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The causal relationship between
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isolated REM sleep behavior
disorder: results from
multivariable and
network Mendelian
randomization analysis
Ru-Yu Zhang1,2*, Jin-Yu Li3, Yu-Ning Liu3, Zi-Xuan Zhang3,
Jie Zhao2 and Fu-Jia Li1,4*

1Department of Pulmonary and Critical Care Medicine, First People's Hospital of Zigong, Zigong,
Sichuan, China, 2Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital
of Xuzhou Medical University, Xuzhou, Jiangsu, China, 3Department of Neurology, The Affiliated
Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China, 4Department of Neurology, The
Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
Objectives: To investigate the causal relationship between type 2 diabetes

mellitus (T2DM, exposure) and isolated REM sleep behavior disorder

(iRBD, outcome).

Methods: Genome-wide association study (GWAS) data for iRBD comprised

9,447 samples, including 1,061 iRBD cases from the International RBD Study

Group. Initially, we performed linkage disequilibrium score regression (LDSC) to

explore the genetic correlation between T2DM and iRBD. Then the two-sample

univariate MR (UVMR) analysis was conducted to examine the effects of T2DM

and blood sugar metabolism-related factors on iRBD. Subsequently, we applied

multivariable MR (MVMR) methods to further adjust for confounders. Lastly, we

executed a network MR analysis, with cytokines and immune cell characteristics

as potential mediators, aiming to investigate indirect effect of T2DM on iRBD.

Results: Results from LDSC suggest a genetic correlation between T2DM and

iRBD (rg=0.306, P=0.029). UVMR analysis indicates that both T2DM (Odds Ratio

[95% Confidence Interval] = 1.19 [1.03, 1.37], P = 0.017) and high blood glucose

levels (1.55 [1.04, 2.30], P = 0.032) are risk factors for iRBD. Even after adjusting

for confounders in MVMR, the association between T2DM and iRBD remains

robust. Finally, results from network MR analysis suggest that T2DM may

indirectly promote the development of iRBD by reducing levels of Stromal

Cell-Derived Factor 2 in circulation and by increasing BAFF-receptor

expression in IgD- CD38- B cells.
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Conclusions: T2DM may promote the onset of iRBD by influencing immune-

inflammatory responses. Our findings provide valuable insights and directions for

understanding the pathogenesis of iRBD, identifying high-risk groups, and

discovering new therapeutic targets.
KEYWORDS
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1 Introduction

Isolated rapid eye movement (REM) sleep behavior disorder

(iRBD), a parasomnia characterized by the lack of muscle atonia

and abnormal behaviors during REM sleep, significantly impacts

sleep quality and poses safety and health risks to both patients and

their bed partners (1). Critically, iRBD serves as a known precursor

for severe neurodegenerative a-synucleinopathies such as

Parkinson’s disease (PD), multiple system atrophy (MSA), and

dementia with Lewy bodies (DLB). Studies have shown that

upwards of 80% of those with iRBD are likely to develop PD,

DLB, or MSA within a span of about 16 years (2–4). These

afflictions are characterized by their severely debilitating impact,

poor prognoses, and substantial reduction in the quality of life and

longevity of sufferers. Consequently, a deep understanding of the

risk factors and underlying mechanisms of iRBD is crucial for

effective management and potentially for the prevention of its

progression to more grave neurodegenerative diseases.

Numerous studies have established a strong link between Type 2

Diabetes Mellitus (T2DM) and alpha-synucleinopathies. Observational

studies identify T2DM as an independent risk factor for PD (5–9) and

DLB (10, 11), exacerbating symptoms and accelerating disease

progression. Furthermore, pancreatic tissue samples from both

T2DM and a-synucleinopathy patients show similar pathological

changes, notably the deposition of phosphorylated a-synuclein in

pancreatic b cells, suggesting parallel pathological mechanisms in

these diseases (12). In vitro experiments have demonstrated that the

characteristic deposit protein in diabetes, islet amyloid polypeptide

(IAPP), interacts with alpha-synuclein, promoting its aggregation (13).

Animal studies further indicate that the hyperglycemic state and insulin

resistance in diabetes may trigger immune-inflammatory responses,

facilitating the accumulation of a-synuclein and the onset of

neurodegenerative changes (14, 15). These findings collectively

support the role of T2DM in promoting a-synucleinopathies.
However, research on the relationship between T2DM and the

precursor stage of alpha-synucleinopathies, iRBD, remains scarce and

controversial. Using linkage disequilibrium score regression (LDSC),

Krohn’s team identified a genetic correlation between T2DM and iRBD

(rg = 0.66, se = 0.23, p = 0.0047) (16). In a community-based

observational study, Wong and colleagues pinpointed diabetes as an
02
independent risk factor for people with probable RBD (OR[95%] =1.37

[1.04-1.82]) (17), while research from José Haba’s team refuted this

association (18). It is pivotal to recognize that observational studies are

vulnerable to confounding bias and reverse causality.

Mendelian Randomization (MR) is a statistical tool employing

genetic variants as instruments to deduce the causal impact of

exposures on outcomes (19). This method leverages the fact that the

allocation of genetic variants at conception is impervious to

environmental or lifestyle influences, making MR estimates more

resistant to confounding factors and reverse causation biases (20).

Moreover, genetic variant data are typically derived from genome-

wide association studies (GWAS), known for their large sample

sizes, consequently enhancing MR’s capability to robustly detect

causal relationships (21).

To reduce biases from confounders and reverse causality, and to

provide robust genetic evidence on the relationship between T2DM

and iRBD, we conducted a two-sample MR analysis, considering

T2DM as the exposure and iRBD as the outcome. Given that T2DM

can lead to a range of complications through immune-

inflammatory responses (22, 23), and abnormalities in cytokine

levels and immune cell characteristics are observed in iRBD patients

(24–27), we conducted a network MR analysis. This analysis

focused on immune-related circulating protein levels,

inflammatory factors, and immune cell characteristics as potential

mediators to investigate the underlying immune-inflammatory

mechanisms by which T2DM may lead to iRBD.
2 Materials and methods

2.1 Study design

Figure 1 delineates the methodology of our two-sample MR

analysis, exploring the link between T2DM and iRBD. Initially, we

employed LDSC to assess the genetic correlation between these two

conditions. Following this, with T2DM as the exposure factor and iRBD

as the outcome factor, we conducted a univariate Mendelian

Randomization analysis (UVMR) to investigate their gene-driven

causal relationship. To further corroborate this result, UVMR was

again utilized, to examine the connection between three glucose
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metabolic traits (blood glucose, glycated hemoglobin, and fasting insulin

levels) and iRBD. The next phase of our study involved a multivariable

MR (MVMR) method, integrating confounders like Body Mass Index

(BMI), smoking habits, and educational level, to validate the robustness

and consistency of the T2DM-iRBD association. Lastly, our analysis

extended to a network MR approach with cytokines, immune-related

circulating protein levels, and immune cell characteristics as potential

mediators, delving into the underlying mechanisms of T2DM leading to

iRBD. Our methodology adheres rigorously to the STROBE-MR

guidelines (28).
2.2 Data sources

To strengthen causality inference and reduce bias from small sample

sizes, we carefully selected the most comprehensive GWAS datasets for

T2DM and iRBD available from the GWAS Catalogue (https://

www.ebi.ac.uk/gwas/), focusing on individuals of European descent.
Frontiers in Endocrinology 03
The T2DM GWAS dataset, specifically, was derived from a meta-

analysis conducted by Angli Xue’s team, combining data from

MAGIC, DIAGRAM, and GERA, encompassing a total of

659,316 participants (29). For the outcome data, we chose a

GWAS dataset of an iRBD cohort (1,061 cases and 8,386

controls) compiled by the International RBD Study Group (16).

The iRBD cases were diagnosed using the International

Classification of Sleep Disorders (2nd or 3rd Edition), inclusive of

video polysomnography assessments. To ensure better

comparability between the case and control groups, principal

components analysis was used to adjust for population

substructure, accounting for variables like gender and age. Data

concerning metabolic traits related to blood sugar, confounders

(BMI, education years, smoking status) and potential mediators (91

plasma cytokines, 106 immune-related circulating proteins, 731

immune cell characteristics) were sourced from the IEU online

database (https://gwas.mrcieu.ac.uk/) and the GWAS Catalogue

database (Table 1). All the aforementioned GWAS data are
FIGURE 1

The flowchart of study design. BMI, body mass index; T2DM, type 2 diabetes mellitus; iRBD, isolated REM sleep behavior disorder; MR, Mendelian
randomization; IV, instrumental variables; IVW, Inverse variance weighted; MLA, Maximum likelihood analysis.
frontiersin.org

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://gwas.mrcieu.ac.uk/
https://doi.org/10.3389/fendo.2024.1408053
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1408053
publicly accessible. Importantly, we retrieved exposure and

outcome data from independent samples to avoid bias stemming

from sample overlap.
2.3 Genetic correlation analysis

In our study, we employed single-variate LDSC to estimate the

heritability of both T2DM and iRBD. Additionally, to clarify the
Frontiers in Endocrinology 04
genetic correlations between these two conditions, we utilized the

bivariate LDSC method. (30–34).
2.4 Instrumental variable selection

Genetic variants were selected as instrumental variables based on

strong associations with the exposure (P < 5 × 10-8). To mitigate reverse

causation bias, we excluded SNPs highly associated with the outcome
TABLE 1 Description of the data source of the study.

Trait Data source Sample size Description

Exposure

Type 2 diabetes
GWAS Catalog ID: GCST006867

659316
DIAGRAM: 34840 cases and 114981 controls;
GERA: 6905 cases and 46983 controls; UKB: 21147
cases and 434460 controlsPMID: 30054458

Blood glucose levels
IEU ID: ebi-a-GCST90014005

357580

Data from the UK Biobank

PMID: 34017140

HbA1c levels
IEU ID: ebi-a-GCST90014006

389889
PMID: 34017140

Fasting insulin levels
IEU ID: ebi-a-GCST90002238

151013
PMID: 34059833

Confounder

BMI IEU ID: ukb-b-19953 461460

Education years
IEU ID: ebi-a-GCST90029013

461457
PMID: 29892013

Smoking status
IEU ID: ebi-a-GCST90029014

468170
PMID: 29892013

Mediator

91 plasma cytokines

GWAS Catalog ID: GCST90274758
to GCST90274848 14824 Data from 11 independent cohorts

PMID: 37563310

106 immune-related
circulating proteins

IEU ID: ebi-a-GCST90019380 to ebi-
a-GCST90019485 10708 Data from the Fenland study

PMID: 33328453

731 immune cell characteristics

IEU ID: ebi-a-GCST90001391 to ebi-
a-GCST90002121 3757 Data from the SardiNIA dataset

PMID: 32929287

Outcome

iRBD

GWAS Catalog ID: GCST90204200

9447

The iRBD cohort (N cases = 1061, N controls =
8386) included large cohorts of French, French,
Canadian, Italian and British origins, and smaller
cohorts from different European populations. IRBD
cases were diagnosed according to the International
Classification of Sleep Disorders (2nd or 3rd
Edition), including video polysomnography.

PMID: 36470867
MAGIC, the Meta-Analyses of Glucose and Insulin-related traits Consortium; DIAGRAM, diabetes Genetics Replication and Meta-analysis; GERA, genetic Epidemiology Research on Adult
Health and Aging; IEU, Integrative Epidemiology Unit; The SardiNIA project, a long-term research initiative involving participants who are natives of the central eastern coastline of
Sardinia, Italy.
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(P  <  5� 10−5) (35). To quantify the proportion of variance in

exposure, the R2 clue of single nucleotide polymorphisms (SNPs) was

estimated by effect estimates (beta) and allele frequencies (EAF): R2 =

 2 �  EAF �  (1  −  EAF)�  beta2 (36). The instrument strength was

estimated using the F-statistic: F  = R2

(1−R2) � (N  − k − 1)
k , where N

represents the sample size and k is the number of instrumental

variables (37). Only the SNP of F-statistic > 10 could be included in

this study. A minor allele frequency (MAF) ≥0.01. We clumped

independent SNPs based on European ancestry reference data (1000

Genomes Project, r²>0.001, genomic region=10,000 kb). Summary

statistics were harmonized on alleles positively associated with

exposures. Ambiguous palindromic SNPs (A/T, C/G) with a

MAF>0.3 were excluded (38). To fulfill the independence assumption

for MR analysis, SNPs associated with various factors, including BMI,

smoking, alcohol consumption, years of schooling, occupation, head

injury history, olfactory dysfunction, antidepressant drug usage, and

antipsychotics usage (16–18, 39–41), were excluded based on the

PhenoScanner query results. SNPs associated with confounding

factors were displayed in Supplementary Table S4. The statistical

power of the Mendelian randomization analysis was computed using

the tool available at https://shiny.cnsgenomics.com/mRnd/ (42).
2.5 Statistical analysis

The primary analysis utilized the inverse-variance weighted

(IVW) method (43), benchmarked against other MR methods

robust to pleiotropy, including the maximum likelihood method

(44), weighted median (45), weighted mode (46), MR-Egger

regression (47) simple mode (48) and the MR-PRESSO (49). We

initially investigated the genetically driven causal relationship

between T2DM as the exposure and iRBD as the outcome.

Subsequently, to validate our findings, we delved into the causal

connections between three key blood glucose metabolic traits—blood

glucose levels, glycated hemoglobin levels, and fasting insulin levels—

and iRBD. Although MR effectively reduces confounding bias, it does

not completely eliminate its influence. If the instrumental variables

used in the analysis are associated with known risk or protective

factors for the outcome, they violate the second assumption of MR,

leading to biased results. Therefore, we employed MVMR to adjust

for instrumental variables closely related to BMI, years of education,

and smoking habits (16–18, 39–41), in order to assess the robustness

of the relationship between T2DM and iRBD.
2.6 Network Mendelian
randomization analyses

To investigate the potential immune-inflammatory

mechanisms by which T2DM affects iRBD, we selected 91 plasma

cytokines, 106 immune-related circulating proteins, and 731

immune cell characteristics as candidate mediators and conducted

a network MR analysis—an MR-based mediation analysis. We

sequentially calculated the total effect of T2DM on iRBD, the

direct effect of T2DM on the mediators, and the direct effect of

the mediators on iRBD. The magnitude of the mediation effect was
Frontiers in Endocrinology 05
estimated using the product-of-coefficients method, and the

confidence interval was determined using the Delta method (50).
2.7 Sensitivity analyses

Cochran’s Q statistic assessed heterogeneity, serving as a

potential indicator of pleiotropy in IVW estimators. Horizontal

pleiotropy was identified through the p-value for the intercept in

MR-Egger (47) and the global test in MR-PRESSO (49). MR-

PRESSO also pinpointed outliers, prompting a reanalysis of all

MR methods after outlier SNP exclusion. Leave-one-out analyses

determined if a single SNP unduly influenced estimates.

All statistical tests were two-sided, a P value of less than 0.05

was considered statistically significant. All above statistical analyses

were conducted by using the R-statistical software (version 4.3.1)

with related R packages.
3 Results

3.1 Characteristics of the selected
instrumental variables

Supplementary Table S2 details the selected genetic instruments

for our MR analyses. These genetic variants were strongly

associated with their respective exposures, explaining a variance

that ranged from 0.26% to 21.81%. Importantly, all instrumental

variables had F-statistics exceeding 10, indicating that our results

are unlikely to be affected by weak instrument bias. In terms of

statistical power within our MR analysis, except for the exposure

factor of fasting insulin with a power value of 0.86, all other

exposures had power values of 1, signifying robust statistical

power to detect potential causal relationships.
3.2 Gene-driven causal relationship
between T2DM and iRBD

Bivariable LDSC analysis indicated a genetic correlation between

T2DM and iRBD (rg = 0.306, P = 0.029;, Table 2; Supplementary

Table S1). The UVMR analysis corroborated a gene-driven causal

relationship, with an odds ratio (OR) of 1.19 (95% CI: 1.03-1.37; P =

0.017, Figures 2A, B). Subsequent secondary analyses using various

methods supported these findings: maximum likelihood yielded an

OR of 1.19 (95% CI: 1.03, 1.38, P = 0.016), weighted median

produced an OR of 1.27 (95% CI: 1.02, 1.57, P = 0.031), simple

mode estimated an OR of 1.76 (95% CI: 1.05, 2.96, P = 0.035), and

MR-PRESSO calculated an OR of 1.19 (95% CI: 1.04, 1.27, P = 0.016).

Notably, all analyses excluded the instrumental variable ‘rs13239186’

due to its strong association with smoking as identified in the

PhenoScanner database, to avoid confounding bias (Supplementary

Tables S2, 4). Sensitivity analyses, using Cochran’s Q statistic, showed

no heterogeneity in the MR results. Furthermore, MR-Egger’s

intercept and MR-PRESSO’s global test indicated no evidence of

horizontal pleiotropy. MR-PRESSO also detected no outlier effects
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(Supplementary Table S5). Leave-one-out analysis suggested that the

results were not driven by any single SNP (Figure 2C; Supplementary

Table S6). Reverse Mendelian randomization did not support the

existence of reverse causation (Supplementary Table S7).

In our UVMR analysis examining the relationship between

three blood sugar metabolism factors and iRBD, we discovered that

elevated blood glucose levels increase the risk of iRBD, with an OR

of 1.55 (95% CI: 1.04, 2.30, P = 0.03). Secondary analyses using

Maximum likelihood and MR-PRESSO corroborated these

findings, with both methods indicating an OR of 1.55 (95% CI:

1.04, 2.31, P = 0.03 for Maximum likelihood; 1.55, 95% CI: 1.04,

2.30, P = 0.03 for MR-PRESSO). Significantly, our analyses

systematically excluded the instrumental variables ‘rs8047587’ and

‘rs34402524’, due to their strong associations with alcohol

consumption and years of education, respectively (Supplementary

Table S4). There was no evidence to suggest a causal link between

HbA1c or fasting insulin levels and iRBD. Sensitivity analysis
Frontiers in Endocrinology 06
indicated heterogeneity in the relationship between HbA1c levels

and iRBD (Q-value=0.01), and potential horizontal pleiotropy

(Global P-value =0.01). The remaining analyses showed no

disturbances from heterogeneity, horizontal pleiotropy, or outliers

(Table 3; Supplementary Tables S8, 9).

Study conclusions were supported by weighted-median

estimation, weighted-mode, and MR-Egger methods (Supplementary

Table S2). Cochran’s Q statistic indicated no significant heterogeneity

in SNP effects (p > 0.05). No evidence of potential horizontal

pleiotropy was detected for the eight factors identified (p > 0. 05).

To further assess the robustness of the results, we conducted MR-

PRESSO tests on the included SNP loci. In addition, a leave-one-out

sensitivity analysis was conducted to assess the influence of each

SNP on the overall causal relationship. The results demonstrated

that systematically removing individual SNPs and repeating the MR

analysis did not reveal significant differences in the observed causal

relationships (Supplementary Tables S3–5).
3.3 Results for multivariable MR for
adjusting confounders

The results of the MVMR suggest that T2DM remains an

independent risk factor for iRBD, even after adjusting for potential
FIGURE 2

The estimated causal effects of T2DM on iRBD using MR analysis. (A) presents the results using a scatter plot. (B) presents the results using a forest
plot. (C) presents the results of leave-one-out analysis. Effect sizes are represented as odds ratios (OR), and the horizontal bars represent 95%
confidence intervals (CIs). Statistically significant P-values are indicated with superscript letters and asterisks (*).
TABLE 2 Results of LDSC between T2DM and iRBD.

Exposure Outcome rg se P-value

T2DM iRBD 0.31 0.14 0.029*
LDSC, Linkage disequilibrium score regression; rg, genetic correlation; se, standard error.
Results that achieve statistical significance will be highlighted in bold and marked with an
asterisk (*).
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confounders such as years of education, smoking status, and BMI.

This was demonstrated through various analytical methods: IVW-

OR at 1.230 (95% CI: 1.031, 1.467, P = 0.022), Lasso-OR at 1.176

(95% CI: 1.003, 1.379, P = 0.046), MR-Egger-OR at 1.208 (95% CI:

1.011, 1.442, P = 0.037), and Weighted Median-OR at 1.278 (95% CI:

1.008, 1.619, P = 0.043) as shown in Figure 3 and Supplementary

Table S10. Sensitivity analysis revealed no horizontal pleiotropy in the

multivariable MR analyses, as indicated byMR-Egger regression (MR

Egger intercept P value = 0.092).
3.4 Network MR analyses to explore
potential mechanisms

In our network MR analysis (Table 4), we identified significant

associations: T2DM was observed to decrease plasma levels of

Stromal Cell-Derived Factor 2 (SDF-2) (P=8.03E-03), with lower

SDF-2 levels elevating the risk of iRBD (P=1.75E-03). The

mediation effect of SDF-2 in the T2DM-iRBD relationship

accounted for 7.03% (95% CI 0.11%–7.70%). Furthermore, T2DM

was associated with an increase in BAFF-receptor (BAFF-R) on

IgD- CD38- B cells (P = 3.08E-03), a characteristic that also

heightened the risk of iRBD (P = 7.43E-04). The mediation effect
Frontiers in Endocrinology 07
of this immune characteristic in the T2DM-iRBD causal pathway

was 11.17% (95% CI 6.22%–11.65%). Notably, none of the network

MR analyses indicated the presence of heterogeneity and horizontal

pleiotropy (Supplementary Tables S11, 12).
4 Discussion

In this pioneering MR study, we identified a significant

association between elevated blood glucose levels, T2DM, and

increased risk of iRBD. This link remained strong even after

adjusting for BMI, smoking, and education. Mediation analysis

highlighted an indirect pathway where T2DM contributes to iRBD

by increasing BAFF-R on IgD- CD38- B cells and reducing plasma

SDF-2 levels. These findings offer valuable insights into screening

high-risk populations for iRBD and understanding its pathogenesis,

representing a notable advance in the field.

Numerous observational studies have consistently

demonstrated that T2DM is an independent risk factor for alpha-

synucleinopathies such as PD (5–9) and DLB (10, 11), contributing

to increased incidence, exacerbated symptoms, and accelerated

disease progression. Valbuena’s team, through examination of

pancreatic tissue slides, identified similar pathological changes in
TABLE 3 Causal relationships between glucose metabolic traits and iRBD performed by MR.

Method nSNPs OR (95%) P-value Q-value Intercept P-value Global P-value

Blood glucose levels

Inverse
variance weighted 94 1.55 (1.04, 2.30) 0.03* 0.45

Maximum likelihood 94 1.55 (1.04, 2.31) 0.03*

MR Egger 94 1.69 (0.83, 3.42) 0.15 0.77

Weighted median 94 1.45 (0.79, 2.65) 0.23

MR PRESSO 94 1.55 (1.04, 2.30) 0.03* 0.48

HbA1c levels

Inverse
variance weighted 299 1.12 (0.85, 1.47) 0.43 0.01*

Maximum likelihood 299 1.12 (0.88, 1.42) 0.37

MR Egger 299 0.90 (0.55, 1.47) 0.68 0.3

Weighted median 299 1.16 (0.78, 1.71) 0.47

MR PRESSO 299 1.12 (0.85, 1.47) 0.43 0.01*

Fasting insulin levels

Inverse
variance weighted 22 0.51 (0.14, 1.91) 0.32 0.86

Maximum likelihood 22 0.52 (0.14, 1.95) 0.33

MR Egger 22 0.09 (0.00, 9.26) 0.32 0.44

Weighted median 22 0.76 (0.12, 4.68) 0.77

MR PRESSO 22 0.51 (0.17, 1.52) 0.24 0.87
nSNPs, the number of Single Nucleotide Polymorphisms; Q-value, Cochran’s Q statistic P value; Intercept P-value, MR Egger intercept P value; Global P-value, MR PRESSO global test P value.
Results that achieve statistical significance will be highlighted in bold and marked with an asterisk (*).
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pancreatic b cells of both T2DM and alpha-synucleinopathy

patients, notably the presence of phosphorylated alpha-synuclein

(12). More significantly, Horvath’s group discovered in vitro that

islet amyloid polypeptide (IAPP), a primary pathogenic deposit in

T2DM patients, promotes the accumulation of alpha-synuclein

amyloid (13). Furthermore, basic experimental findings indicate

that insulin resistance and hyperglycemia can trigger immune-

inflammatory responses, thereby fostering the deposition of

alpha-synuclein and the onset of neurodegenerative changes (14,

15). These studies collectively highlight a profound connection

between T2DM and alpha-synucleinopathies.

Research on the link between T2DM and iRBD, a precursor to

alpha-synucleinopathies, is limited and presents conflicting

findings. Wong et al. found diabetes to be an independent risk

factor for probable RBD in a community-based observational study

(17). In contrast, a Swiss study reported no such association (18).

It’s crucial to acknowledge that the conclusions of observational

studies may be skewed by confounding factors and reverse causality.

Our research identified a genome-wide genetic correlation between
Frontiers in Endocrinology 08
T2DM and iRBD. Furthermore, we found that T2DM increases the

incidence of iRBD, a conclusion supported by multiple models and

robust against heterogeneity, pleiotropy, and outliers. The absence

of a similar conclusion in the Swiss observational study may be

attributed to its limited statistical power due to a small sample size,

encompassing only 24 iRBD cases.

The exact mechanisms by which T2DM fosters the

development of iRBD remain elusive. Previous research has

demonstrated that high blood glucose can induce PD by

modulating oxidative stress, and triggering inflammation reaction

(51–57). Yi-Qing Lv and his team found that hyperglycemia leads to

severe neuroinflammation and accelerates a-synuclein deposition

in the central nervous system of mice (15). Similarly, Yan Sun and

colleagues found a close link between fasting plasma glucose levels

and the increased accumulation and phosphorylation of a-
synuclein in the cortex, pre-commissural putamen, and

dopaminergic neurons in the substantia nigra of T2DM monkeys’

brains (58). Based on these findings, we speculate that in T2DM

patients, hyperglycemia-induced neuroinflammation and a-
FIGURE 3

The impact of T2DM on iRBD in the MVMR analysis after adjusting for confounders. Effect sizes are represented as odds ratios (OR), and the
horizontal bars represent 95% confidence intervals (CIs). Statistically significant P-values are indicated with superscript letters and asterisks (*).
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synuclein deposition may affect brain regions that inhibit spinal

motor neurons during REM sleep (59), potentially triggering

iRBD (59).

Our network MR analysis reveals that T2DM may promote the

onset of iRBD by increasing BAFF-R on IgD- CD38- B cells and

reducing circulating SDF-2 levels. Previous research has shown that

T2DM, through hyperglycemia and insulin resistance, elevates pro-

inflammatory cytokines and chemokines, triggering abnormal

immune cell activation and tissue infiltration, leading to various

complications (22, 23). Similar disturbances in cytokine levels and

immune cell characteristics have been observed in iRBD patients

(24–27). SDF-2, a small protein located in the endoplasmic

reticulum, is closely linked with endoplasmic reticulum stress

regulation (60). While its precise role remains unclear, low tissue

expression of SDF-2 is associated with poor prognosis in various

tumors. Additionally, SDF-2 can enhance nitric oxide (NO) release

by interacting with endothelial nitric oxide synthase (eNOS),

reducing the incidence of several cardiovascular diseases (61).

Consequently, SDF-2 may have a protective role in the onset and

progression of various diseases, including iRBD. The specific

mechanisms by which T2DM regulates SDF-2 and its impact on

iRBD, however, require further investigation. BAFFR, encoded

by the TNFRSF13C gene and serving as a critical pro-survival

receptor in cells (62, 63), is notably upregulated in T2DM within

IgD- CD38- B cells. This upregulation boosts both the survival and

proliferation of these cells, implying a potential role in iRBD

development through an unidentified toxic immune response.

Elucidating the specific mechanisms of this process demands

more comprehensive research.

In summary, our study reveals the causal relationship between

T2DM and iRBD, as well as the underlying immune-inflammatory

mechanisms. This finding offers new insights for screening high-

risk populations for iRBD and has significant public health

implications. It is essential to regularly screen T2DM patients for

sleep disorders, particularly when they frequently experience

abnormal dreams or unusual behaviors during sleep, as this may

indicate the comorbidity of T2DM and iRBD. More importantly,

future research should explore whether T2DM-targeted treatments,

such as hypoglycemic agents, insulin preparations, and GLP-1

receptor agonists, could serve as potential treatments for iRBD.
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Additionally, it is worth investigating whether interventions

targeting specific inflammatory proteins and immune cells in

diabetic patients can reduce the risk of iRBD.

Our study has several limitations. First, although we employed

various analytical methods to validate our findings, larger iRBD

GWAS sample sizes are still needed for MR analysis to further

confirm the reliability of the results. A larger sample size would not

only improve the precision of genotype-phenotype association

estimates in GWAS data but also help reduce selection bias

caused by specific population characteristics. Second, all GWAS

data used in this study were derived from European populations,

which limits the generalizability of our conclusions to other ethnic

groups. Future research should include cross-ethnic MR analyses to

further assess the robustness of our findings. Third, as our

conclusions are primarily based on MR analysis, and previous

cross-sectional studies on the relationship between T2DM and

iRBD have shown inconsistent results, multi-center cohort studies

are needed to provide real-world evidence supporting these

conclusions. Fourth, it is important to acknowledge that MR

analysis reflects the relationship between genetically driven

exposures and outcomes, but genetic factors only account for part

of the exposure, highlighting the inherent limitations of MR

analysis. Finally, while this study has preliminarily identified the

potential immune-inflammatory mechanisms by which T2DMmay

lead to iRBD, we have not explored the cell-cell interactions and

related signaling pathways in depth. With the development of

advanced analytical platforms (64–66), future research should

focus on further mechanistic insights.
5 Conclusions

Our study indicates that T2DM and hyperglycemic conditions

are risk factors for iRBD. Additionally, T2DM may indirectly

contribute to the onset of iRBD by upregulating BAFFR

expression in IgD- CD38- B cells and reducing circulating SDF-2

levels. Our findings offer new directions for screening high-risk

populations for iRBD. The comorbidity of T2DM and iRBD, as well

as their potential immune-inflammatory mechanisms, warrant

further investigation in future studies.
TABLE 4 Mediation effect of immune and inflammatory factors in the association between T2DM and iRBD.

Exposure Mediator Outcome Direct effect a Direct effect b Mediation effect

Beta SE P-value Beta SE P-value
Effect size
(95%CI)

Proportion %
(95%CI)

T2DM

①SDF-2 levels

iRBD

-0.056 0.021 8.03E-03 -0.217 0.069 1.75E-03
1.21E-02(3.20E-
05,2.42E-02) 7.03(0.11,7.70)

②BAFF-R on IgD-
CD38- B cell 0.113 0.038 3.08E-03 0.17 0.05 7.43E-04

1.92E-02(1.87E-
03,3.66E-02) 11.17(6.22,11.65)
SDF-2, Stromal Cell-Derived Factor 2. BAFF-R, BAFF-receptor.
Direct effect a: The causal effect of T2DM on mediators in two sample-MR analysis.
Direct effect b: The causal effect of mediators on iRBD in two sample-MR analysis.
Mediation effect: The effect of T2DM on iRBD mediated through mediators.
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