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Background: In recent years, the decline in sperm quality in men has become a

global trend. There is a close relationship between sperm quality and pregnancy

outcome. There is a large body of literature supporting the role of plasma

lipidome in male infertility, while the complex mechanisms between them and

male infertility are still less clear. Systematic study of the causal relationship

between plasma lipidome and MI can help to provide new therapeutic ideas and

targets for male infertility.

Methods: In this study, we used a two-sample Mendelian randomization analysis

based on Genome-wide association studies pooled data of 179 causal

relationships between plasma lipidome and male infertility. We used employed

the inverse variance weighted method as the main analysis to assess causality

between exposure and outcome, in addition to MR-Egger, Weighted median as

complementary methods, and tests for multiplicity and heterogeneity.

Results:We identified 13 plasma lipidome comprising 4 types of plasma lipidome

that were associated with male infertility. Among these, 9 plasma lipidome were

found to be protective factors, while 4 were risk factors. Notably, the largest

proportion of these plasma lipidome were triglyceride types, with Sphingomyelin

(d40:1) exhibiting the strongest association with male infertility.

Conclusion: These findings contribute to the current better understanding of

male infertility and provide new perspectives on the underlying etiology of male

infertility as well as prevention and treatment strategies. In addition, clinical trial

validation is needed to assess the potential of these plasma lipidome

as biomarkers.
KEYWORDS

male infertility, Mendelian randomization, plasma lipidome, GWAS, sperm quality
Abbreviations: PL, plasma lipidome; MI, male infertility; MR, Mendelian randomization; GWAS, Genome-

wide association studies; RCT, Randomized controlled trial; IVW, Inverse variance weighted; SNP, single

nucleotide polymorphism; IV, instrumental variable; OR, odds ratio; CI, confidence interval; SE,

standard error.
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Introduction

Infertility is typically defined as the inability to achieve pregnancy

naturally after one year of regular, unprotected sexual intercourse

(1).According to the World Health Organization, approximately 50%

of infertility cases in couples can be attributed to male factors (2–4).

Studies have demonstrated a global decline in male sperm

concentration ranging from 1.4% to 1.6% annually, varying by

geographical region (5). Exploring the causes of male infertility

(MI) and seeking effective treatments remain ongoing scientific

pursuits. Single-cell RNA sequencing (sc-RNA-seq) has revealed

the molecular complexities of testicular physiology and MI-related

diseases. Recent studies have identified key transcriptional profiles of

germ cells, linking developmental processes to disease manifestations

in the testicular microenvironment (6). These insights provide

valuable references for diagnosing and treating unexplained and

idiopathic MI. MI has emerged as a significant factor impacting

global population dynamics (7), profoundly affecting patients’

psychological well-being, quality of life, family dynamics, and

imposing substantial economic and emotional burdens (8). The

etiology and pathogenesis of MI remain incompletely understood,

with semen abnormalities being a prominent risk factor (1). Lifestyle

factors such as smoking (9), alcohol consumption (10), sleep

deprivation, obesity, sedentary habits, frequent sexual activity, and

adverse psychosocial conditions can all influence semen quality (11,

12). Additionally, obesity (13), sleep deprivation, and lack of physical

activity can impact plasma lipidome (PL) levels. Indeed, the lipidome

plays a significant role in MI. Previous studies have shown that

adipokines, such as adiponectin and chemerin, are closely associated

with diseases of the male reproductive system (14). For example,

scientific research has demonstrated that adiponectin can mitigate

testicular damage in diabetic mice (15). As a result, the lipidome has

emerged as a critical area of research. Building on this, we

hypothesize whether PL are closely linked to MI as well. In recent

years, the study of PL has garnered significant attention. PL serve as

crucial energy sources, form the structural and functional basis of

biological membranes, and act as essential signaling molecules

without which biological processes would not be possible. Modern

lipidomics techniques have revolutionized our understanding of the

diversity and complexity of circulating lipids. PL encompass a range

of lipid classes including cholesteryl ester, ceramide, diacylglycerol,

lysophosphatidylcholine, phosphatidylcholine, phosphatidylcholine-

ether, phosphatidylethanolamine, phosphatidylethanolamine-ether,

sphingomyelin, and triglyceride, among others. The utilization of

histological techniques in exploring PL presents a robust platform for

comprehensive investigations into the intricate interplay among

nutrition, metabolism, and genotypic variability. PL have emerged

as significant players strongly linked to human aging (16),

cardiometabolic disorders (17), and hematologic disorders (18),

offering potential avenues for diagnosis and treatment. However,

limited research has delved into their association with MI. Current

research has focused on common lipoproteins such as triglycerides

(19), high-density lipoprotein, low-density lipoprotein (20), but there

is still a lack of comprehensive investigation into the relationship

between the complete PL system and MI, warranting further

exploration. While the causes of MI have been largely identified by
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scientists, approximately 40% of patients still have unclear reasons for

their condition. Therefore, it is crucial to continue exploring the

associated risk factors for its onset (21).

Mendelian randomization (MR) is an emerging epidemiological

research approach utilizing genetic variation, particularly single

nucleotide polymorphisms (SNPs), as instrumental variables (IVs)

for causal inference (22). Randomized controlled trials (RCTs) are

the gold standard to establish causal relationships (23). Proper

randomization ensures that study groups are comparable in all

characteristics, except for the exposure of interest, which often is a

therapeutic intervention. However, RCTs cannot always be

conducted, because they can be excessively costly, impractical, or

even unethical. Mendelian randomization refers to an analytic

approach to assess the causality of an observed association

between a modifiable exposure or risk factor and a clinically

relevant outcome. It presents a valuable tool, especially when

randomized controlled trials to examine causality are not feasible

and observational studies provide biased associations because of

confounding or reverse causality. These issues are addressed by

using genetic variants as instrumental variables for the tested

exposure: the alleles of this exposure-associated genetic variant

are randomly allocated and not subject to reverse causation. This,

together with the wide availability of published genetic associations

to screen for suitable genetic instrumental variables make

Mendelian randomization a time- and cost-efficient approach and

contribute to its increasing popularity for assessing and screening

for potentially causal associations. An observed association between

the genetic instrumental variable and the outcome supports the

hypothesis that the exposure in question is causally related to the

outcome (24). This method offers advantages in overcoming

the limitations of unknown confounders and reverse causality

commonly encountered in trad i t ional observa t iona l

epidemiological studies (25). In our study, we employed a two-

sample MR design to investigate the causal relationship between PL

and MI. Our aim was to identify potential risk factors and explore

possible treatment strategies for MI.
Methods and materials

Study design

In this study, PL was selected as the exposure factor, and SNPs

associated with PL were selected as IVs. MR of PL and MI was

performed using two-sample MR analysis, and heterogeneity and

horizontal polytropy were assessed using Cochran’s Q with MR

Egger’s method test, and finally sensitivity analyses were performed

to verify the stability of the results. We assessed the causal

association between 179 PL and MI based on two-sample MR

analysis. MR uses genetic variants to represent risk factors;

therefore, IVs in causal inference must satisfy three key

assumptions MR analysis needs to satisfy 3 conditional

assumptions (26): (1) the association assumption: there is a direct

correlation between the genetic variants and the exposure factors;

(2) Independence assumption: genetic variation is independent of

possible confounders between exposure and outcome; (3)
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Exclusivity assumption: genetic variation can only have an effect on

outcome through the pathway of exposure (Figure 1).
Data sources

SNPs significantly associated with PL were selected as IVs, and

Genome-wide association studies (GWAS) summary statistics for

PL were publicly available from the GWAS catalog (27), which

includes 495 genetic associat ions (GCST90277238 to

GCST90277416). The data for MI were downloaded from the IEU

Open GWAS database (https://gwas.mrcieu.ac.uk/) under the

number finn-b-N14_MALEINFERT dataset, with 8,305 cases in

the MI group and 72,799 cases in the normal control group,

including 16,377,329 SNPs, and this study population were all

European populations.(Year: 2021; Category: Binary; Population:

European; ncase: 680; Build: HG19/GRCh37).
Selection of instrumental variables

We used that exposed SNPs should reach genome-wide

significant levels (P < 5 × 10 - 8) as a screening condition (28),

and in the absence of significant genome-wide SNPs as IV, SNPs
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below the genome-wide significance threshold (P < 5 × 10 - 6) were

used as a new screening condition (24). to discover more potential

causal associations. Meanwhile, to mitigate the bias caused by

linkage disequilibrium, r2 = 0.001 and kb = 10000 were set as the

thresholds for removing linkage disequilibrium (29); only the SNPs

with the strongest impact on the outcome were selected as tools.

Statistical differences were considered to exist if P < 0. 05, and the F

value was set to >10 (29), which indicated the absence of weak

instrumental variable bias, calculated as F = R2(N-2)/(1-R2), where

R2 is the percentage of variance explained by SNPs in the exposure

database and N is the sample size of the exposed GWAS. MI as an

outcome was a dichotomous variable and was expressed as odds

ratio (OR) and 95% confidence interval (CI). R4.2.3 and R studio

software and the R package “Two Sample MR” were used for the

above analyses, with a standardized test of a = 0.05. b is the allele

effect value and SE is the standard error (SE); finally, the

palindromic SNPs were removed by palindromic sequence

detection to prevent alleles from influencing the results. Initial

studies were obtained with informed consent from all

participants, and these data are publicly available on the website.

We then used the PhenoScanner V2 website (http://

www.phenoscanner.medschl.cam.ac.uk) to exclude SNPs that are

potentially confounding factors and related to the outcome (male

fertility description) to eliminate the possibility of genetic
FIGURE 1

Flow chart. (A) Research Flow chart (B) Steps of MR analysis.
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pleiotropy. After a series of rigorous screenings, the remaining

SNPS were considered eligible for IV.
Mendelian randomization analysis

In this study, several MR methods were used to assess and

validate the causal relationship between LP and MI risk, including

IVW (30), MR-Egger regression (31), and weighted median (31).

IVW is essentially a meta-analysis method that analyzes PL and the

effect of MI through weighted linear regression to obtain an overall

estimate of the effect of PL and MI. IVW can be used for causal

assessment when there is no horizontal pleiotropy between SNPs. If

multinomiality exists in the IV, the MR-Egger method shows

horizontal multinomiality in the IV by using an intercept term. If

the intercept term is equal to 0, the results of MR-Egger regression

and IVW are the same. For up to 50% of invalid IVs, the weighted

median model yields consistent causal estimation of the relationship.

According to MR, genetic tools can only affect outcomes by

exposing people to them, and genetic variants may have pleiotropic

effects. In the main analysis, we calculated Wald ratio estimates for

each genetic variant and summarized the estimates using an IVW

approach. The IVW method with multiplicative random effects

provides a parsimonious estimate and takes into account potential

heterogeneity among Wald ratio estimates for SNPs. Estimates may

be inaccurate if the SNPs used as instruments have horizontal

pleiotropic effects that cause results to be influenced by pathways

other than exposure. Potential heterogeneity was estimated using

the Cochran’s Q test, and fixed-effects IVW models were applied

when P > 0.05, when no heterogeneity between SNPs was

considered to exist, and random-effects IVW models were applied

if P < 0.05, when heterogeneity between SNPs was considered to

exist. The sensitivity of the effect estimate after removing SNPs one

by one was analyzed by Leave-one-out analysis to assess whether

there was an effect of excluding individual SNP observations on the
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final results. Potential pleiotropy was assessed by intercepts tested

byMR-Egger regression, and when P > 0.05, it indicated the absence

of pleiotropy.
Results

Result of MR

Utilizing instrumental variable screening principles, a total of 13

PL were identified as causally associated with MI by at least one MR

method (p < 0.05): four were identified as risk factors, while nine

were deemed protective factors (Figure 2).

IVW analysis showed (Table 1) that Phosphatidylethanolamine

(18:0_0:0) levels [OR = 0.697, 95% CI (0.507 - 0.958), p = 0.026],

Phosphatidylcholine (18:0_18:3) levels [OR = 0.689, 95% CI (0.478 -

0.992), p = 0.045], Sphingomyelin (d40:1) levels [OR = 0.762, 95%

CI (0.625 - 0.930), p = 0.0076], Triacylglycerol (46:1) levels [OR =

0.687, 95% CI (0.496 - 0.951), p = 0.024], Triacylglycerol (51:2)

levels [OR = 0.660, 95% CI (0.467 - 0.933), p = 0.019],

Triacylglycerol (52:2) levels [OR = 0.756, 95% CI (0.573 - 0.999),

p = 0.049], Triacylglycerol (53:3) levels [OR = 0.763, 95% CI (0.592 -

0.984), p = 0.037], Triacylglycerol (56:3) levels [OR = 0.765, 95% CI

(0.596 - 0.982), p = 0.035], Triacylglycerol (56:4) levels [OR = 0.647,

95% CI (0.460 - 0.910), p = 0.012] were protective factors for MI.

Phosphatidylcholine (16:0_16:0) levels [OR = 1.390, 95% CI (1.068 -

1.809), p = 0.014], Phosphatidylcholine (O-16:0_20:4) levels [OR =

1.245, 95% CI (1.008 - 1.538), p = 0.042], Phosphatidylcholine (O-

18:0_20:4) levels [OR = 1.357, 95% CI (1.048 - 1.756), p = 0.021],

Phosphatidylethanolamine (O-18:1_20:4) levels [OR = 1.583, 95%

CI (1.205 - 2.078), p = 0.001] risk of MI was a risk factor.

For Sphingomyelin (d40:1) levels, the p-value of all three

methods (IVW, weighted median, and MR-Egger) was less than

0.05 (Figure 3), and we therefore concluded that Sphingomyelin

(d40:1) levels are the PL most closely associated with MI.
FIGURE 2

Results of IVW method.
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TABLE 1 Results of two-sample MR.

Exposure SNP MR method OR 95%LCI 95%UCI p-value

Phosphatidylethanolamine (18:0_0:0) levels 13 IVW 0.697 0.507 0.958 0.026

Weighted median 0.640 0.423 0.966 0.034

MR Egger 0.430 0.166 1.113 0.110

Phosphatidylcholine (16:0_16:0) levels 20 IVW 1.390 1.068 1.809 0.014

Weighted median 1.485 1.023 2.157 0.038

MR Egger 1.540 0.713 3.329 0.286

Phosphatidylcholine (18:0_18:3) levels 13 IVW 0.689 0.478 0.992 0.045

Weighted median 0.864 0.529 1.410 0.558

MR Egger 0.344 0.147 0.806 0.032

Phosphatidylcholine (O-16:0_20:4) levels 18 IVW 1.245 1.008 1.538 0.042

Weighted median 1.202 0.911 1.584 0.193

MR Egger 1.139 0.788 1.647 0.499

Phosphatidylcholine (O-18:0_20:4) levels 12 IVW 1.357 1.048 1.756 0.021

Weighted median 1.302 0.950 1.786 0.101

MR Egger 1.423 0.842 2.406 0.217

Phosphatidylethanolamine (O-18:1_20:4) levels 15 IVW 1.583 1.205 2.078 0.001

Weighted median 1.403 0.965 2.039 0.076

MR Egger 1.137 0.588 2.201 0.709

Sphingomyelin(d40:1)levels 28 IVW 0.762 0.625 0.930 0.008

Weighted median 0.623 0.462 0.841 0.002

MR Egger 0.589 0.420 0.828 0.005

Triacylglycerol (46:1) levels 14 IVW 0.687 0.496 0.951 0.024

Weighted median 0.765 0.492 1.190 0.235

MR Egger 0.429 0.183 1.008 0.076

Triacylglycerol (51:2) levels 11 IVW 0.660 0.467 0.933 0.019

Weighted median 0.662 0.410 1.069 0.091

MR Egger 0.680 0.285 1.621 0.406

Triacylglycerol (52:2) levels 18 IVW 0.756 0.573 0.999 0.049

Weighted median 0.732 0.486 1.103 0.135

MR Egger 0.949 0.491 1.836 0.879

Triacylglycerol (53:3) levels 19 IVW 0.763 0.592 0.984 0.037

Weighted median 0.743 0.508 1.087 0.126

MR Egger 0.586 0.306 1.123 0.125

Triacylglycerol (56:3) levels 18 IVW 0.765 0.596 0.982 0.035

Weighted median 0.698 0.491 0.991 0.044

MR Egger 0.691 0.364 1.310 0.274

Triacylglycerol (56:4) levels 13 IVW 0.647 0.460 0.910 0.012

Weighted median 0.592 0.398 0.882 0.010

MR Egger 0.832 0.251 2.755 0.769
F
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MI, male infertility; MR, Mendelian randomization; IVW, Inverse variance weighted; SNP, single nucleotide polymorphism; LCI, lower confidence interval; UCI, upper confidence interval.
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Heterogeneity test, sensitivity analysis,
multiple validity analysis

The results of Cochran’s Q and MR-Egger regression methods

showed that there was no significant heterogeneity or pleiotropy in

this study. The results of leave-one-out method showed that the

results did not change after removing SNPs one by one. These

analyses proved to some extent the robustness of the results of this

study (Table 2).
Discussion

With the accelerated pace of life and increased work pressure,

MI has become a social problem of general concern (32). MI is a

global health problem that requires attention from the medical

profession. By pooling data from 16 studies (33), researchers found

that Central and Eastern Europe had the highest prevalence of MI

(8-12%). MI leads to serious adverse health, psychological, social,

and economic consequences related to the disease. Results have

shown that infertile men have a higher risk of cancer (e.g., testicular

cancer, prostate cancer) and other adverse health outcomes (e.g.,

heart disease, diabetes, and autoimmune disorders) than the

normally fertile population (34–36), so it is important to

characterize the etiology of MI and treat the symptoms.

MR analysis is a scientific and effective method to identify the

causal relationship between risk factors and diseases.MR is an
Frontiers in Endocrinology 06
effective scientific method for identifying causal relationships

between risk factors and diseases. It can be used to evaluate the

causality between modifiable exposures or risk factors and clinically

relevant outcomes. MR uses genetic variations as instrumental

variables, which are randomly assigned. Compared to

observational studies, this method reduces the influence of

confounding factors. Moreover, since genetic variations are

determined at birth and are not influenced by outcomes, it can

avoid the interference of reverse causation. The wide availability of

published genetic associations for screening suitable genetic

instrumental variables makes Mendelian randomization a time -

and cost - efficient approach, contributing to its increasing

popularity for assessing and screening potentially causal

associations. Scientists have confirmed numerous mechanisms

affecting male infertility, yet many unknown areas still warrant

exploration by researchers. In the context of declining global sperm

quality, it is crucial to employ scientific research and experimental

methods to explore factors influencing MI and develop new

treatments. MR is a robust method for identifying causal

relationships, and many researchers are actively using this

approach to investigate various factors affecting male infertility

(37, 38). Although MR cannot replace RCTs, it can provide

supplementary evidence or offer new design insights for RCTs,

thereby enhancing clinical diagnosis and treatment strategies. Thus,

utilizing MR to uncover causal relationships related to MI is highly

important. In this study, we employed MR to comprehensively

assess the impact of 495 PL on MI. Our MR results indicate that PL
TABLE 2 Heterogeneity tests and Test for directional horizontal pleiotropy.

Id.exposure Exposure Heterogeneity tests Test for directional
horizontal pleiotropy

IVW Q_pvalue MR
Egger Q_pvalue

Egger_intercept Egger_intercept
pvalue

GCST90277269 Phosphatidylethanolamine
(18:0_0:0) levels

0.720 0.741 0.066 0.314

GCST90277277 Phosphatidylcholine (16:0_16:0) levels 0.782 0.732 -0.014 0.784

GCST90277301 Phosphatidylcholine (18:0_18:3) levels 0.375 0.545 0.087 0.107

GCST90277323 Phosphatidylcholine (O-
16:0_20:4) levels

0.762
0.725 0.018 0.573

GCST90277336 Phosphatidylcholine (O-
18:0_20:4) levels

0.725 0.646 -0.010 0.841

GCST90277354 Phosphatidylethanolamine (O-
18:1_20:4) levels

0.663 0.683 0.053 0.301

GCST90277376 Sphingomyelin(d40:1) levels 0.488 0.621 0.052 0.078

GCST90277379 Triacylglycerol (46:1) levels 0.653 0.692 0.072 0.265

GCST90277393 Triacylglycerol (51:2) levels 0.825 0.752 -0.005 0.945

GCST90277396 Triacylglycerol (52:2) levels 0.449 0.418 -0.038 0.466

GCST90277402 Triacylglycerol (53:3) levels 0.609 0.594 0.039 0.398

GCST90277409 Triacylglycerol (56:3) levels 0.540 0.477 0.017 0.740

GCST90277410 Triacylglycerol (56:4) levels 0.159 0.124 -0.034 0.675
MR, Mendelian randomization; IVW, Inverse variance weighted.
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may significantly influence MI, suggesting that lipoproteins play a

crucial role in its pathogenesis.

PL refer to the overall composition and characterization of all

lipid molecules in plasma. Lipids are a class of biomolecules that

play important roles in maintaining cell membrane structure,

energy storage, and signaling. The analysis of PL can help us

to understand the lipid metabolism of an individual or a group

of individuals in healthy and diseased states, which is important

for the study of metabolic diseases, reproductive health and

so on. There is a large body of literature supporting that

PL play an important role in MI (39), and PL has emerged as

a comprehensive approach to identify specific biomarkers

associated with reproductive disorders (40, 41).Researchers

have noted that low sperm counts in men are associated with

abnormal PL levels and have suggested that fertility assessment

could be improved by increasing lipid screening (42). And

abnormalities in PL may directly affect sperm formation and

function (43).

Through our study we found a total of 13 PL associated with MI in

the European population, which were Phosphatidylethanolamine

(18:0_0:0) levels, Phosphatidylcholine (18:0_18:3) level,

Phosphatidylcholine (18:0_18:3) levels, Phosphatidylcholine (O-

16:0_20:4) levels, Phosphatidylcholine (O-18:0_20:4) levels,

Phosphatidylethanolamine (O-18:1_20:4) levels, Sphingomyelin

(d40:1)levels, Triacylglycerol (46:1) levels, Triacylglycerol (51:2) levels,

Triacylglycerol (52:2) levels, Triacylglycerol (53:3) levels,

Triacylglycerol (56:3) levels, Triacylglycerol (56:4) levels。The most

diverse of these were triglycerides, and all six were protective factors.

Triglycerides are important determinants of sperm composition. It has

been suggested that special attention should be paid to triglycerides in

classical lipid screening because it may be a sensitive indicator of male

reproductive dysfunction (19), which has a consistent outlook with our

findings. Many studies have found that sperm immaturity may be and

male reproductive defects with dyslipidemia, and a relevant meta-

analysis showed that triglycerides do have a significant correlation with

semen parameters (44).Correnti et al. conducted amultilevel analysis of

PL in 50 subjects (31 infertile patients and 19 normal fertile men) (45).

Triglyceride (14:0_16:0_18:0) showed a positive correlation with MI,

while negative correlations were observed for phosphatidylcholine (PC

O-16:2_18:1)-CH3, phosphatidylethanolamine (PE O-16:1_20:3), etc.,

which are consistent with our findings. However, some researchers

have also suggested (46) a significant negative correlation between

riglycerides and semen parameters as well as serum total testosterone.

For instance, Alterman et al. suggested (47) that lipid parameters such

as triglycerides are negatively correlated with sperm morphology.

Conversely, some scientists argue that lipid levels do not significantly

correlate with MI. This discrepancy conflicts with our results,

highlighting the dual nature of triglycerides. Lipid testing is

commonly accessible in hospitals. Historically, elevated triglycerides

have been a primary concern, and we advocate for maintaining

triglyceride levels within reasonable limits, neither too high nor too

low. Timely intervention is recommended in cases where triglyceride

levels are excessively low.
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In addition, we also discovered that among the 13 relevant PL,

Sphingomyelin (d40:1) levels exhibited the strongest association with

MI. Experimental evidence has demonstrated that men with

oligospermia exhibit a significant reduction in sphingomyelin levels

compared to normal men, indicating its protective role (48), which is

consistent with our findings. Sphingomyelin is the most abundant

phospholipid in spermatozoa and plays a crucial role in sperm

maturation, being an essential component of the epididymis (49). In

various types of cells, different stimuli can activate sphingomyelinase

to hydrolyze sphingolipids. Sphingomyelin plays a crucial role in the

hydrolysis of sperm phospholipids, which is closely linked to sperm

capacitation and fertilization processes. Additionally, it can inhibit

gonadotropin-induced testosterone synthesis in mesenchymal cells

and reduce gonadotropin binding to receptors. This not only decreases

androgen synthesis but also leads to excessive apoptosis of

spermatogonia and spermatocytes (50). Wittmann et al. (51)

conducted an experimental study and found that sphingomyelinase

1 is indispensable for fertility in mice. Similarly, Datar (52) discovered

that metabolites of sphingomyelin, triglycerides, etc., are closely

associated with testicular growth in mice.

Sphingolipids, a family of lipids with a common sphingomyelin

backbone, are integral to various physiological and pathological

processes in cells. They act as important regulators of cellular

processes such as cell differentiation and apoptosis, and are

universally expressed in all mammalian cells. During epididymal

transit, there occurs an exchange of sphingolipids between

spermatozoa and the surrounding fluid. Sphingolipid metabolites in

the reproductive system have garnered significant attention in recent

years. Studies have indicated (53) a potential association between

sphingolipids and impaired gonadal function as well as infertility. In

our study, sphingomyelin emerged as a protective factor for MI. This

leads us to consider focusing on the measurement and preservation of

sphingomyelin levels in future clinical treatments, particularly for

patients with unexplained MI. This approach offers new perspectives

for clinical management strategies.

Generally, men with primary infertility tend to have poorer

health compared to fertile men, necessitating more reliable

diagnostic tools and robust personalized interventions. Through

our study, we identified 13 PL as major contributors to MI. We

advocate for a more comprehensive assessment of PL in men

seeking fertility, incorporating it as a routine part of clinical

evaluations for infertility, beyond the standard PL tests. Special

attention should be given to the screening of sphingomyelins and

triglycerides, thereby enhancing the diagnostic tools for MI. Diet

(40) and obesity (17) are recognized as risk factors for MI.

Therefore, it is crucial to conduct thorough PL screening,

particularly in men with higher BMI or obesity. Even in young

patients without overt lipid abnormalities (such as severe

overweight, obesity, and metabolic syndrome), PL levels should

be meticulously monitored. Early intervention for those with

abnormal PL levels can mitigate the adverse effects on fertility. In

the realm of pharmacological research for MI, regulating PL levels,

especially sphingomyelins and triglycerides, could be a promising
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approach. Developing new targeted drugs that modulate various PL

offers potential new treatment options for MI. Additionally, clinical

education should emphasize the impact of diet and obesity on

fertility. From what we know, this study stands as the inaugural in-

depth investigation into the causal connection between all

categories of PL and MI. Our study design was meticulously

crafted to minimize confounding factors and potential sources of

observational bias. All instrumental variables used were sourced

from publicly available GWAS, ensuring a rich dataset and

statistical robustness in assessing the plasma lipoproteins relevant

to male fertility.

In the future, we deem it necessary to continue conducting

RCTs to ascertain the precise role of PL in MI. Our study findings

provide a robust theoretical foundation for similar RCTs.

Furthermore, our research has identified PL as both protective

factors and risk factors for MI, guiding early interventions,

treatments, and prognostic assessments. Future large-scale studies

and RCTs on PL will further elucidate the causal relationships

between these PL and MI. Promoting PL screening globally can

provide new strategies and methods to improve male fertility.
Frontiers in Endocrinology 08
Limitation

Our study has several limitations. Firstly, the results of the

analysis are specific to European populations and may not

accurately reflect populations in other regions. Secondly, there is

potential bias in the study due to the relatively small number of MI

cases in the GWAS data. Lastly, the GWAS for MI was not

categorized, which limits our ability to provide detailed insights

into the association of PL with specific types of MI. Future studies

and randomized controlled trials are necessary to elucidate the

causal relationship between PL and MI more effectively.
Conclusion

MR analyses using large datasets analyzed by GWAS have

revealed a causal relationship between PL and MI. However, a

larger GWAS database is necessary to further investigate the

mechanisms underlying this association. Sphingomyelin and

triglycerides are closely linked to the development of MI, and
FIGURE 3

Results of Sphingomyelin (d40:1) levels analysis. (A) results of three methods (B) forest plot (C)leave-one-out plot (D)scatter plot (E)funnel plot.
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effective control of these lipid levels can potentially reduce the

prevalence of MI, providing new avenues for treatment

and prevention.
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