive

potential, we need to be more cautious about their results. We also

calculated the SNP-heritability of the metabolites using LDSC. The

SNP-heritability (the proportion of variance explained by genome-

wide SNPs) varied from 0.0215 (Average number of methylene

groups in a fatty acid chain) to 0.1713 (Ratio of bisallylic groups to

double bonds) (Additional File 11). A Steiger test was conducted to

validate that the effect direction was from metabolites to BCC. The

P values of the Steiger test indicated there wasn’t reverse causation

between the traits for the previously mentioned SNPs.

Replication analysis and meta-analysis
The IVW results from the discovery group, Seviiri M, and Jiang

L datasets were used for replication analysis and meta-analysis to

validate our findings further. As anticipated, we noticed analogous

trends in the candidate metabolites when compared to the

validation group. This lends credence to our assertion that our

research outcomes are not mere coincidences. It is noteworthy that
FIGURE 3

Results of IVW, Sensitivity analysis, Heterogeneity analysis, and MVMR for the causal association between blood metabolites that remain significant
after Bonferroni correction in the primary study, IVW, inverse-variance weighted; MVMR, Multivariable Mendelian Randomization.
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the Phospholipids to total lipids ratio in medium LDL from

subsequent discussions became insignificant in the meta-analysis.

To maintain the rigor of our research, we have decided to exclude it

from subsequent discussions (Figure 6).

Multivariate Mendelian randomization analysis
MVMR was used to estimate causal relationships between

candidate traits and BCC risk. From previous studies, we

identified three known risk factors associated with an increased

risk of BCC: ease of skin tanning, telomere length, and radiation-

related disorders (42). After adjusting for these BCC-related risk

factors, Our MVMR results indicated that, except for the ratio of

linoleic acid to total fatty acids, docosahexaenoic acid, average

diameter for LDL particles, and tyrosine, all the other candidate

traits could independently influence the occurrence of BCC. These

four traits may be associated with BCC, but this association might

be masked by other possible risk factors. (Additional File 12)
Unsaturated fatty acids
After a thorough analysis, specific metabolites previously

identified have been excluded. It was found that the remaining

metabolites are linked to unsaturated fatty acids and their level of

unsaturation. To understand the correlation between different

metabolic characteristics and BCC, a total of 249 metabolic traits

in secondary were categorized into nine main groups (Additional

File 13, Supplementary Figures S1-S8) (15). Our exploration of

these biomarker sets reveals that many genes related to unsaturated

fatty acid saturation are positively or negatively associated with

BCC risk. Among the 17 features related to unsaturation, 9 exhibit

significant or suggestive causal relationships. Although some traits

did not yield significant results in sensitivity analysis, their direction
Frontiers in Endocrinology 07
of association with unsaturation remains consistent. Specifically, we

find that higher unsaturation levels, as known biomarkers, are

associated with an increased risk of BCC. The causal heatmap

depicting the relationship between unsaturated fatty acids and BCC

is shown in Figure 7.
Discussion

In our primary study, MR analysis demonstrated a causal

relationship between traits associated with the degree of

unsaturation and BCC. Secondary study findings indicated that

blood metabolites, particularly those related to PUFAs, are

associated with BCC. Both studies employed stringent Bonferroni

correction, and their results remained consistent despite originating

from different regions and databases. Further analyses (including

replication group analysis, meta-analysis, MVMR, Steiger test, and

LDSC) identified specific metabolites associated with BCC, such as

omega-3 PUFA, DHA, the omega-6/omega-3 PUFA ratio, and the

degree of unsaturation. These metabolites all belong to the PUFA

category of unsaturated fatty acids. Some lipid-related metabolites

were associated with BCC, but caution is needed due to potential

confounding factors and common genetic influences that might

result in false positives. Further analysis is recommended for a

comprehensive evaluation.

Fatty acids are classified into saturated fatty acids (SFAs),

monounsaturated fatty acids (MUFAs), and PUFAs, distinguished

by their carbon chain structures and degree of hydrogen saturation.

SFAs lack double bonds between carbon atoms, making them fully

saturated with hydrogen atoms. In contrast, MUFAs contain one

double bond, causing a kink in the carbon chain, while PUFAs

contain two or more double bonds. The degree of unsaturation,
FIGURE 4

In the secondary analysis, the volcano plot indicates the causal relationship between metabolic traits and basal cell carcinoma using the inverse-
variance weighted method.
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indicated by the number of double bonds in the fatty acid chain, is

zero for SFAs, one for MUFAs, and two or more for PUFAs (43).

Numerous studies have identified a close relationship between fatty

acids and human health, particularly highlighting the role of PUFAs

in various diseases (44). Dietary modifications, such as increased

fish oil intake, are linked to reduced cardiovascular disease risk

because fish and fish oil are rich in Omega-3 fatty acids. Our

research focuses on the association between PUFAs and BCC (45).

This could support future dietary interventions with PUFAs to

prevent BCC. While UV exposure is the main risk factor for BCC,

our study found significant metabolites even after adjusting for

factors like skin tanning, telomere length, and radiation-related

disorders through MVMR analysis. This suggests that PUFAs might

be an independent risk factor for BCC. Given BCC’s prevalence,

even small preventive measures could have huge benefits for

public health.

Previous research has established a connection between the

unsaturation level of dietary fats, particularly PUFAs, and BCC (46–

49). However, the investigation into the impact of PUFAs and their

degree of unsaturation on BCC is still in its early stages. Some

studies suggest that a higher degree of fat unsaturation could lead to

the generation of free radicals and oxidative stress due to lipid

peroxidation, thereby facilitating the development of BCC (47, 48,

50, 51). We found that an increase in the ratio of omega-3 PUFA
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and DHA (docosahexaenoic acid) increases the risk of BCC.

Conversely, an increase in omega-6 PUFA to omega-3 PUFA

lowers this risk. This discovery aligns with primary studies, as

omega-3 PUFAs generally exhibit greater unsaturation than omega-

6. DHA, a type of omega-3 fatty acid containing five cis double

bonds, is vulnerable to damage from free radicals, creating harmful

advanced lipid peroxidation end products (ALEs) (52, 53). These

ALEs can harm cell membranes and cause DNA damage when they

build up to toxic levels (54, 55). It is important to mention that there

is no correlation between the amount of saturated fatty acids and

the occurrence of BCC, regardless of the analytical approach

employed. The proportion of various types and degrees of

unsaturated fatty acids is a critical factor in BCC. To our surprise,

the relative proportions of unsaturated PUFAs also significantly

impacted BCC in terms of their absolute levels and their ratios with

other PUFAS.

While mammals can synthesize saturated and monounsaturated

fatty acids, they cannot synthesize PUFAs. This has led to studies

on the dietary regulation of PUFAs and their impact on BCC. The

focus has been on Omega-3 and Omega-6 fatty acids, but findings

have been inconsistent. Some research suggests that Omega-3 acts

as a BCC protective factor, while Omega-6 may enhance BCC

expression (56). Other studies indicate that omega-3 PUFAs can

reduce skin inflammation and potentially prevent skin cancer, even
FIGURE 5

Results of IVW, Sensitivity analysis, Heterogeneity analysis, and MVMR for the causal association between blood metabolites that remain significant
after Bonferroni correction in the secondary study, IVW, inverse-variance weighted; MVMR, Multivariable Mendelian Randomization.
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in organ transplant patients (57–59). An Australian study found

that both omega-3 and omega-6 PUFAs may reduce keratinocyte

skin cancer risk, especially in high-risk individuals (60). However,

a systematic review found no association between dietary omega-3

PUFAs and BCC (61). Considering the vulnerability of

observational studies to biases like selection and recall, as well as

issues of confounding and reverse causation, it’s no surprise that a

consistent connection between BCC and PUFAs is often not

established. Furthermore, the complexity of PUFAs, particularly

the varying degrees of unsaturation in omega-3 PUFAs and omega-

6 PUFAs, makes their categorization problematic for studying their

effects on BCC. Moreover, designing and implementing
Frontiers in Endocrinology 09
randomized controlled trials poses substantial challenges in this

context. Thus, employing MR becomes a highly suitable approach.

MR can serve as a valuable alternative method, providing reliable

evidence and clarifying the causal relationship between exposure

and disease susceptibility. It can overcome the difficulties of

implementing dietary interventions in RCTs (62, 63). For

instance, a 2021 MR analysis of BCC and PUFAs indicated that

genetically predicted elevated levels of Linoleic acid (LA) and

alpha-linolenic acid (ALA) were linked to a reduced risk of BCC,

while Arachidonic acid (AA) and Eicosapentaenoic acid (EPA)

were associated with an increased risk (64). Although LA and AA

are omega-6 fatty acids, and ALA and EPA are omega-3 fatty acids,
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FIGURE 6

Meta-analysis exploring the causal links between basal cell carcinoma and metabolites. OR, odds ratio; CI, confidence interval.
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BCC’s risk seems to be independent of the classification of PUFAs,

according to this study. Moreover, Other MR studies have shown

that increased activity of PUFA desaturase—a key enzyme that

catalyzes the introduction of double bonds in PUFAs, therefore

enhancing their unsaturation—correlates with a higher risk of

developing BCC (65). Given the consistency between these

findings and our own, we posit that the degree of saturation in

PUFAs may significantly influence the progression of BCC.

Firstly, we analyzed the largest scale serum metabolome against

BCC, which had never been used before, and found a relationship

between unsaturated fatty acids and BCC. We discovered that the

higher the degree of unsaturation in these PUFAs, the higher the risk

of developing BCC. This has never been reported in previous studies.

Secondly, the F-statistic for each SNP exceeded 10, indicating the

robustness of the instruments. Moreover, the Steiger test supports the

causal direction from exposure to the outcome, and we applied strict

Bonferroni correction to the results, all of which ensured the accuracy

of our findings. Additionally, we carefully sampled distinct datasets,

effectively mitigating population overlap issues. Secondly, across

different MR models, consistent directions and similar magnitudes

confirm robustness, with no evidence of horizontal pleiotropy using

supplementary statistical methods. Next, we adjusted for

confounding factors related to increased BCC risk through MVMR

and excluded confounded candidate traits. We then replicated and

meta-analyzed results using independent GWAS data, yielding

consistent effect estimates. Although some replication estimates

were not statistically significant, their consistent direction is

reassuring. Lastly, we used LDSC to assess IV heritability and

genetic correlation, excluding genetically correlated metabolites, for

more persuasive MR estimates. The results of the study have been
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significantly improved by these analyses, but the limitations of

the study must be acknowledged. Nevertheless, recognizing the

constraints of our research is crucial. Firstly, we have relaxed the

SNP selection threshold due to the limited number of genome-wide

significant SNPs, which is a commonly employed method. However,

it is worth emphasizing that we have conducted a series of rigorous

sensitivity analyses to minimize errors as much as possible. Secondly,

our study’s insights are significant, but they are limited by our

exclusively European cohort. Future research should include

diverse populations to validate our findings across ethnic groups.

Furthermore, the MR technique presupposes continuous exposure

over a lifetime, which may not accurately reflect real-life scenarios.

Therefore, more attention may need to be paid to the direction of the

causal relationship, and the estimated level should not be

overestimated. Additionally, our MR study cannot explore the

cellular and molecular mechanisms through which metabolites

affect BCC. Moreover, the MR approach is effective for causal

inference, but findings should be substantiated through rigorous

RCTs to establish causal relationships. Despite challenges in

conducting RCTs, focusing on RCTs to explore the impact of

PUFA supplements on BCC holds significant public health

implications for disease prevention, given that BCC is the most

common cancer worldwide.
Conclusions

In conclusion, our research presents initial evidence

underscoring the significant impact of unsaturated fatty acid

saturation levels on the progression of BCC. We suggest that
FIGURE 7

The heatmap displays the influence of fatty acid saturation-related biomarkers on basal cell carcinoma in the secondary analyses based on various
methods (IVW, MR-Egger, simple mode, weighted median, and weighted mode). IVW, inverse-variance weighted.
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modifying one’s diet, specifically focusing on the intake of PUFAs,

may be an effective strategy for preventing BCC. However,

implementing such measures in a clinical setting would require

additional RCTs and molecular experimental validation.
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