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Ca2+ signaling and metabolic
stress-induced pancreatic
b-cell failure
Mark A. Magnuson* and Anna B. Osipovich

Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt
University, Nashville, TN, United States
Early in the development of Type 2 diabetes (T2D), metabolic stress brought on

by insulin resistance and nutrient overload causes b-cell hyperstimulation. Herein

we summarize recent studies that have explored the premise that an increase in

the intracellular Ca2+ concentration ([Ca2+]i), brought on by persistent metabolic

stimulation of b-cells, causes b-cell dysfunction and failure by adversely affecting

b-cell function, structure, and identity. This mini-review builds on several recent

reviews that also describe how excess [Ca2+]i impairs b-cell function.
KEYWORDS
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1 Introduction

T2D is a polygenic disease in which insulin resistance brought on by overnutrition,

obesity, age, and a high genetic risk profile leads to the loss of glycemic control (1, 2). While

many individuals exhibit insulin resistance, the loss of b-cell function in response to

mounting metabolic stress determines whether euglycemia is maintained. Thus, to

understand the pathogenesis of T2D, we must also know how the b-cell responds to

metabolic stress and why it fails, especially in the pre-diabetic stage of the disease.

Compelling evidence exists that endoplasmic reticulum (ER) stress (3), mitochondrial

dysfunction (4), cytokine signaling (5) and the loss of cell identity (6) all contribute to the

loss of b-cell function in response to metabolic stress. Moreover, over 600 genetic risk loci

for T2D have been identified by genome-wide association studies (GWAS) (7–9). While the

target genes for most risk loci have not been unambiguously determined, islet-specific

transcription factors often bind nearby, suggesting in many cases that they predispose b-
cells to fail (10–12).

To develop a mechanism-based explanation for b-cell failure that integrates both

genetic and biochemical knowledge, we build on several recent reviews (13–17) and

summarize recent studies that point to the dysregulation of intracellular Ca2+

concentrations ([Ca2+]i) as a unifying explanation for the seemingly diverse mechanisms

and genes that may contribute to b-cell failure in response to metabolic stress.
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2 Metabolic stimuli-insulin
secretion coupling

Ca2+ is a critical second messenger that regulates many cellular

processes in b-cells, insulin exocytosis being foremost among them

(18). Decades of studies have provided a now canonical model for

metabolism-stimulated insulin secretion (19). Briefly, and as illustrated

in Figure 1A, a rise in the plasma glucose concentration is sensed by the

b-cell through the metabolism of glucose leading to an increase in the

cellular ATP/ADP ratio. The rise in ATP/ADP ratio causes ATP-

sensitive potassium (KATP) channel closure, plasma membrane

depolarization, the opening of voltage‐gated Ca2+ channels (VDCC),

and a rise in intracellular Ca2+ concentrations ([Ca2+]i). The transient

spikes in [Ca2+]i stimulate docking and exocytosis of insulin

vesicles (20).

Blocking KATP channel activity, either by the administration of

sulfonylureas or by genetic disruptions, causes depolarization of the

plasma membrane. Conversely, use of diazoxide, a molecule that

opens the KATP channel, or expression of KATP channel subunits

(encoded by Kcnj11 and Abcc8) that contain activating mutations,

causes hyperpolarization of the plasma membrane (21–24).

However, while the canonical model nicely links cell metabolism

to insulin secretion and predicts an increase in [Ca2+]i in response

to metabolic stress, it overlooks the now well-established fact that

[Ca2+]i affects other b-cell organelles, such as the ER, mitochondria,

and nucleus (15, 25, 26). Moreover, while the rise of [Ca2+]i is

principally metabolism-driven, insulin exocytosis is modulated by

many other agents including many hormones, fatty and amino

acids, and neurotransmitters in so-called “amplifying pathways”.
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Many of these agents act by binding to G protein-coupled receptors

(GPCRs), and the activation of phospholipase C (PLC)/protein

kinase C (PKC) or adenylate cyclase (AC)/protein kinase A (PKA)

pathways which rely on Ca2+ for signaling (27–30). An extended

model (Figure 1B) recognizes both the role of other agents in

modulating insulin secretion, and the critically important role of

Ca2+ in other organelles.
2.1 Ca2+ is essential for many functions of
the b-cell

[Ca2+]i is tightly regulated by transmembrane channels and

pumps, Ca2+ buffering proteins, and by the uptake and release of

Ca2+ from ER stores and mitochondria (31). Ca2+ concentrations

vary considerably among different subcellular compartments, with

concentrations in extracellular space (~1–2 mM) and ER and Golgi

compartments (~200–700 µM) being more than ten thousand times

higher than in the cytosol (~100 nM) (32, 33). Mitochondria Ca2+

concentrations vary between 50–500 nM in order to regulate

metabolism and serve as a transient calcium buffer (34).

Metabolic stimulation causes [Ca2+]i to sharply increase from

basal levels of ~100 nM to stimulated levels of ~1–3 µM due to

Ca2+ entry from the extracellular space or Ca2+ release from

intracellular stores. These spikes in [Ca2+]i may start locally

before propagating as cyclical Ca2+ oscillations throughout the

islet (35, 36). While Ca2+ spikes are tightly linked to insulin

secretion, an increase in [Ca2+]i also directly affects Ca2+

concentrations in various organelles, including the nucleus,

through multiple influx/efflux pathways (37).
B

A

FIGURE 1

A multifaceted role for [Ca2+]i in b-cell function. Hyperglycemia and other insulin secretagogues cause [Ca2+]i in b-cells to increase. (A) Metabolism-
stimulated insulin secretion. Glucose and amino acid metabolism lead to an increase in the ATP/ADP ratio, causing KATP (ATP-sensitive) potassium
channel closure, plasma membrane depolarization, and the opening of voltage‐gated Ca2+ channels (VDCC) triggering transient increases in
intracellular Ca2+ concentrations ([Ca2+]i). The transient spikes in [Ca2+]i stimulate docking and exocytosis of insulin vesicles. The activity of KATP and
VDCC channels can be blocked with tolbutamide (a sulfonylurea) and verapamil, respectively. (B) Adaptive regulation. Hormones, cytokines,
neurotransmitters, and certain fatty acids and metabolites that signal through G protein-coupled receptors (GPCRs) activate intracellular signal
transduction pathways that cause Ca2+ efflux/influx from intracellular stores/extracellular space. GPCR-induced alterations in [Ca2+]i modify other
metabolism-based insulin secretory responses. In addition, Ca2+ signaling to the nucleus alters the expression Ca2+-dependent transcription factors
that control many cellular functions.
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2.2 Role of Ca2+ in the ER
and mitochondria

Both the ER and mitochondria require Ca2+ for their function,

and both serve as intracellular Ca2+ reservoirs. The ER is critical for

protein synthesis and folding, lipid synthesis, and Ca2+ storage and

release, and b-cells require optimal ER functionality to support the

production of insulin and to maintain [Ca2+]i homeostasis (25). The

entry and release of Ca2+ from and to the ER is mainly regulated by

SERCA pumps, or by inositol 1,4,5-triphosphate (IP3R) and by

ryanodine receptors (RyR), respectively. Moreover, store-operated

Ca2+ entry from the extracellular space plays a critical role in

maintaining ER Ca2+ concentrations. Dysfunctions in any of

these processes can change ER susceptibility to stress (38, 39).

Not only does ER Ca2+ affect the unfolded protein stress response

(40), persistent ER stress likely causes b-cell demise in both Type 1

and T2D (25, 41). Indeed, cytokine-induced depletion of Ca2+ from

the ER may directly trigger apoptosis (42).

Mitochondrial activity and metabolic enzymes are also

regulated by Ca2+ (43, 44). Glucose-stimulated insulin secretion is

directly linked to mitochondrial function, and Ca2+ flows between

the ER and mitochondria via mitochondria-associated ER

membrane (MAMs) contact sites. Since Ca2+ is released from the

ER and directly taken up by mitochondria, intraluminal ER,

mitochondrial matrix, and cytoplasmic Ca2+ concentrations are

closely interrelated (45, 46). ER-mitochondria interplay may also be

a critical cellular adaptive mechanism for restoring [Ca2+]i
homeostasis after episodes of Ca2+ overload, thereby also

contributing to b-cell dysfunction (47, 48).
2.3 Ca2+ signaling to the nucleus

Ca2+ signaling to the nucleus links signaling cues with gene

expression, enabling cellular adaptations to both internal and

external stimuli (49). This process, known as excitation-

transcription coupling, is well-described in neurons and myocytes

(50–53). Ca2+ influx in response to membrane depolarization and

GPCR activation triggers multiple intracellular signaling pathways

that regulate cell identity, proliferation, autophagy and cell death

(54). Glucose stimulation leads to increase in b-cell nuclear Ca2+

concentration (55, 56). [Ca2+]i is sensed by Ca2+-binding proteins

(CBPs), with calmodulin being the most well-studied (57). These

molecules in turn activate downstream targets, including the

protein phosphatase calcineurin and Ca2+/calmodulin-dependent

kinases (e.g. CamKII and CamKIV), which in turn modulate the

activity of Ca2+ responsive transcription factors such as NFAT and

CREB (58–62), as well as a number of other transcription factors,

transcriptional co-regulators and chromatin modifying enzymes

(63, 64). While excitation-transcription coupling is a part of a

normal response to changes in the cell environment, chronic and

sustained activation of Ca2+ signaling pathways is detrimental to

cell function (65–67).
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2.4 Evidence linking Ca2+ signaling to
b-cell failure

While the harmful effects of excess [Ca2+]i have been extensively

investigated in other excitable cell types, and a critical role for Ca2+

signaling in b-cell function has long been clear, we lack a clear

understanding of how Ca2+ signaling is linked to b-cell failure (13–
17). Prior studies have shown that basal [Ca2+]i is increased in rat

islets cultured in high glucose (68), in mouse islets from obese (db/

db) mice (69–71), in islets from mice fed a high-fat diet (HFD) (72),

and in b-cells that exhibit chronic membrane depolarization due to

the loss of KATP channel subunit Abcc8 (73). Conversely, lowering

[Ca2+]i in b-cells by blocking Ca2+ influx with verapamil (74–78),

other compounds (79), or by a genetic deletion of Cavb3, a voltage-
dependent calcium channel subunit (80), attenuates b-cell loss and
diabetes in mice and humans. Moreover, studies in which b cells are

“rested” through the use of diazoxide, which opens the KATP

channel thereby impairing membrane depolarization, or other

therapies that lower the blood glucose concentration or reduce

glucokinase activity, may all work in large part by limiting increases

in [Ca2+]i (41, 71). However, while there is ample evidence showing

a correlation between a sustained increase in [Ca2+]i and

impairments in b-cell function, we do not know how metabolic

stress-induced increases in [Ca2+]i, which are likely to only be

transient during the pre-diabetic phase of T2D, initiate events that

lead to b-cell failure, as illustrated in Figure 2. Similarly, we do not

know how specific Ca2+-regulated processes are affected by T2D-

associated risk loci, either individually or in combination.
3 Effects of metabolic stress related
increases in [Ca2+]i on pancreatic
b-cell gene expression

3.1 Models of excess Ca2+ signaling in
b-cells

Consistent with the canonical model (Figure 1), depolarization

of the plasma membrane is predicted to cause Ca2+ influx, a rise in

[Ca2+]i, and an increase in insulin secretion. Abcc8 and Kcnj11

knockout mice, both of which lack functional KATP channels and

exhibit a sustained elevation in [Ca2+]i, display mild hypoglycemia

as young animals but develop diabetes as they age (73, 81–85).

Similarly, in humans, several individuals with inactivating

mutations of the KATP channel that cause hyperinsulinism in

infancy have been reported to develop diabetes in adolescence

(86, 87). The findings that both mice and humans with

genetically-driven increases in [Ca2+]i maintain euglycemia for

several months before they cross over to being overtly diabetic

has important implications (73, 82). First, it clearly separates the

effects of a sustained pathological increase in [Ca2+]i, often referred

to as excitotoxity, from glucotoxicity, which occurs after the onset of

hyperglycemia. Second, the delay has enabled studies of how b-cell
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gene expression and function is affected by a chronic increase in

[Ca2+]i without the confounding effects of hyperglycemia (73,

82, 88).
3.2 Overlapping effects of excitotoxicity
and overnutrition

Studies of Abcc8 knockout mice revealed alterations in islet

morphology and glucose intolerance prior to the development of

hyperglycemia. In addition, they revealed a loss of b-cell identity
that correlated with a marked alteration of a network of Ca2+

regulated genes (73). Recently, studies of b-cell-specific Kcnj11

knockout mice, which also exhibit an increase in [Ca2+]i and

glucose intolerance, revealed a Gs/Gq signaling switch (89).

Since overnutrition is common in pre-diabetes, we compared

transcriptomes of FACS-purified b-cells of Abcc8 knockout mice,

which serve as a model for excitotoxicity, with mice fed a HFD (88).

Both excitotoxicity and overnutrition were found to affect

overlapping sets of genes, and to exert an additively negative effect

on b-cell function (88). The commonalities in transcriptional

response are not surprising since overnutrition, by elevating

circulating free fatty acids (FFAs), contributes to insulin resistance

and hyperglycemia (90) by causing the release of Ca2+ from ER stores,
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increase in [Ca2+]i and accentuating both ER and oxidative stress (16,

91–95).

While excitotoxicity and overnutrition individually perturb the

expression in b-cells of several thousand genes (88), a meta-analysis

revealed that many of the upregulated genes were involved in

oxidative phosphorylation, mitochondrial organization, metabolic

pathways, and oxidative stress response whereas downregulated

genes were involved in cell organization, secretory function, cell

adhesion, cell junctions, cilia, cytoskeleton, and regulation of b-cell
epigenetic and transcriptional program (88). Furthermore, many

genes that are dysregulated excitotoxicity and overnutrition are

altered in pre-diabetic and diabetic b-cells from db/db mice (96),

also suggesting a strong correlation between chronic alterations in

[Ca2+]i and the loss of b-cell function.
3.3 Transcriptomic changes that precede
b-cell failure

3.3.1 Mitochondrial function and
energy metabolism

A chronic increase in [Ca2+]i stimulates expression of

mitochondrial structural and metabolic genes (Me3, Cox7a) that is

parallelled by increased oxygen consumption and mitogenesis in islets
FIGURE 2

A model for the development of T2D that considers the role of metabolic-stress and [Ca2+]i. This model illustrates the stepwise failure of b-cells in
response to metabolic stress. 1) In healthy individuals b-cells have normal [Ca2+]i levels. 2) In pre-diabetes, environmental factors such as age, sex,
genetic makeup, obesity, and overnutrition cause insulin resistance and an increase in insulin demand resulting in mild metabolic stress. Transient
elevations of the blood glucose and other insulin secretagogues cause the hyperstimulation of b-cells and small increases in [Ca2+]i. Initially, the
increase in Ca2+-signaling stimulate insulin secretion, b-cell proliferation and other adaptive responses that continue to maintain glycemia and
compensate for increased insulin demand. 3) The limited ability of b-cells to compensate together with a continuing rise in metabolic stress cause
further increases in [Ca2+]i. A tipping point occurs where a network of Ca2+-regulated genes crucial for maintaining Ca2+ homeostasis and b-cell
function becomes maladaptive. 4) The maladaptive changes brought on by chronically elevated [Ca2+]i cause the loss of b-cell identity and function,
with b-cells entering a decompensation stage where they can no longer secrete enough insulin to maintain normal blood glucose. Glucolipotoxicity
further accelerates the loss of b-cell function, identity and viability, therefore resulting in overt T2D. The increased gray shading of b-cells from left
to right indicates increasing loss of b-cell identity and function. The * indicates a tipping point.
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(88). Chronic stimulation of the electron transport chain leads to an

increase in reactive oxygen species and to mitochondrial dysfunction

(97). Furthermore, the combination of increased [Ca2+]i and

overnutrition not only impairs mitochondrial function, but it may

also impair the replacement of metabolically damaged mitochondria

(88) due to the downregulation of mitophagy associated genes

(Clec16a, Prkn) (88, 98–100).

Lysosomes are of note since they are involved in maintaining the

mitochondrial biogenesis/mitophagy balance (101), and stressed b-
cells showed an increase in regulators for mitochondrial (Ppargc1a)

and lysosomal (Tfeb) biogenesis (88), both known to be activated by

Ca2+ in other cell types (102, 103). Ppargc1a, a key transcriptional

regulator of energy metabolism, FA b-oxidation and mitochondrial

biogenesis is implicated in b-cell dysfunction and T2D (104–106).

Metabolic stress, by increasing the expression of genes that

contribute to metabolic inflexibility, may also impair the ability of

b-cells to utilize glucose, which would impair their metabolic

response to glucose (107). Consistent with this, an increase in the

expression of FA b-oxidation genes, as well as Pdk4, a kinase that

inhibits pyruvate flux into the TCA cycle (108), and decrease in

mitochondrial respiration response to glucose also suggests that

stressed b-cells switch to FAs and ketones as mitochondrial fuels (88).

Together, these findings suggest that metabolic-stress induced

elevations in [Ca2+]i cause impairments in mitochondrial function

that reduce the ability of b-cells to respond to glucose, an

unambiguous sign of b-cell failure.

3.3.2 ER protein folding and protein glycosylation
Excitotoxicity and overnutrition also cause an increase in the

expression of genes associated with ER secretory stress (88, 109).

Glycosylation, the process during which glycans (mono- or

oligosaccharides) are attached to proteins in the ER and Golgi, is

a critical quality control signal in ER protein folding (110). Since

excess protein glycosylation brought on by ER stress is linked to

cellular apoptosis (111), the observed increases in expression of

genes associated with ER protein folding and N- and O-linked

protein glycosylation are highly noteworthy as they suggest that the

stability, localization, trafficking, and function of glycosylated

receptors, ion channels, nutrient transporters, and transcription

factors in b-cells may all be adversely affected (112).

3.3.3 b-cell structure: cytoskeleton, cell polarity,
and cell adhesion

Since islet architecture in Abcc8 knock-out mice is abnormal

(73), it is not surprising that many genes important for b-cell
structure and function downregulated (88), including those

necessary for cell adhesion and cell-cell junctions (113), cilia

(114), and cytoskeletal and vesicular trafficking (115). Our

transcriptomic analysis also predicts changes in b-cell polarity

since genes essential for apical domain formation, primary cilia,

and the lateral domain are all downregulated while genes associated

with the vasculature-facing basal domain are upregulated (116).

Together, the many changes we observed suggest that a chronic

increase in [Ca2+]i disrupts cell polarity, exocytotic machinery, and

critical cell-cell contacts, thereby physically disrupting islet

architecture and insulin secretion.
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3.3.4 Chromatin maintenance and b-cell identity
Cellular dedifferentiation and the resulting loss of b-cell identity

are fundamentally important contributors to b-cell dysfunction in

T2D (117, 118). In b-cells that are stressed by excitotoxicity and

overnutrition, many transcription factors that are essential for

maintaining b-cell identity are downregulated (88). Similarly,

epigenetic modifiers, including a DNA methyltransferase (Dnmt1)

important for silencing of developmental or “disallowed” metabolic

genes in mature b-cells (119), are decreased. This likely explains the
upregulation of multiple disallowed genes (120) in response to

metabolic stress (88). Several lncRNAs which contribute to the

maintenance of the epigenetic and transcriptional landscape of b-
cells (121), are also down-regulated. Importantly, Aldh1a3 (122) and

Bach2 (123), two well-established markers and drivers of b-cell
dedifferentiation, are upregulated, suggesting that they too are

regulated by Ca2+ (88). Thus, the continued expression of key

transcription factors necessary to maintain b-cell identity likely also

depends on the maintenance of Ca2+-signaling and homeostatic

regulation.
3.4 Role of Ascl1, a Ca2+-regulated gene, in
b-cell dedifferentiation and failure

While the expression of many genes in b-cells is altered by

metabolic stress, the chronic nature of the analyses performed to date

limits the establishment of direct cause-and-effect relationships. For

this reason, we sought to identify a Ca2+-regulated gene that could be

studied in detail. Ascl1 (Achaete-scute homolog 1) stood out since

many of the genes putatively upregulated by [Ca2+]i contain binding

sites for ASCL1 (73). In addition, Ascl1 is a pioneer transcription

factor critical for neural cell differentiation (124–126) and is necessary

for the formation of neuroendocrine cells in multiple tissues (127–

129). Importantly, ASCL1 is also expressed in human islets (130).

To investigate how Ascl1 contributes to b-cell dysfunction

during metabolic stress, we generated b-cell-specific Ascl1

knockout mice and studied their responses to both excitotoxicity

and overnutrition. We found that Ascl1 is indeed induced by stimuli

that cause Ca2+-signaling to the nucleus, and that it contributes in

multiple ways to the loss of b-cell function. Remarkably, the

removal of Ascl1 from b-cells improved their function in response

to metabolic stress by HFD feeding (131). Transcriptional profiling

of islets under different experimental conditions revealed that

ASCL1 contributes to a loss of b-cell function both by activating

a dedifferentiation program and by suppressing the expression of

secretory and innervation genes in response to overnutrition.

Interestingly, b-specific Ascl1 knockout islets from HFDmice have

increased expression of parasympathetic neuronal markers, increased

insulin secretion in response to acetylcholine, and an increased islet

innervation. While additional studies of the role of Ascl1 in stressed b-
cells are necessary, our experiments clearly demonstrate that a

metabolic stress-induced increase in Ca2+-signaling to the nucleus

alters both b-cell function and identity in an ASCL1-dependent

manner. Our studies also point to a role for other Ca2+-regulated

transcription factors, suggesting that a Ca2+-dependent gene regulatory

network is critical for the proper function of b-cells, and that
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metabolic-stress profoundly modifies this network by invoking both

adaptive and maladaptive transcriptional changes.
4 Discussion

Although multiple lines of evidence point to Ca2+-signaling

being intimately involved in metabolic stress-induced b-cell failure,
the mechanisms whereby an increase in [Ca2+]i leads to a loss of b-
cell function are not understood and need further investigation.
Fron
1. Temporal causality between changes in [Ca2+]i, the

expression of key transcription factors, and the loss of b-
cell function needs to be established.

2. We need to better understand how specific Ca2+-regulated

processes modulate b-cell function. Cleverly designed

studies are required to distinguish between the effects of

elevated metabolic flux and closely linked [Ca2+]i.

3. We need to determine how overnutrition and insulin

resistance affect Ca2+ spiking activity in pre-diabetic setting.

4. We need to better understand how Ca2+-mediated

transcriptional reprogramming impairs b-cell function

and identity.

5. Finally, we need to determine how specific T2D genetic risk

loci affect Ca2+-dependent processes in b-cells.
While our assertions for the importance of Ca2+-signaling have

strong experimental support, we do not understand how genetic

risk loci, either individually or in aggregate, may contribute to b-
cell dysfunction.

We hope that this mini-review stimulates investigations by

others as there is much to learn about how alterations in [Ca2+]i
affect b-cell function and contribute to T2D.
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