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bicarbonate excretion
Manoocher Soleimani1,2*

1Department of Medicine, University of New Mexico, Albuquerque, NM, United States, 2Research
Services, New Mexico Veteran's Healthcare System, Albuquerque, NM, United States
Cystic fibrosis (CF) is the most common life-threatening genetic disease in the

United States and among people of European descent. Despite the widespread

distribution of the cystic fibrosis transmembrane conductance regulator (CFTR)

along kidney tubules, specific renal phenotypes attributable to CF have not been

well documented. Recent studies have demonstrated the downregulation of the

apical Cl-/HCO3
- exchanger pendrin (Slc26a4) in kidney B-intercalated cells of

CF mouse models. These studies have shown that kidneys of both mice and

humans with CF have an impaired ability to excrete excess HCO3
-, thus

developing metabolic alkalosis when subjected to excess HCO3
- intake. The

purpose of this minireview is to discuss the latest advances on the role of pendrin

as amolecule with dual critical roles in acid base regulation and systemic vascular

volume homeostasis, specifically in CF. Given the immense prevalence of

vascular volume depletion, which is primarily precipitated via enhanced

chloride loss through perspiration, we suggest that the dominant presentation

of metabolic alkalosis in CF is due to the impaired function of pendrin, which

plays a critical role in systemic vascular volume and acid base homeostasis.
KEYWORDS

hypokalemia, Barter-like syndrome, diabetes mellitus, nephrotoxicity, acute kidney
injury, kidney tubules
Introduction

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the

cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated

and ATP-regulated apical chloride channel that is widely expressed in epithelial tissues

(1–3). Patients with CF are very prone to developing lung injury/infection, pancreatitis,

and intestinal obstruction (1–3). While CFTR expression is detected in multiple nephron

segments ranging from the proximal tubule to the thick ascending limb of Henle to the

collecting duct, there is no discernible kidney phenotype attributed to CF. An original

study in 2018 demonstrated that the HCO3
- secreting exchanger, pendrin, is
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downregulated in B-intercalated cells in CF mouse kidneys,

making the animals prone to develop metabolic alkalosis in

response to oral HCO3
- loading (4). More recent studies have

confirmed and expanded on those findings by demonstrating the

dysregulation of the kidney secretin receptor as a link between the

oral bicarbonate load and the impaired renal HCO3
- excretion,

thus promoting the development of metabolic alkalosis (5, 6). The

lack of HCO3
- response to secretin (5, 6) is in complete agreement

with the original studies in children with cystic fibrosis (7).

This mini review explores the pathogenesis of metabolic

alkalosis in CF, specifically during vascular volume depletion, a

phenomenon that is observed frequently in patients with CF. This

can occur independent of HCO3
- loading and is primarily

dependent on the severe loss of chloride ions through perspiration.
Case presentation

A 24-year-old woman with CF was experiencing nausea,

weakness, and general malaise, along with a decreased appetite

for one week. She was admitted to the hospital following an

abnormal lab test at an outpatient facility.

The patient had a BP of 100/60; PR of 82/min; BUN of 22 and

serum creatinine of 1.2 mg/dl. The blood chemistry panel showed

the following: Na+138 (reference 135-144), K+ 3.4 (reference 3.5 to

5.4), HCO3
- 33 (reference 22-29), and Cl- 93 (reference 96-106)

mEq/l.

A venous blood gas analysis showed: pH of 7.45 (reference for

venous pH 7.32-7.42) and pCO2 of 45 mm Hg. The urine

electrolytes were: Na+ 44, Cl- 36, and K+ 35 meq/l. The above

presentation is consistent with metabolic alkalosis (elevated serum

HCO3
- concentration and blood pH values) along with

respiratory compensation.
Discussion

Acid base abnormalities in CF

Although the primary acid base disorder in patients with CF is

caused by impaired ventilatory gas exchanges leading to CO2

retention and chronic respiratory acidosis, the presence of

metabolic alkalosis has been well documented in patients with CF

for the last 5 decades (8–10). The preponderance of data has

pointed to vascular volume depletion as the driving force in the

generation of metabolic alkalosis in CF (8–10).

Recent studies have examined the pathogenesis of metabolic

alkalosis in animal models and individuals with CF. These studies

were mainly focused on acid base homeostasis in response to

HCO3
- loading. The first study in 2018 demonstrated that kidneys

of CF mice had an impaired ability to excrete excess HCO3
- during

bicarbonate loading (4). In addition, there was a reduced

expression of the HCO3
- secreting transporter, pendrin
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(Slc26a4), in the kidneys of CF mice (4). Separate experiments

in CF mice showed impaired HCO3
- secretion in microperfused

kidney collecting duct tubules (5). Follow up studies revealed that

the kidney secretin receptor (Scrt) in the collecting duct is

dysregulated in CF mice (5, 6), thus impairing the signal

between the secretin secretion from the small intestine to a

change in function of the kidney collecting ducts; and therefore,

hampering the ability of the kidney to eliminate excess HCO3
- (5–

7). Whether the expression levels of secretin receptor are

decreased in kidneys of either CF mice or patients with CF

remain unknown.

There are no studies that have comprehensively looked at those

CF individuals who have not been subjected to an oral HCO3
- load,

and yet present with metabolic alkalosis with increased frequency.

Published studies indicate that the two most common acid base

disorders in cystic fibrosis are:
1. Chronic respiratory acidosis. This is presumed to be the

most frequent acid base disorder owing to the impaired gas

exchange at the alveolar level due to the damage caused by

CF (8).

2. Metabolic alkalosis. Metabolic alkalosis is a frequent

occurrence in adults with CF (8–13). Indeed, metabolic

alkalosis could be the first manifestation of CF in toddlers

and adolescents (9, 13).
The authors of the above study (8) concluded that metabolic

alkalosis contributes to acute hypercapnic respiratory failure in

adult CF individuals.

In a study examining acid base disorders in patients with

chronic pulmonary dysfunction, the authors investigated acid

base homeostasis in individuals with CF vs. chronic obstructive

pulmonary disease (COPD) (12). The authors reported that in

patients with comparable forced expiratory volume in 1 second

(FEV1), majority of patients with CF, but not those with COPD,

had metabolic alkalosis (12).

The analysis of acid base parameters in individuals with CF (12)

revealed the presence of a primary metabolic alkalosis in 57% (8/14)

of subjects, and a mixed metabolic alkalosis along with respiratory

acidosis in 28% (4/14) of participants. The authors concluded that

stable patients with CF lung are more prone to display metabolic

alkalosis than in COPD patients (12).

In an original study, children in the Tucson area that had been

diagnosed as having CF before the age of 12 months were

examined to ascertain the prevalence of metabolic alkalosis as a

major presenting manifestation of the disease (13). Five of eleven

infants (46%) in whom CF had been diagnosed between 1 and 12

months of age were initially seen with metabolic alkalosis,

hypokalemia, and hypochloremia, unassociated with major

pulmonary and/or gastrointestinal symptoms. Two infants had

repeated episodes of metabolic alkalosis; for one of these infants,

both episodes of metabolic alkalosis occurred before the diagnosis

of CF (13). Ground breaking studies had convincingly
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demonstrated that individuals with cystic fibrosis could lose vast

amounts of salt (Cl- and Na+) in sweat, specifically in hot weather

(14–16), which would precipitate vascular volume depletion. The

enhanced loss of salt through sweat in individuals with CF was

shown to be primarily due to a defective route of transcellular Cl-

uptake in sweat duct epithelium (17). It was postulated that

chronic loss of sweat electrolytes together with mild

gastrointestinal or respiratory illness may predispose young

individuals with CF to develop a severe electrolyte and acid-

base disturbance (13). Taken together the above studies indicate

that metabolic alkalosis is a frequent occurrence in cystic fibrosis

and may be independent of the presence of lung damage

or infection.
Cystic fibrosis and Pseudo Barter
(Bartter-Like) syndrome

The excess loss of chloride (salt) through sweat (CF), gastric

content (vomiting), or kidney (in individuals with Bartter

Syndrome or treated with loop diuretics) is a well-known factor

that results in vascular volume depletion and precipitates metabolic

alkalosis (18–20). Unlike patients who suffer from gastric acid loss

(vomiting) and present with volume depletion and a very low urine

chloride, patients with Bartter Syndrome present with volume

depletion, metabolic alkalosis, and increased urine chloride (18,

21). Patients with CF can exhibit volume depletion and increased

(but not decreased) urine chloride, a phenomenon which has been

referred to as Pseudo Bartter Syndrome (22). It should be noted that

in severe instances of volume depletion, patients with CF could

present with a low urine chloride consistent with enhanced

absorption of chloride in more proximal nephron segments (11).
CFTR and kidney collecting duct

The expression of CFTR in collecting duct cells varies according

to cell type. It is most abundantly expressed in HCO3
- secreting B-

intercalated cells, followed by principal cells, and with the lowest

levels found in acid-secreting A-intercalated cells (23). In an original

study in 2018, the expression of the apical Cl-/HCO3
- exchanger,

pendrin, was found to be significantly reduced, which resulted in

impaired HCO3
- excretion in response to an oral HCO3

- load (4).

These studies were confirmed by other investigators (5, 6). It was

concluded that patients with CF are prone to the development of

metabolic alkalosis when subjected to oral HCO3
- loading secondary

to the inactivation of the bicarbonate secreting transporter, pendrin

in their kidneys (4–6). Additional investigations have shed more light

on the link between oral HCO3
- loading and the impaired ability of

the CF kidney to eliminate excess HCO3
- (5, 6). These experiments

conducted in CF mice demonstrated dysregulation of Scrt (secretin

receptor) in kidney B-intercalated cells (6). Taken together, these

studies indicated that SCTR plays an important role in linking the

circulating secretin with pendrin activation in kidney B-intercalated

cells (5, 6).
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Cystic fibrosis, vascular volume depletion,
and pendrin

Pendrin plays a dual role in acid-base and vascular volume

regulation by secreting HCO3
- into the lumen of the collecting

duct in exchange for absorbing chloride (24–32). As such, pendrin

is critical to both vascular volume regulation and acid base

homeostasis (28–32). Increased circulating aldosterone, either as

a primary event or consequent to vascular volume depletion,

increases pendrin function in part through its translocation to the

apical membrane from the subapical region (28, 30–32). In

pendrin-deficient mice, imposing vascular volume depletion was

associated with the inability to absorb chloride and secret HCO3
-,

thus resulting in the generation of metabolic alkalosis (28, 30–33).

In a remarkably similar manner, CF mice developed a

significantly higher serum HCO3
- concentration vs. wildtype

(WT) animals when placed on a salt deficient diet (with the

serum HCO3
- concentration increasing to 29.2 mEq/L in CF mice

vs. 26.7 in WT; p<0.03) further supporting the critical role that

pendrin plays in both volume regulation and acid base

balance (4).

Figure 1, left panel, is a schematic diagram depicting acid (H+)

and base (HCO3
-) secretion in A and B intercalated cells,

respectievely, and electrolyte and water transport in principal

cells in kidney collecting duct cells. As indicated in Figure 1,

right panel, pendrin mediates chloride absorption and HCO3-

secretion in B intercalated cells and shows overactivation in

volume depleted state. As such, the impaired ability of pendrin

to absorb luminal chloride and secret HCO3
- results in an

excessive loss of chloride into urine in the setting of vascular

volume depletion, thus worsening the magnitude of alkalosis

(Pseudo Bartter Syndrome).
The role of CFTR in epithelial physiology

Cystic fibrosis affects the integrity and functional properties of

epithelial cells of several organs, including the respiratory tract,

exocrine pancreas, intestine, vas deferens, hepatobiliary system, and

exocrine sweat glands.

Published studies indicate that:
1. CFTR plays a critical role in regulating luminal pH and

maintaining epithelial surface hydration (34, 35).

2. The activation of CFTR enhances HCO3
- secretion across

the luminal membrane in airway epithelia, pancreatic

ducts, intestines, and several other epithelial tissues (1–3,

34–41). It was suggested that bicarbonate transport

mediated via an anion exchange mechanism may be

defective in tissues from individuals with cystic fibrosis

(42). A critical discovery revealed that in addition to a

defective Cl- transport, CFTR mutations disrupt the

transport of HCO3
- in various tissues in cystic fibrosis

(43), highlighting the pathophysiological role of impaired

HCO3
- secretion in cystic fibrosis (44).
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3. Luminal pH plays an important role in epithelial barrier

function and innate defense, particularly in the airways and

GI tract (34, 35, 40, 41, 45).
The role of SLC26 family of Cl-/HCO3
-

exchangers in CFTR-activated HCO3
-

secretion in epithelial tissues

The activation of CFTR in pancreatic duct cells, airway epithelia,

and the intestine enhances HCO3
- secretion. Intense research on the

role of CFTR activation in HCO3
- secretion has identified several apical

Cl-/HCO3
- exchangers from the anion transporting SLC26 family that

physically interact and function in tandem with CFTR, thus

contributing to enhanced HCO3
- transport into the lumen of

epithelial cells (46, 47). These apical Cl-/HCO3
- exchangers include

SLC26A3 (DRA), SLC26A4 (pendrin) and SLC26A6 (PAT1) (48–50)

and interact with the CFTRmolecule through their STAS domain (46–

49). The schematic diagram in Figure 2 depicts a remarkable similarity

between the molecular machineries that facilitate HCO3
- and Cl-

secretion in response to CFTR activation in airway epithelia (A),

pancreatic ducts (B), and enterocytes of small intestine (C). It is

plausible that the kidney B-intercalated cells may exhibit a similar

activating interaction between CFTR and the Cl-/HCO3
- exchanger,

pendrin (Figure 2D). As noted, CFTRmutations result in a widespread

HCO3
- secretion defect in the epithelial cells of the airways, pancreatic

ducts, intestines, and the kidney collecting duct (4–6, 34–45). In

addition to interacting with and stimulating the SLC26 Cl-/HCO3
-

exchangers, a large number of studies support the conclusion that
tiers in Endocrinology 04
CFTR, when activated, becomes permeant to both Cl- and HCO3
-

(reviewed in 51). Recent publications indicate that permeability of

CFTR to various anions can be modulated by the WNK-SPAK

pathway (51). The schematic diagrams in Figures 2A–C depicts the

dual functional roles of CFTR in transporting Cl- andHCO3
- ions in an

activated state in the pancreatic duct, enterocytes, and alveolar cells.
Cystic fibrosis, pendrin and oral
HCO3

- load

Excess HCO3
- intake in WT mice results in an enhanced

expression of pendrin along with increased HCO3
- excretion (26,

27). A similar maneuver in CF mice, which display significant

downregulation of pendrin, resulted in impaired HCO3
- excretion

along with the development of metabolic alkalosis (4–6, 36). These

results indicate that a functional pendrin plays a sizeable role in

preventing the generation of metabolic alkalosis in response to

oral HCO3
- loading. Based on the critical role of SCTR in

activating pendrin-mediated HCO3
- secretion in kidney B-

intercalated (B-IC) cells in response to oral base (e.g., HCO3
-)

loading, recent studies suggest that loss of SCTR in CF impairs the

appropriate increase of renal base excretion during acute base

loading and that SCTR is necessary for rapid correction of

metabolic alkalosis (5, 36). Extrapolated from these studies (5–

7), it was proposed that the prevalent metabolic alkalosis in

patients with CF could be explained by the absence of secretin-

induced urinary HCO3
- excretion (36). It was further suggested

that patients with CF could be given a urine pH test after oral

HCO3
- loading to validate the efficacy of CFTR modulators in
FIGURE 1

The role of collecting duct cells in acid base and vascular volume homeostasis. Left panel, is a schematic diagram indicating acid (H+) and base
(HCO3

-) secretion in A- and B- intercalated cells, and electrolyte and water transport in principal cells in kidney collecting duct cells at baseline state.
Right panel is a schematic diagram depicting the activation of pendrin in chloride absorption and HCO3

- secretion in the kidney B-intercalated cells,
and ENaC in sodium absorption in principal cells in volume depleted states.
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treating cystic fibrosis. Recent studies point to the impaired ability

of CF patients to increase their urine HCO3
- excretion during the

presence of metabolic alkalosis (52).

It should be noted that while CF mice do not recapitulate several

phenotypic presentations of individuals with CF (such as airway

defect or male infertility), the GI and kidney manifestations in CF

mice mirror those defects in human CF. In a search for non-primate

models of CF, studies show that the porcine CF model exhibits a

strong phenotypic resemblance to humans with CF in that the

porcine model shows bacterial colonization, as well as airway

anomalies at birth and the impaired ability of CF piglets to clear

bacteria (53, 54). It would be enlightening to examine the role of

pendrin and HCO3
- secretion pathways in kidneys of porcine CF

models. This issue becomes critical because it can shed light on

whether lung infection/injury plays any role in the generation of

metabolic alkalosis in cystic fibrosis.

As discussed in this minireview, the major determinant of

metabolic alkalosis generation in CF is the development of

vascular volume depletion, a process that is unencumbered by

and independent of oral HCO3
- load (8–13). It should further be

noted that due to multiple medical ailments, patients with CF may

exhibit a false positive response (impaired excretion of HCO3
-) to

the oral base loading test due to CF-independent tubular

abnormalities. Amongst these medical maladies are:
Frontiers in Endocrinology 05
1. Frequent lung infections that require multiple and

aggressive antimicrobial therapy, which can impact

kidney tubular function and the glomerular filtration

rate (GFR).

2. Development of pancreatic insufficiency and diabetes

mellitus, which can lead to malabsorption in patients

with CF.

3. Moreover, patients with CF are at an increased risk for

acute kidney injury due to the use of nephrotoxic agents,

development of vascular volume depletion, or both, which

can impair the physiological functions of kidney tubules

and produce false positive (impaired HCO3
- excretion)

results when testing for HCO3
- excretion.

4. Severe vascular volume depletion and the resulting

decreased kidney perfusion can interefer with excess

HCO3
- excretion in individuals subjected to enhanced

base load, whether or not they have CF.

5. Furthermore, known electrolyte abnormalities such as

hypokalemia consequent to vascular volume depletion or

due to the development of hypomagnesemia –either

secondary to malabsorption or aminoglycoside-induced

pseudo–Bartter Syndrome (14, 55–57)- can decrease

pendrin expression and impair HCO3
- excretion

following base loading.
FIGURE 2

A schematic diagram depicting CFTR-dependent HCO3
- secretion in alveolar cells (A), pancreatic duct (B), small intestine (C) and kidney

B-intercalated cells (D). As noted, CFTR, when activated, may become permeant to both Cl- and HCO3
- ions in alveolar, pancreatic duct and

enterocytes. In kidney B intercalated cells, the role of pendrin in absorbing chloride and secreting HCO3
- is paramount. The roles of aldosterone,

which is critical in pendrin translocation and activation in volume depleted states, and the SCTR, which links secretin to pendrin-mediated
HCO3

- secretion are highlighted in kidney B-intercalated cells (D).
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6. Lastly, pharmaceutical agents such as carbonic anhydrase

inhibitors can downregulate kidney pendrin in a CF-

independent manner (55).
Taken together, there are multiple medical maladies, as listed

above, that are independent of CF that can interfere with enhanced

excretion of oral HCO3
- load.
Conclusion

In the kidney collecting duct, the Cl-/HCO3
- exchanger,

pendrin (SLC26A4), significantly contributes to the maintenance

of systemic vascular volume and blood pH during vascular volume

depletion by absorbing luminal chloride in exchange for HCO3
-

secretion. This important defensive mechanism is hampered in

individuals with CF, thus making them prone to the development

of metabolic alkalosis and worsening of vascular volume depletion

by excessive loss of salt in their kidneys (Pseudo Bartter

Syndrome). In addition, kidneys of patients with CF may be ill-

equipped to unload excess blood HCO3
- concentration via

pendrin due to the impaired cross talk between the circulating

secretin and kidney B-intercalated cells. Please see the schematic

diagram in kidney B-intercalated cells (Figure 2D). While the

optimal treatment for the correction of metabolic alkalosis would

be via the rectification of the underlying defect in the CFTR, the

treatment of systemic volume depletion will go a long way to

ameliorate existing metabolic alkalosis in patients with CF.
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