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and Mendelian
randomization analysis
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Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking
University Health Science Center, Beijing, China, 2Peking University First School of Clinical Medicine,
Peking University First Hospital, Beijing, China
Background: Periodontitis is a common complication of type II diabetes (T2D).

However, the existing research cannot fully elucidate the association between

them, let alone identify therapeutic targets for precise treatment of diabetic

periodontitis. Therefore, we employed integrated genetic approaches such as

single-cell analysis, Mendelian randomization (MR) analysis and colocalization

analysis to uncover novel therapeutic targets for T2D and periodontitis.

Methods: This study integrated single-cell analysis, MR analysis, colocalization

analysis, phenotype scanning, cell-cell communication analysis and metabolic

pathway activity analysis to unveil novel therapeutic targets for periodontitis and

T2D. We firstly identified core cell clusters of T2D and periodontitis, and

important marker genes were selected. The causal associations between these

genes and the two diseases were evaluated through MR analysis. Reverse MR

analysis, colocalization analysis, additional validation and phenotype scanning

further supported our findings. Finally, cell-cell communication analysis and

metabolic pathway activity analysis were employed to preliminarily investigate

the mechanisms of the observed causal associations.

Results: Through analysis of scRNA-seq data, we identified classical monocytes and

intermediate monocytes as core cell subclusters. Differential analysis identified 221

differentially expressed genes (DEGs). MR analysis identified 13 genes exhibiting

causal associations with T2D, and 11 causal genes with periodontitis. Colocalization

analysis, reverse MR analysis, additional validation and phenotype scanning further

enhanced the robustness of our results. Finally, we identified NCF1 as the core

therapeutic target for T2D (OR = 1.09, 95% CI: 1.03-1.14, p = 1.85  �10−3) and

LRRC25 for T2D (OR = 0.96, 95% CI: 0.93-0.99, p = 3.44  �10−2) and periodontitis

(OR = 0.92, 95% CI: 0.84-0.99, p = 4.45  �10−2). At last, cell-cell communication

analysis indicated significant differences in functions and metabolic pathway activity

between monocytes expressing or not expressing the core causal genes, which

preliminarily interpreted the observed causal associations.
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Conclusion: This study integrated single-cell analysis, MR analysis and

colocalization analysis to identified novel therapeutic targets for T2D and

periodontitis. 13 causal genes were identified for T2D, and 11 for periodontitis.

Among them, NCF1 and LRRC25 were regarded as core therapeutic targets. Our

findings bridge the gap in the understanding of the association between T2D and

periodontitis, and pave the way for targeted therapy of the two diseases.
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1 Introduction

Type II diabetes (T2D), a common chronic metabolic disease, is

characterized by insulin resistance (IR) and dysregulation of

nutritional metabolism (1). According to the statistics from the

International Diabetes Federation, in 2019, there were 460 million

diabetes patients worldwide, most of whom were T2D patients (2).

Projections indicate that by 2030, T2D will impact 642 million

people globally (3). Given the substantial prevalence of T2D and its

associated complications, which has led to adverse social and

economic impacts, it is crucial to delve into its pathogenesis and

explore novel therapeutic targets.

Periodontitis (PD) is a chronic infectious disease characterized

by gingival inflammation and destruction of periodontal tissue (4).

As the seventh most prevalent disease worldwide, periodontitis has

inflicted hundreds of millions of individuals, and there were 1.09

billion periodontitis cases by 2019 (5). In the USA, approximately

50% of adults aged 30 years or older have PD, and 49.4% of

individuals in Japan suffer from PD. In addition to its detrimental

impact on oral health, periodontitis also increases the risk of other

diseases, such as diabetes, cardiovascular disease and Alzheimer’s

disease (6). Furthermore, for PD patients suffer from T2D and other

cardiovascular conditions, they may potentially experience the

development of metabolic syndrome, which was characterized by

hypertension, dyslipidemia, and central obesity (7). Therefore, the

treatment of periodontitis confronts significant challenges, and it is

extremely important to screen therapeutic targets for periodontitis

and its associated complications to attain precise treatment.

Existing research indicates that periodontitis is a prevalent

complication of T2D, and it also exerts a significant impact on

the onset, progression and prognosis of T2D (8). Nascimento et al.

demonstrated that diabetes increased the risk of occurrence or

progression of periodontitis by 86% (RR=1.86, 95% CI: 1.30-2.80)

(9). Furthermore, a meta-analysis of 53 observational studies

revealed that severe periodontitis increased the incidence rate of

T2D by 53%, and patients with T2D exhibited significantly worse

periodontal condition (10). However, few studies provide profound

insights into the treatment for patients with diabetes and

periodontitis, let alone identify precise therapeutic targets. Due to
02
the interference of confounding factors and reverse causal bias in

traditional observational studies, the biomarkers proposed in

previous studies cannot accurately guide the treatment of these

two diseases. Currently, few studies have pinpointed precise genetic

targets associated with the occurrence and progression of T2D as

well as PD, and delved into their specific functions. Consequently,

robust and novel analytical methods are needed to explore the

therapeutic targets of T2D and periodontitis.

Single-cell RNA sequencing (scRNA-seq) technology, a

revolutionary high-throughput sequencing method, enables the

sequencing of individual cells, unraveling their heterogeneity and

evolutionary relationship (11). In comparison to conventional

sequencing techniques, scRNA-seq has the capability to identify

rare cell types, unveiling the transcriptional regulatory networks

and dynamic changes among cells (12). Currently, significant

progression has been achieved in many fields such as microbiology,

oncology and immunology with the help of scRNA-seq (13, 14). MR

analysis is an epidemiological approach which has been widely

applied to assess the causal association between exposure and

outcome (15). Due to random allocation of genetic variants during

conception, MR analysis can effectively mitigate the influence of

confounding factors and reverse causal bias (16). Consequently, MR

analysis is widely acknowledged for its exceptional capacity to

identify novel therapeutic targets (17, 18). MR analysis is based on

three key hypotheses: (1) Correlation hypothesis: The selected

instrumental variables (IVs) must be robustly associated with the

exposure; (2) Independence hypothesis: The IVs should not be

associated with confounding factors of exposure and outcome; (3)

Exclusivity hypothesis: The IVs exclusively influence the outcome

through the exposure without any involvement of other ways (15).

Furthermore, with the advent of expression quantitative trait loci

(eQTLs) data, the causal association between genes and diseases

could be investigated (19). At present, there is no study integrating

both single-cell analysis andMR analysis to identify novel therapeutic

targets for T2D and periodontitis, and only a small number of studies

have employed single-cell analysis to interpret the association

between T2D and periodontitis. However, these studies are

superficial as the causal relationships remain unknown. Thus, their

findings offer limited guidance for clinical applications.
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In this study, we aimed to integrate single-cell analysis and MR

analysis to identify potential therapeutic targets for T2D and

periodontitis, as well as validate their causal associations with

these two diseases. Colocalization analysis, reverse MR analysis,

additional validation and phenotype scanning further enhance the

robustness of our findings. The discovery of these novel therapeutic

targets holds promise for advancing the treatment and management

of T2D and periodontitis. The detailed workflow of this study is

illustrated in Figure 1.
2 Materials and methods

2.1 Data sources

The scRNA-seq data of peripheral blood mononuclear cells

(PBMC) were acquired from the GEO database (https://

www.ncbi.nlm.nih.gov/). Dataset GSE244515 provided 10X

scRNA-seq data from patients with periodontitis, patients with
Frontiers in Endocrinology 03
periodontitis and T2D and healthy individuals (20). We selected

data of two patients with periodontitis (GSM7818506 and

GSM7818508), two patients with periodontitis and T2D

(GSM7818516 and GSM7818517) and two healthy individuals

(GSM7818496 and GSM7818497) for single-cell analysis. To

evaluate the causal association between identified genes and

diseases, we obtained blood expression quantitative trait loci

(eQTLs) data of Differentially expressed genes (DEGs) from

eQTLGen (https://www.eqtlgen.org/), which encompasses eQTLs

data of 16,987 genes derived from 31,684 blood samples collected

from healthy European population. During the target discovery

phase, the GWAS data of T2D (29,193 cases and 182,573controls)

and periodontitis (3,046 cases and 195,395 controls) from FinnGen

consortium were utilized. As there was no available data on patients

with both T2D and periodontitis, we selected the data of each

disease respectively. For additional validation, we obtained GWAS

data of T2D from IEU Open GWAS (https://gwas.mrcieu.ac.uk).

The GWAS ID of the summary data of T2D was ebi-a-

GCST90018926 (38,841 cases and 451,248 controls) (21).
FIGURE 1

The workflow of this study. We integrated the scRNA-seq data from PD patients and PDDM patients for analysis. Preliminary analysis indicated that
classical monocytes and intermediate monocytes were crucial cellular subgroups. Cell-cell communication and pseudo-temporal analyses were
conducted and DEGs were identified. Subsequently, we conducted MR and colocalization analyses to explore the causal associations between
identified genes and T2D as well as PD. Finally, NCF1 and LRRC25 were identified core genes, and we further explored the functions of the
identified genes.
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Unfortunately, we were unable to find additional high-quality

GWAS data for periodontitis. Consequently, we did not carry out

additional validation on this part of the findings. For MR analysis,

there was no overlap between the exposure and outcome.
2.2 Single-cell data processing and analysis

For single-cell analysis, we utilized R package “Seurat” (V.4.3.0)

for data processing and visualization (22). During the quality

control process, we excluded cells with less than 200 or more

than 4,000 feature genes. Besides, Cells with more than 10%

mitochondrial genes were also removed. Subsequently, data

normalization was performed to mitigate batch effects and 2,000

highly variable genes (HVGs) were identified for principal

component analysis (PCA). Furthermore, we employed R package

“harmony” (V.0.1.1) to further alleviate the impact of batch effects

(23). Next, we employed the UniformManifold Approximation and

Projection (UMAP) method to reduce data dimensionality and

perform cell clustering. Cell types of each cluster were annotated

using R package “singleR” (V.2.2.0) based on data from Human

Primary Cell Atlas (24). At last, by calculating the proportion of

each cell cluster and integrating our findings with existing literature

reports, we identified monocytes as an important cell subcluster.

Subsequent analysis was then carried out specifically focusing on

this subcluster. The analysis strategies for this subcluster were

similar to the aforementioned steps.
2.3 Pseudo-temporal analysis and cell-cell
communication analysis

With the help of package “slingshot” (V.2.10.0) and

“SingleCellExperiment” (V.1.20.0), we conducted cell trajectory

analysis for monocytes clusters (25, 26). To obtain comprehensive

insights into the functions and roles of the core cell clusters, we

performed cell-cell communication analysis using the R package

“CellChat” (V.1.6.1) (27). We analyzed the interactions among

different cell clusters and identified the ligand-receptor pairs.

Function “netVisual_circle” and “pp_bubble” were used to

visualize the results.
2.4 Differentially expressed genes in the
core subclusters

At last, classical monocytes and intermediate monocytes were

identified as core cell subclusters due to their large proportion.

Subsequently, we employed “FindMarkers” function of “Seurat”

package, setting the log fold change threshold at 0.5. We identified

DEGs in classical monocytes and intermediate monocytes with

other monocytes, as well as with non- monocytes, separately. After

intersecting the sets of DEGs, we obtained two distinct gene sets

that exclusively representing uniquely expressed genes in classical

monocytes and intermediate monocytes. Furthermore, we
Frontiers in Endocrinology 04
conducted enrichment analysis using “Metascape” (V.3.5) to

unveil the functional significance of these DEGs (28).
2.5 Identification of IVs and MR analysis

We employed R package “TwoSampleMR” (V.0.5.8) for MR

analysis to evaluate the causal association among DEGs, T2D and

periodontitis. Single Nucleotide Polymorphisms (SNPs) that

satisfied the aforementioned three hypotheses were chosen as

instrumental variables (IVs). Firstly, the IVs should reach the

threshold of genome-wide significance (p < 5  �10−8). Secondly,

as the IVs must be independent, we conducted clumping (kb =

10,000, r2 < 0.001) to avoid linkage disequilibrium. Furthermore, we

calculated the R2 value and F-statistics of each SNP to avoid weak

instrument bias. SNPs with F-statistics less than 10 were considered

weak IVs and were excluded (29). At last, palindromic SNPs and

SNPs containing missing data were removed.

In the primary MR analysis, data of gene eQTLs were used as

exposures, and GWAS data of T2D and periodontitis were used as

outcomes. If the gene had only one IV, Wald ratio method was

employed to generate causal effect estimate (30). In contrast, if there

were two or more IVs available, we used inverse-variance weighted

(IVW) method as the primary method (31). To make our findings

more robust, MR-Egger method, Weighted Median method and

Weighted Mode method were also applied (32–34). As we know,

IVW exhibits the most efficient with the greatest statistical power,

which is not affected by horizontal pleiotropy when all IVs are valid

(Satisfy the three hypotheses) (31). Other methods have a higher

tolerance of invalid IVs, which can generate relatively credible

causal estimates when not all IVs are valid (32–34). Besides,

sensitivity analysis was conducted. Heterogeneity was assessed

through Cochran’s Q test and horizontal pleiotropy was detected

by MR-Egger intercept test. P-value > 0.05 indicated the absence of

significant heterogeneity and horizontal pleiotropy (32, 35). Causal

genes for T2D or periodontitis were identified based on the

following criteria: (1) The p-value of IVW method or Wald ratio

method < 0.05. (2) Significant heterogeneity and horizontal

pleiotropy did not exist. (3) The directionality of IVW method

was consistent with other three methods (There were 3 or more

IVs available).
2.6 Colocalization analysis

To further validate our findings in MR analysis, we performed

Bayesian colocalization analysis to investigate whether the identified

causal associations were driven by linkage disequilibrium (30). R

package “coloc” (V.5.2.3) were employed with the following

settings: (1) P1 =1  �10−4: The prior probability of the SNP being

exclusively associated with trait 1; (2) P2 =1  �10−4: The probability

of the SNP being exclusively associated with trait 2; (3) P12 =1  �
10−5: The probability of the SNP being associated with both traits

(36). In addition, in colocalization analysis, posterior probabilities

(PP) of 5 hypotheses were assessed: (1) H0: Both trait 1 and trait 2
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do not have causal SNP; (2) H1: Only trait 1 has a causal SNP; (3)

H2: Only trait 2 has a causal SNP; (4) H3: Both trait 1 and trait 2

have a causal SNP, but the causal variants are distinct; (5) H4: Both

trait 1 and trait 2 have a causal SNP, and they share the same SNP

(37). Substantial evidence of colocalization was identified at PPH4 >

0.8 (38). Besides, medium evidence of colocalization was identified

at PPH3+PPH4 > 0.8. (Both exposure and outcome have a causal

SNP) (39). We used R package “LocusCompareR” (V.1.0.0) for the

visualization of results of colocalization analysis (40).
2.7 Phenotype scanning

Employing “LDTrait” tool (41), we conducted phenotype

scanning to explore the associations of IVs of identified causal

genes with other diseases and traits. The causal genes were

considered to exhibit pleiotropic effects when they satisfy the

following criteria: (1) IVs of genes reached the genome-wide

significant threshold (p < 5  �10−8). (2) IVs of genes exhibited

significant association either directly with the two diseases or with

well-established risk factors of the two diseases.
2.8 Reverse MR analysis and
additional validation

To bolster the reliability of our findings, we employed

aforementioned strategies to obtain IVs of T2D and periodontitis.

Then, reverse MR analysis was carried out to explore the potential

instances of reverse causality. In this analysis, GWAS data of T2D

and periodontitis were used as exposure, and gene eQTLs data were

used as outcome. A p-value of Wald ratio or IVW method < 0.05

indicated the presence of reverse causality.

Given that NCF1 and LRRC25 were identified as core

therapeutic targets for T2D and periodontitis, we further

validated the causal associations in another cohort using the same

analysis strategies mentioned in 2.5.
2.9 Exploring the functions of
identified genes

We further analyzed the cell clusters based on the identified

causal genes to preliminarily explore the underlying mechanisms of

observed causal relationships. Firstly, we employed function

“DotPlot” to visualize the expression of 23 causal genes across

different cell clusters. Additionally, causal genes were further

analyzed using R package “GeneSwitches” (V.0.1.0). Switch genes

that might play crucial roles in trajectory development were identified

for conducting pseudo-temporal differentiation trajectory analysis,

and we depicted the gene expression patterns over pseudo-time (42).

In order to highlight the expression of core genes (NCF1 and

LRRC25) over pseudo-time, we utilized function “ggscatterstats”.

Based on the expression of two core causal genes (NCF1 and

LRRC25), the core subcluster was divided into two clusters

(expressing or not expressing the marker genes). Using the package
Frontiers in Endocrinology 05
“CellChat”, we analyzed the intercellular communications among

different cell clusters and identified the ligand-receptor pairs (27). At

last, Metabolic pathway analysis was conducted using the package

“scMetabolism” (V.0.2.1) with parameters “method = VISION,

metabolism.type = KEGG” (43).
2.10 Statistical analysis

In this study, standard statistical tests including Student’s t-test,

Wilcoxon rank-sum test, Kruskal-Wallis test and Chi-square test

were employed to evaluate differences among various cell subclusters.

All the statistical analyses were conducted using R 4.1.3, and

threshold of p < 0.05 was considered statistically significant.
3 Results

3.1 Analysis of scRNA-seq data

Through analyzing scRNA-seq data, 22 cell clusters were

identified (Figures 2A, B). After annotation, the 22 cell clusters

were classified into 5 clusters: Monocytes, Natural Killer (NK) cells,

T cells, B cells and Platelets (Figures 2D, E). The proportion of each

cell clusters are presented in Figures 2C, F. Compared with healthy

individuals, it was noted that the proportion of monocytes in

patients with periodontitis exhibited a significant decrease, while

the proportion of monocytes in patients with diabetes and

periodontitis was increased (Figure 2F). Existing research has also

demonstrated the crucial roles of monocytes in patients with

diabetes and periodontitis (44–46). Especially Shen et al.

proposed a treatment strategy to alleviate diabetes related

periodontitis through inhibiting inflammatory monocyte

infiltration (44). Consequently, monocytes were identified as the

important cell cluster, and we extracted scRNA-seq data of

monocytes for further analysis. Within monocyte cluster, we

initially identified 13 cell clusters (Figures 3A, B). After

annotation, the 13 cell clusters were classified into 4 clusters:

classical monocytes, intermediate monocytes, myeloid dendritic

cells and plasmacytoid dendritic cells (Figures 3D, E). The

proportion of each cell clusters are presented in Figures 3C, F. In

monocytes, Classical monocytes and Intermediate monocytes

accounted for the vast majority (Figure 3F). As a result, they were

regarded as the core subclusters for further in-depth analysis.
3.2 Cell trajectory analysis and cell-cell
communication analysis

Through pseudo-temporal analysis, we identified the

differentiation trajectory of monocytes (Figure 4A). Monocytes

originated from classical monocytes and underwent differentiation

into intermediate monocytes, plasmacytoid dendritic cells and

myeloid dendritic cells. As classical monocytes and intermediate

monocytes were identified as core cell subclusters, we conducted

cell-cell communication analysis in patients only with periodontitis
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and patients with both diabetes and periodontitis to explore the

interactions among core cell subclusters and other cell subclusters.

Both classical monocytes and intermediate monocytes were found to

interacted with other cell clusters except for platelets and

plasmacytoid dendritic cells, mainly through pathways associated

with LGALS9 and RETN (Figures 4B–I).
3.3 MR analysis between DEGs
and diseases

A total of 127 DEGs of classical monocytes and 94 DEGs of

intermediate monocytes were identified as marker genes

(Supplementary Table S1). The results of enrichment analysis are

presented in Figure 5. For classical monocytes, DEGs were mainly

enriched in terms of response to stimulus and positive regulation of

biological process. For intermediate monocytes, DEGs were mainly

enriched in immune system process, multicellular organismal

process and response to stimulus.

Finally, 1056 SNPs were selected as IVs for the 221 identified

marker genes. The F-statistics of IVs ranged from 29.76 to 4766.89,
Frontiers in Endocrinology 06
indicating that there was no weak instrument bias (Supplementary

Table S2). In the MR analysis with T2D as outcome, 13 genes

presented causal association with T2D (Figure 6): MGST1 (OR =

0.94, 95% CI: 0.89-0.99, p = 1.91  �10−2), BID (OR = 1.14, 95% CI:

1.01-1.28, p = 3.53  �10−2), RNASET2 (OR = 0.97, 95% CI: 0.93-

0.99, p = 3.34  �10−2), LYZ (OR = 0.96, 95% CI: 0.94-0.99, p = 7.95

 �10−3), OGFRL1 (OR = 0.95, 95% CI: 0.90-0.99, p = 2.99  �10−2),

TREM1 (OR = 1.04, 95% CI: 1.01-1.07, p = 1.88  �10−2), GLUL

(OR = 1.08, 95% CI: 1.01-1.15, p = 3.43  �10−2), IFITM3 (OR = 0.95,

95% CI: 0.92-0.99, p = 9.49  �10−3), NR4A2 (OR = 0.82, 95% CI:

0.70-0.98, p = 2.42  �10−2), NCF1 (OR = 1.09, 95% CI: 1.03-1.14, p =

1.85  �10−3), LRRC25 (OR = 0.96, 95% CI: 0.93-0.99, p = 3.44  �
10−2), HES4 (OR = 0.95, 95% CI: 0.91-0.99, p = 4.79  �10−2) and

AIF1 (OR = 1.07, 95% CI: 1.01-1.15, p = 4.55  �10−2). In the MR

analysis with periodontitis as outcome, we identified 11 causal genes

(Figure 6): VIM (OR = 0.84, 95% CI: 0.71-0.99, p = 4.75  �10−2),

ANXA1 (OR = 1.13, 95% CI: 1.04-1.22, p = 4.86  �10−3), CALHM6

(OR = 0.91, 95% CI: 0.85-0.97, p = 2.33  �10−3), CCNL1 (OR = 1.16,

95% CI: 1.03-1.32, p = 1.92  �10−2), CTSC (OR = 0.90, 95% CI: 0.83-

0.99, p = 2.17  �10−2), LRRC25 (OR = 0.92, 95% CI: 0.84-0.99, p =

4.45  �10−2), SDCBP (OR = 3.59, 95% CI: 1.20-10.74, p = 2.23  �
FIGURE 2

Single-cell transcriptional profiling. (A) UMAP plot of identified cell clusters (before annotation); (B) UMAP plot of identified cell clusters in PD
patients, PDDM patients and healthy individuals, respectively (before annotation); (C) The proportion of each subcluster in PD patients, PDDM
patients and healthy individuals (before annotation); (D) UMAP plot of identified cell clusters (after annotation); (E) UMAP plot of identified cell
clusters in PD patients, PDDM patients and healthy individuals, respectively (after annotation); (F) The proportion of each subcluster in PD patients,
PDDM patients and healthy individuals (after annotation). PD, Periodontitis; PDDM, Periodontitis and type II diabetes.
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10−2), SLC2A6 (OR = 2.00, 95% CI: 1.15-3.47, p = 1.44  �10−2),

TALDO1 (OR = 0.74, 95% CI: 0.56-0.99, p = 4.07  �10−2), UBE2D1

(OR = 1.09, 95% CI: 1.01-1.19, p = 3.97  �10−2) and VAMP5 (OR =

1.14, 95% CI: 1.03-1.26, p = 1.36  �10−2). Cochran’s Q test and MR-

Egger intercept test failed to find significant heterogeneity and

horizontal pleiotropy (Figure 6). Detailed information of MR

analysis is presented in Supplementary Tables S3-S5.

Among the 13 causal genes of T2D, there were 5 risk genes and 8

protective genes. For periodontitis, 6 genes presented risk association and

5 genes were identified as protective genes. It should be noted that

LRRC25was identified as protective genes for both T2D (OR= 0.96, 95%

CI: 0.93-0.99, p = 3.44  �10−2) and periodontitis (OR = 0.92, 95% CI:

0.84-0.99, p = 4.45  �10−2). This finding suggests that LRRC25 holds

promise as significant therapeutic target for T2D and periodontitis.

To examine whether reverse causal association existed, we

performed reverse MR analysis. For the 13 causal genes of T2D,

the results of reverse MR analysis demonstrated that there was no

reverse causal relationship (Supplementary Table S6). For the 11
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causal genes of periodontitis, unfortunately, there were no SNP

left after extracting outcome data. As a result, we could not

conduct reverse MR analysis between periodontitis and 11

causal genes. In this case, we assumed that reverse causal

association did not exist.
3.4 Colocalization analysis, additional
validation and phenotype scanning

We conducted colocalization analysis between the identified

causal genes and the two diseases to explore shared genetic signals.

Finally, NCF1 exhibited colocalization with T2D (PPH4 = 0.908),

indicating that NCF1 and T2D shared the same causal genetic

variant. Besides, median colocalization evidence was identified

between LRRC25 and T2D (PPH3 + PPH4 = 0.992). Consequently,

we identified NCF1 as core therapeutic targets for T2D and LRRC25

for T2D and periodontitis. The regional association plots between
FIGURE 3

In-depth analysis and visualization of monocytes. (A) UMAP plot of identified cell clusters in monocytes (before annotation); (B) UMAP plot of
identified cell clusters in monocytes in PD patients, PDDM patients and healthy individuals, respectively (before annotation); (C) The proportion of
each subcluster in monocytes in PD patients, PDDM patients and healthy individuals (before annotation); (D) UMAP plot of identified cell clusters in
monocytes (after annotation); (E) UMAP plot of identified cell clusters in PD patients, PDDM patients and healthy individuals, respectively (after
annotation); (F) The proportion of each subcluster of monocytes in PD patients, PDDM patients and healthy individuals (after annotation). PD,
Periodontitis; PDDM, Periodontitis and type II diabetes.
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NCF1, LRRC25 and T2D are presented in Figure 7. Detailed results of

colocalization analysis are presented in Supplementary Table S7.

To enhance the robustness of our findings, we utilized data from

another cohort as outcome to validate the observed causal

relationships. Regrettably, we did not find additional high-quality

data of periodontitis, so we only validated the causal relationship

between NCF1, LRRC25 and T2D. In the validation cohort, NCF1

still presented risk causal association with T2D (OR = 1.07, 95% CI:

1.02-1.13, p = 7.84  �10−3), and the direction of IVW method was

consistent with other three methods (Figure 8). However, we did

not observe the causal association between LRRC25 and T2D in this

cohort (Supplementary Table S8).

In the phenotype scanning phase, we employed “LDTrait” tool

to identify whether the IVs of the 23 causal genes were associated

with T2D, periodontitis and their risk factors. The detailed results of

phenotype scanning are presented in Supplementary Tables S9, S10.

None of the SNP was directly associated with T2D or periodontitis.

For the two core genes (NCF1 and LRRC25), IVs of them were

mainly associated with content and proportion of blood cell. These

findings further eliminated potential pleiotropy and enhanced the

reliability of our results.
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3.5 Explore the functions of
identified targets

To preliminarily interpret the observed causal associations, we

analyzed the expression of genes, intercellular communications and

metabolic pathway activity within different cell clusters.

We firstly visualized the expression patterns of 23 causal genes

across different cell clusters (Figures 9A, B). Figure 9A depicted the

expression patterns of 13 causal genes of T2D in patients with T2D and

periodontitis, and Figure 9B depicted the expression patterns of 11

causal genes of periodontitis in patients with periodontitis. The causal

genes exhibited high expression in monocytes. In addition, RNASET2

and NCF1 were also highly expressed in B cells. GLUL and TALDO1

were also highly expressed in platelets. Several genes such as VIM,

CTSC, ANXA1, and CCNL1 have certain expression levels in multiple

cell clusters. Furthermore, we depicted the states of switch genes over

pseudo-time to investigate the changes in gene expression during cell

development process (Figure 9C). For the two core genes (NCF1 and

LRRC25), we employed scatter plots to illustrate the association

between their expression and pseudo-time. The results indicated that

the expression of NCF1 might decrease (Pearson r = -0.16, p < 0.001)
FIGURE 4

Cell trajectory analysis and cell-cell communication analysis. (A) The cell trajectory analysis of monocytes; (B) Cell-cell communication analysis in PD patients
among classical monocytes and other monocytes; (C) The bubble plot of possible interactions in PD patients among classical monocytes and other
monocytes; (D) Cell-cell communication analysis in PD patients among intermediate monocytes and other monocytes; (E) The bubble plot of possible
interactions in PD patients among intermediate monocytes and other monocytes; (F) Cell-cell communication analysis in PDDM patients among classical
monocytes and other monocytes; (G) The bubble plot of possible interactions in PDDM patients among classical monocytes and other monocytes;
(H) Cell-cell communication analysis in PDDM patients among intermediate monocytes and other monocytes; (I) The bubble plot of possible interactions in
PDDM patients among intermediate monocytes and other monocytes; PD, Periodontitis; PDDM, Periodontitis and type II diabetes.
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and the expression of LRRC25 might increase (Pearson r = 0.39,

p < 0.001) over pseudo-time (Figures 9D, E).

Subsequently, we performed cell-cell communication analysis

and metabolic pathway activity analysis. Based on our previous

results, LRRC25 was a marker gene of intermediate monocytes and

NCF1 was a marker gene of classical monocytes. We further divided

intermediate monocytes (IM) into two subgroups (LRRC25+ IM

and LRRC25− IM), based on the expression of corresponding genes.

Similarly, classical monocytes (CM) were divided into two

subgroups (NCF1+ IM and NCF1−IM). In patients with

periodontitis and patients with T2D and periodontitis, we

observed that LRRC25+ IM exhibited normal intercellular

communications with other cell clusters, mainly through LGALS9

associated signaling pathways. However, LRRC25− IM did not

exhibit any intercellular communications with other cell clusters

(Figures 10A, B, E, F). In patients with periodontitis, we observed

that NCF1+ IM exhibited richer intercellular communication than

NCF1− IM (Figures 10C, D). Similarly, there was significant

difference in the intercellular communications between NCF1+

IM and NCF1− IM in patients with T2D and periodontitis. NCF

1−IM did not present any intercellular communications with other

cell clusters at all (Figures 10G, H). The metabolic pathway activity

analysis also indicated significant differences in metabolic pathway

activity among different cell clusters. Overall, cell clusters

expressing the two core genes exhibited heightened metabolic

pathway activity (Figures 10I–L).
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4 Discussion

To our knowledge, this is the first study to integrate various

genetic approaches including single-cell analysis, MR analysis and

colocalization analysis to delve into the association between T2D and

periodontitis, and identify novel therapeutic targets. Single-cell

analysis highlighted the importance of monocytes, with classical

monocytes and intermediate monocytes identified as core cell

subclusters. Subsequently, we obtained 221 marker genes as DEGs

forMR analysis. 13 genes exhibited causal associations with T2D, and

11 genes demonstrated causal associations with periodontitis.

Remarkably, among the 23 causal genes, LRRC25 presented causal

associations with both diseases. To bolster the robustness of our

findings, we conducted colocalization analysis, reverse MR analysis,

additional validation and phenotype scanning. Finally, NCF1 and

LRRC25 were identified as core therapeutic targets. To provide

preliminary interpretations for the observed causal associations, we

analyzed the expression of causal genes, intercellular communications

among different cell clusters, and the metabolic pathway activity of

these cell clusters. Significant differences of cell-cell communications

and metabolic pathway activity were observed between monocytes

expressing or not expressing the core genes, which might shed lights

on the underlying mechanisms driving these causal associations.

Monocytes and their derived macrophages are vital components of

the immune system, including classical monocytes, non-classical

monocytes, and intermediate monocytes, which serve crucial roles in
FIGURE 5

The histogram of enrichment analysis based on DEGs of core subclusters. (A) Enrichment analysis of 127 DEGs of classical monocytes; (B) enrichment
analysis of 94 DEGs of intermediate monocytes.
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the body’s inflammatory response and vasculature surveillance (47).

Existing studies indicate that monocytes and macrophages are highly

engaged in the pathogenesis of T2D and periodontitis. Nagareddy et al.

demonstrated that in obese mice, there was a notable elevation in

monocyte levels, accompanied by the infiltration of their differentiated

macrophages in adipose tissue. This infiltration contributed to the
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exacerbation of insulin resistance (IR) (48). Lira-Junior et al. revealed

that S100A12 secreted by monocytes accumulated in inflammatory

tissues and served as an indicator of the severity of periodontitis (49).

As is well known, excessive monocytes can lead to the dysregulation of

the body’s inflammatory responses, resulting in the release of large

quantities of pro-inflammatory factors such as TNF-a , IL-1, and IL-6.
FIGURE 6

Results of MR analysis. (A) The volcano plot of the results of MR analysis between 221 DEGs and type II diabetes; (B) The volcano plot of the results
of MR analysis between 221 DEGs and periodontitis. The horizontal line indicates a p-value of 0.05. Red dots represent risk genes of the disease,
green dots represent protective genes of the disease, and blue dots represent Neutral genes of the disease. (C) Forest plot of MR analysis between
13 identified causal genes and type II diabetes, 11 causal genes with periodontitis.
FIGURE 7

Regional association plots of colocalization analysis between NCF1 and type II diabetes (A); LRRC25 and type II diabetes (B).
frontiersin.org

https://doi.org/10.3389/fendo.2024.1410537
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zou and Yang 10.3389/fendo.2024.1410537
On the one hand, this will promote the progression of T2D. On the

other hand, it will also contribute to the occurrence of complications

including periodontitis (44, 49). Therefore, delving into the crucial

marker genes of monocytes and investigating their causal associations

with T2D and periodontitis is of great significance for identifying novel

therapeutic targets. Our study identified the core monocyte subclusters

through single-cell analysis and selected important marker genes. MR

analysis and colocalization analysis further investigated the causal

relationships between genes and diseases, and we ultimately

identified NCF1 and LRRC25 as core therapeutic targets.

Neutrophil cytosolic factor 1 (NCF1), a subunit of NADPH

oxidase 2 (NOX2), possesses the ability to convert oxygen into

superoxide anions and has been reported to be implicated in the

pathogenesis of various diseases (50). For example, Geng et al.’s study

indicated that NCF-H90, a lupus causal variant, might increase

autoantibody production and contribute to kidney damage (51). In

addition, several studies have established a strong correlation between

NCF1 and renal fibrosis as well as rheumatoid arthritis (52, 53). In

our study, NCF1 was identified as a risk causal gene for T2D, which

exhibited significant colocalization with T2D. Currently, there are few

studies reporting the role of NCF1 in T2D. Liu et al. demonstrated

that reactive oxygen species (ROS) could increase the risk of type I

diabetes by promoting the activation of autoreactive CD8+T cells.

However, NCF1-mutate dendritic cells (DCs) exhibited diminished
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capacity to activate CD8+T cells (54). Based on these findings, we

speculate that the mechanisms by which NCF1 increases the risk of

T2D may also be related to CD8+T cells. Furthermore, we have

observed that classical monocytes with high expression of NCF1

exhibited stronger intercellular communications compared to

monocytes with low NCF1 expression (Figure 10C), which were

primarily mediated through the LGALS9 signaling pathways

(Figure 10D). These findings provide valuable insights into the

causal relationship between NCF1 and T2D. In the future, it is

possible that safe NCF1 inhibitors could be employed for the

treatment of T2D.We anticipate that NCF1, a novel therapeutic

target for T2D, will bring about greater well-beings for patients.

Leucine rich repeat containing 25 (LRRC25), a member of

leucine rich repeat (LRR) containing protein family, is a key

negative regulator in the signaling pathways of RIG-I-like

receptors (RLRs) and type I interferon (IFN) (55). Currently,

LRRC25 is recognized as a negative regulator within NF-kB
signaling pathway. In addition, LRRC25 has been demonstrated

to effectively inhibit inflammatory responses induced by

lipopolysaccharide (LPS) and TNF-a (56, 57). In our study,

LRRC25 was the only gene that exhibited causal association with

both T2D and periodontitis, which had the potential to mitigate the

risk of the two diseases. At present, there are few studies focusing on

the role of LRRC25 in PD and T2D. Based on existing research, we
FIGURE 8

Forest plot of MR analysis between NCF1 and type II diabetes (In the validation cohort).
FIGURE 9

The expression of identified causal genes in cells. (A) The expression patterns of 13 causal genes of T2D in PDDM patients; (B) The expression
patterns of 11 causal genes of periodontitis in PD patients; (C) The pseudo-temporal differentiation trajectory analysis of switch genes; (D) Scatter
plot depicting the relationship between the expression of NCF1 and pseudo-time; (E) Scatter plot depicting the relationship between the expression
of LRRC25 and pseudo-time.
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speculate that the mechanisms by which LRRC25 reduces the risk of

T2D and periodontitis may be intricately linked to the inhibition of

inflammatory responses. Furthermore, a study focusing on acute

myeloid leukemia (AML) has indicated that, in AML patients, there

is a significant decrease in the proportion of monocytes, while

LRRC25 exhibits high expression in primary bone marrow cells

(granulocytes and monocytes) but low expression in lymphocytes.

Additionally, they have demonstrated the crucial role of LRRC25 in

inducing granulocyte differentiation (58). In our study, the

proportion of monocytes in the PD group is decreased compared

to the CT group, which was similar to that in AML patients.

However, intriguingly, the PDDM group exhibited an increase in

the proportion of monocytes, which necessitated further molecular

biology experiments for elucidation. Looking ahead, as the results of

basic experiments mature, we anticipate further clinical trials to

validate the role of LRRC25 in monocytes in these two diseases. For

patients with both T2D and periodontitis, we believe that LRRC25

will be a reliable therapeutic target, and more drugs targeting

LRRC25 will be developed in the future.
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Our study has several notable strengths. Firstly, this is the first

study to integrate diverse genetic approaches to explore the intricate

association between T2D and periodontitis, and we identified novel

therapeutic targets for precise treatment of the two diseases. Secondly,

compared to traditional clinical studies and bioinformatics analysis,

MR analysis was employed in our study, which could effectively

mitigate the impact of confounding factors and reverse causal bias.

Thirdly, in MR analysis, the F-statistics of all IVs were greater than

10, indicating that weak instrument bias did not exist. At last,

colocalization analysis, reverse MR analysis, additional validation

and phenotype scanning were utilized in our study to enhance the

robustness of our findings. Consequently, core therapeutic targets

NCF1 and LRRC25 were identified.

However, it is crucial to acknowledge several limitations. Firstly,

we did not conduct multiple testing. Our goal is to discover as many

causal therapeutic targets related to T2D and periodontitis as

possible, while multiple testing may exclude some meaningful

indications. Secondly, the eQTLs and GWAS data are all from the

European ancestry. Therefore, caution is needed when generating
FIGURE 10

Functional analysis of identified targets. (A) Cell-cell communication analysis in PD patients among LRRC25+ IM, LRRC25– IM and other monocytes; (B)
The bubble plot of possible interactions among LRRC25+ IM, LRRC25– IM and other monocytes in PD patients; (C) Cell-cell communication analysis in
PD patients among NCF1+ CM, NCF1– CM and other monocytes; (D) The bubble plot of possible interactions among NCF1+ CM, NCF1– CM and other
monocytes in PD patients; (E) Cell-cell communication analysis in PDDM patients among LRRC25 +IM, LRRC25– IM and other monocytes; (F) The
bubble plot of possible interactions among LRRC25+ IM, LRRC25– IM and other monocytes in PDDM patients; (G) Cell-cell communication analysis in
PDDM patients among NCF1+ CM, NCF1– CM and other monocytes; (H) The bubble plot of possible interactions among NCF1+ CM, NCF1– CM and
other monocytes in PDDM patients; (I) The activity of metabolic pathway of LRRC25+ IM, LRRC25– IM and other monocytes in PD patients; (J) The
activity of metabolic pathway of NCF1+ CM, NCF1– CM and other monocytes in PD patients; (K) The activity of metabolic pathway of LRRC25+ IM,
LRRC25– IM and other monocytes in PDDM patients; (L) The activity of metabolic pathway of NCF1+ CM, NCF1– CM and other monocytes in PDDM
patients. IM, intermediate monocytes; CM, classical monocytes; PD, Periodontitis; PDDM, Periodontitis and type II diabetes.
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these results to other ethnic groups. Thirdly, Due to the lack of data

on periodontitis, we did not verify the causal relationship between

LRRC25 and periodontitis. In future investigations, once GWAS

data from other races and additional periodontitis GWAS data are

available, we will further validate our findings to fortify the

robustness of our findings. At last, it is crucial to emphasize that

although our study provides preliminary evidence of potential

causal associations among 23 therapeutic targets, T2D and

periodontitis, further experimental validation is still imperative to

solidify these findings. For future research, cell line experiments and

animal models could be used to further validate our findings.
5 Conclusion

In summary, this study preliminarily explored the association

between T2D and periodontitis from a cellular and genetic

perspective. Notably, classical monocytes and intermediate

monocytes are regarded as core cell subclusters and may shed lights

on the shared mechanisms in the pathogenesis of the two diseases. MR

analysis identified 13 causal genes of T2D and 11 causal genes of

periodontitis. Among them, NCF1 and LRRC25 were identified as core

therapeutic targets. NCF1 presented colocalization with T2D and

passed additional validation, and LRRC25 demonstrated causal

association with both diseases. Furthermore, our analysis also

suggests that monocytes expressing or not expressing the core genes

exhibit different intercellular communications and metabolic pathway

activity. Our findings provide novel insights into personalized

treatment and targeted therapy. However, further biological

experiments are still necessary for further validation.
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