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Introduction: Secondary hyperparathyroidism (SHPT) is a common and serious

complication of chronic kidney disease (CKD). Elucidating the metabolic

characteristics of SHPT may provide a new theoretical basis for its prevention

and treatment. This study aimed to perform a metabolomic analysis of SHPT in

patients with CKD stages 3–5 not receiving dialysis.

Methods: A total of 76 patients with CKD, 85 patients with CKD-SHPT, and 67

healthy controls were enrolled in this study. CKD was diagnosed according to the

criteria specified in the Kidney Disease Improving Global Outcomes 2012

guidelines. SHPT was diagnosed by experienced clinicians according to the

Renal Disease Outcomes Quality Initiative Clinical Practice Guidelines. Serum

renal function markers and the lipid profile were analyzed. Untargeted ultra

performance liquid chromatography-tandem mass spectrometry was used to

analyze the serum metabolites of patients with CKD and SHPT. Multivariate

analysis of the data was performed using principal component analysis and partial

least square discriminant analysis. Serum differential metabolites were identified

and further characterized using databases. Pathway enrichment analysis was

performed using the Kyoto Encyclopedia of Genes and Genomes database.

Correlations between differential metabolites and clinical parameters were

determined using the Spearman correlation.

Results: The serum metabolomic profiles of patients with CKD with and without

SHPT differed significantly. Differential metabolites were mainly enriched in the

top four Kyoto Encyclopedia of Genes and Genomes pathways: phenylalanine,

tyros ine, and tryptophan biosynthesis ; sphingol ipid metabol ism;

glycerophospholipid metabolism; and phenylalanine metabolism. In total, 31

differential metabolites were identified; of these, L-tryptophan and (R)-(+)-1-

phenylethylamine were decreased, while other amino acids and their derivatives,

uremia toxins, carnitine, and lipids, were increased significantly in patients with

SHPT compared to those without. The 14 lipid metabolites were positively

correlated with levels of Urea, serum creatinine, cystatin C, and triglycerides
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and negatively correlated with the estimated glomerular filtration rate and levels

of total and high- and low-density lipoprotein cholesterol.

Discussion: Disturbed amino acid and lipid metabolism were more apparent in

patients with SHPT than in those without. This metabolomic profile of SHPT may

provide a therapeutic foundation for its future clinical management.
KEYWORDS

amino acids, lipids, ultra performance liquid chromatography-tandem mass
spectrometry, untargeted metabolomics, secondary hyperparathyroidism, chronic
kidney disease
1 Introduction

Secondary hyperparathyroidism (SHPT) is a common

complication in patients with chronic kidney disease (CKD) and

an important component of CKD mineral and bone disorders (1).

SHPT can occur in the early stages of CKD, with 40% of patients

with CKD stage 3 exhibiting elevated parathyroid hormone (PTH)

levels of >65 pg/mL, but becomes more frequent as kidney function

decreases, affecting up to 80% of patients in stage 4 (2, 3). SHPT is

characterized by hypocalcemia, hyperphosphatemia, parathyroid

hyperplasia, and the hypersynthesis and secretion of PTH.

Excessive PTH can increase bone resorption and alter the

metabolism of calcium and phosphorus, ultimately leading to

serious complications, including skeletal lesions, anemia, vascular

calcification, and cognitive impairment, which increase the risk of

all-cause mortality (4, 5). Recently, SHPT has been independently

associated with CKD progression and the incidence of

cardiovascular events in patients with CKD (6). Therefore,

effective management of SHPT is critical; however, this remains

challenging. For patients with CKD receiving dialysis, the target

range of PTH is set at 2~9 times the upper normal limit.

Calcimimetics, calcitriol, and/or active vitamin D analogs (alone

or in combination) have been used to treat SHPT in patients on

hemod i a l y s i s . When PTH- lowe r i ng th e r ap i e s f a i l ,

parathyroidectomy remains one of the most effective means of

treating SHPT. By contrast, the optimum management of SHPT in

patients with CKD not receiving dialysis is not as clearly

understood, and there is currently no established target PTH

range. Recently, it has also been shown that physicians treating

these patients have poor knowledge of mineral and bone disorder

management (7). Therefore, SHPT seriously affects the quality of
estimated glomerular
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life of patients with CKD, places a high economic burden on

individuals and society, and is challenging to treat and poorly

understood (8, 9). Elucidating its metabolic profile may offer new

insights into the management of SHPT in patients with CKD not

receiving dialysis.

Metabolomics analyzes metabolites to assess their relationship

with physiological and pathological changes. Currently, liquid

chromatography-mass spectrometry (MS), a sensitive and high-

throughput technique, is considered the best method for precise

metabolomics (10). Previous studies have investigated the metabolic

features of SHPT. Wu et al. identified a varied pattern of

endogenous metabolites in patients with SHPT, comparing those

with PTH levels >300 and 150–300 pg/mL; 30 metabolites were

elevated in CKD mineral and bone disorders (11). Another

investigation focused on the metabolic profile of patients with

PTH >600 pg/mL before parathyroidectomy and forearm

transplantation and those with PTH <150 pg/mL postoperatively

and identified five metabolites with a moderate to strong correlation

with PTH (12). Despite these studies, current understanding of

CKD-SHPT remains insufficient; in particular, the serum metabolic

profile of patients with CKD-SHPT not undergoing dialysis has not

been investigated. Therefore, this study used an untargeted ultra

performance liquid chromatography (UPLC)-tandem MS-based

metabolomics approach to analyze sera from patients with CKD

and SHPT not receiving dialysis. The differential metabolites and

their metabolic pathways were analyzed to identify the endogenous

metabolic characteristics of patients with CKD and SHPT.
2 Materials and methods

2.1 Study design and participants

A total of 161 patients with CKD stages 3−5 but not undergoing

dialysis, who were admitted to our hospital between January 2020

and December 2022 were enrolled in the study. Of these, 85 had

SHPT (CKD-SHPT group) and 76 did not (CKD group). The

patients in CKD and CKD-SHPT groups were matched for
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kidney function, as determined by estimated glomerular filtration

rate (eGFR). The control group consisted of 67 healthy individuals

who were undergoing a physical examination (HC group). The

participants in all groups were matched for age and sex. The study

was approved by the Ethical Review of Medical Technology

Committee of Mianyang Central Hospital (approval number: S-

2021-003), and complied with all relevant national regulations and

institutional policies. The study was conducted in accordance with

the principles outlined in the Declaration of Helsinki.

The inclusion criteria were as follows (1): diagnosis of CKD

caused by primary chronic glomerulonephritis (2); no evidence of

inflammatory, neoplastic, or infectious diseases, uncontrolled

hypertension, cardiac insufficiency, neurological or psychiatric

dysfunction, or severe bleeding disorders; and (3) aged >18 years.

The exclusion criteria were as follows (1): incomplete clinical

data (2); receiving dialysis (3); history of thyroid or parathyroid

disease, blood transfusion, nephrectomy, or kidney transplantation

(4); presence of diabetes, hypertension, malignant tumors, immune

system diseases, cardiovascular or neurological diseases, other

endocrine system diseases, or recent infection-related symptoms

(5); presence of serious or poorly controlled medical conditions (6);

pregnancy or lactation; and (7) aged <18 years.

CKD was diagnosed in accordance with the criteria set out in

the “Kidney Disease Improving Global Outcomes 2012 Clinical

Practice Guideline for the Evaluation and Management of Chronic

Kidney Disease (13).” The eGFR was calculated using a modified

modification of diet in renal disease equation (14) and used to

determine the severity of CKD based on Kidney Disease Improving

Global Outcomes criteria: stage 3, eGFR 30–59 mL/min/1.73 m2;

stage 4, eGFR 15–29 mL/min/1.73 m2; stage 5, eGFR <15 mL/

min/1.73 m2.

SHPT was diagnosed by experienced clinicians according to the

Kidney Disease Outcomes Quality Initiative Clinical Practice

Guidelines. The normal reference range of PTH is 10−65 pg/mL,

and the levels of PTH in the various stages of CKD with SHPT were

higher than the normal range values. The levels of PTH exceeded 70

pg/mL in stage 3 CKD, 110 pg/mL in stage 4 CKD, and 300 pg/mL

in stage 5 (15).
2.2 Sample collection and measurement of
laboratory indicators

Clinical information, including data on sex, age, and routine

biochemical analyses, were collected. Peripheral venous blood

(5 mL) was drawn from all subjects in the morning after an 8–

12-h overnight fast. The serum was assayed for levels of intact PTH

(1−84), albumin, urea, serum creatinine, cystatin C, calcium,

phosphorus, total cholesterol (TC), triglycerides (TG), high-

density lipoprotein cholesterol (HDL-C), and low-density

lipoprotein cholesterol (LDL-C), and eGFR was calculated, using

a fully automated Cobas E801 analyzer (Roche Diagnostics

Corporation, Indianapolis, IN, USA). A separate serum sample

was reserved for metabolomics.
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2.3 Metabolomics

As previously described (16, 17), serum was removed from

the -80°C freezer and slowly thawed at room temperature.

Clenbuterol and chloramphenicol were used as internal

standards; 5 mL of these were mixed with 100 mL serum and

400 mL methanol-acetonitrile (1:1 vol/vol), followed by ultrasonic

oscillation, incubation for 1 h at -20°C, and centrifugation. The

resultant supernatant was passed through a 0.22-mm filtration

membrane (Merck Millipore, Burlington, MA, USA); 5 mL was

used for metabolomics.

An Agilent® 1290 Infinity II UPLC system (Agilent

Technologies, Inc., Santa Clara, CA, USA) coupled with a Triple

TOF 5600+ MS system (AB Sciex LLC, Framingham, MA, USA)

was used for metabolomics. Sample separation was achieved using

an ACQUITY HSS T3 column (100 × 2.1 mm; inner diameter, 1.8

µm; Waters Corporation, Milford, MA, USA).

The mobile phase was composed of 0.1% formic acid in water

(solvent A) and 0.1% formic acid in acetonitrile (solvent B), the flow

rate was 0.30 mL/min and the column temperature was 30°C. The

UPLC-MS/MS analytical conditions were as previously described

(18). For MS, both positive and negative electrospray ionization

(ESI) modes were used. To guarantee the quality of the nontargeted

bioanalytical data, a pooled quality control (QC) sample, prepared

by combining 10 mL supernatant from each sample, was injected

after every tenth sample.
2.4 Metabolomics analysis

Analysis was performed as previously described (18). Principal

component analysis and partial least square discriminant analysis

(PLS-DA) were used to investigate data clustering trends and

differences among the groups.

Accurate metabolite characterization was performed by

matching databases. Metabolites with statistical significance

(p<0.05), fold change threshold >1.5 or <2/3, and variable

importance in the projection >1 were identified. Pathway analysis

was performed using the Kyoto Encyclopedia of Genes and

Genomes and MetaboAnalyst databases (19).
2.5 Statistical analysis

Statistical analyses were performed using SPSS software version

26.0 (IBM Corporation, Armonk, NY, USA). Categorical data are

expressed as numbers and percentages and were compared using

the chi-squared test. Normally distributed data are expressed as

mean ± standard deviation; non-normally distributed data are

expressed as median and interquartile range. Continuous

normally distributed data were analyzed using the independent

samples t-test (two groups) or one-way analysis of variance (> two

groups); non-normally distributed data were analyzed using the

Mann–Whitney U test (two groups) or Kruskal–Wallis test (> two

groups). The correlation between differential metabolites and
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clinical parameters was determined using the Spearman correlation.

Statistical significance was set at p<0.05.
3 Results

3.1 Patient characteristics

The laboratory data of the participants are presented in Table 1.

There were no significant differences in sex or age among the three

groups, whereas significant differences were observed for all

laboratory indices except TC. The CKD and CKD-SHPT groups

had similar albumin levels, which were lower than those of the HC

group. Urea, serum creatinine, and cystatin C levels were higher in

the CKD group than in the HC group and higher in the CKD-SHPT

group than in the CKD group. Both calcium and phosphorus levels

were significantly higher in the CKD group than in the HC group;

calcium levels were decreased and phosphorus levels were further

increased in the CKD-SHPT group compared with the CKD group.

The CKD-SHPT group had lower TC and higher TG levels than the

HC group. Significantly higher levels of TG were observed in the

CKD group than in the HC group, but levels did not differ

significantly between the CKD and CKD-SHPT groups. HDL-C

levels were lower in the CKD group than in the HC group, and
Frontiers in Endocrinology 04
lower again in the CKD-SHPT group. LDL-C levels were

significantly lower in the CKD-SHPT group than in the HC and

CKD groups; there was no significant difference between the HC

and CKD groups.
3.2 Multivariate statistical analysis
of metabolites

A total of 228 serum samples and 26 QC samples were analyzed in

both positive (ESI+) and negative (ESI−) polarity modes. Total ion

chromatograms and base peak intensity diagrams are presented in

Supplementary Figures S1A–D. After data pretreatment (format

conversion peak recognition, filtering alignment, and normalization)

and quality analysis, a multivariate statistical analysis was performed.

The principal component analysis score maps in both ESI− and

ESI+ modes reveal tight clustering of the QC samples, indicating

high stability and reproducibility of the metabolomics data

throughout the analysis (Figures 1A, B). However, it failed to

distinguish the principal components when comparing the three

groups in both ESI− and ESI+ modes.

To select significantly differential metabolites, we performed

PLS-DA. As shown in Figures 1C, D, significant differences in

classification were found among the clustering of the HC, CKD, and
TABLE 1 Demographic characteristics of study population.

Group HC (n = 67) CKD (n = 76) CKD-SHPT (n = 85) c2/F/H p

Sex, n (%)

Male 26 (38.8) 40 (52.6) 49 (57.6)
5.540 0.063

Female 41 (61.2) 36 (47.4) 36 (42.4)

Age, years 58.16 ± 12.89 60.75 ± 16.28 58.45 ± 14.30 0.414 0.662

PTH (pg/mL) 42.55 ± 12.25 39.76 ± 13.03 223.51 ± 131.46ab 135.780 < 0.001

Albumin (g/L) 45.93 ± 2.99 38.61 ± 7.50a 39.95 ± 4.88a 36.487 < 0.001

Urea (mmol/L) 4.66 (3.80-5.76) 12.13 (7.45-22.55)a 17.83 (14.58-22.24)ab 115.340 < 0.001

Serum Creatinine
(mmol/L)

62.40 (56.30-78.20) 244.15 (120.18-556.85)a 598.60 (455.60-750.55)ab 140.880 < 0.001

Cystatin C (mg/L) 0.83 (0.76-0.98) 2.960 (1.82-5.20)a 5.69(4.36-7.30)ab 138.650 < 0.001

eGFR (mL/min/1.73 m2) 94.30 (81.80-102.50) 27.80 (16.30-45.83)a 25.40 (13.40-41.40)a 135.573 < 0.001

Calcium (mmol/L) 2.20 ± 0.06 2.33 ± 0.21a 2.19 ± 0.22b 10.906 < 0.001

Phosphorus (mmol/L) 1.07 ± 0.14 1.32 ± 0.31a 1.78 ± 0.51ab 66.827 < 0.001

Total cholesterol
(mmol/L)

4.42 ± 0.44 4.26 ± 1.29 3.82 ± 2.18a 2.926 0.056

Triglycerides (mmol/L) 1.18 (0.87-1.44) 1.32 (0.95-2.18)a 1.54 (1.07-2.21)a 18.651 < 0.001

HDL-C (mmol/L) 1.40 ± 0.31 1.21 ± 0.40a 1.08 ± 0.35ab 15.565 < 0.001

LDL-C (mmol/L) 2.76 ± 0.77 2.40 ± 1.05 1.90 ± 0.84ab 16.929 < 0.001
ap<0.05 versus HC group.
bp<0.05 versus CKD group. HC, healthy controls; CKD, chronic kidney disease; CKD-SHPT, chronic kidney disease complicated with secondary hyperparathyroidism; eGFR, estimated
glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; PTH, parathyroid hormone.
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CKD-SHPT groups in both ESI+ and ESI− modes. The PLS-DA

point cloud map showed clear segregation between the CKD and

CKD-SHPT, CKD and HC, and CKD-SHPT and HC groups

(Figures 1E, F; Supplementary Figure S2, Supplementary Table

S1). To prevent overfitting the PLS-DA models, 100 random

permutation experiments were performed. The R2X, R2Y, and Q2

(cumulative) parameters were used to evaluate the PLS-DA model.

The Y-intercepts of Q2 distributions had negative values in both ESI

+ and ESI− modes in the comparison between the CKD and CKD-

SHPT groups, indicating its reliability (Figures 1G, H). All these

results revealed different metabolic profiles among the three groups.
Frontiers in Endocrinology 05
3.3 Screening differential metabolites

A total of 7271 and 5361 peaks were obtained in ESI+ and ESI−

modes, respectively. After database matching, 1862 metabolites

were identified in ESI+ mode and 1215 in ESI– mode. Upon

removal of the exogenous metabolites, the 35 differential

metabolites among the HC, CKD, and CKD-SHPT groups were

screened out in both ESI+ and ESI− modes according to the

following criteria: variable importance in the projection ≥1, fold

change ≥1.5 or ≤2/3, and p<0.05. As shown in the heat maps

(Figure 2), these metabolites exhibited clear clustering.
A B

FIGURE 2

Differential metabolite heat maps in positive (A) and negative (B) modes. The columns represent samples, the rows represent metabolites, and the
relative content of the metabolites is displayed by color. The heat map shows differential metabolites among HC, CKD, and CKD-SHPT groups. HC,
healthy controls; CKD, chronic kidney disease; CKD-SHPT, chronic kidney disease complicated with secondary hyperparathyroidism.
A

B D

E

F

G

H

C

FIGURE 1

PCA score plots in positive (A) and negative (B) ion modes among HC, CKD and CKD-SHPT groups. PLS-DA score plots in positive (C) and negative
(D) ion modes among HC, CKD and CKD-SHPT groups. PLS-DA score plots in positive (E) and negative (F) ion modes between CKD and CKD-SHPT
groups. PLS-DA permutation test plots in positive (G) and negative (H) ion modes between CKD and CKD-SHPT groups. The criterion for evaluating
whether there is overfitting in the PLS-DA model is that the regression line at a blue Q2 point crosses or is less than 0 from the abscissa. PCA,
principal component analysis; PLS-DA, partial least squares discriminant analysis; HC, healthy controls; CKD, chronic kidney disease; CKD-SHPT,
chronic kidney disease complicated with secondary hyperparathyroidism.
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3.4 Enrichment analysis and metabolic
pathways of the differential metabolites

To uncover potential metabolic pathways in SHPT, pathway

enrichment and topology analyses were carried out using the

MetaboAnalyst database; 28 metabolic pathways were identified. In

the bubble diagram (Figure 3A), pathway impact values, which

indicate the importance of altered metabolites in the respective

metabolic pathways, are represented by bubble size; the larger the

bubble, the greater the significance. The color indicates –log (p); the

darker the color, the smaller the p-value. Disturbed metabolic

pathways and their impact values can be seen in the histogram

(Figure 3B); the top four enriched metabolic pathways were selected.

In the comparison of the CKD and CKD-SHPT groups, the most

significantly enriched pathway was phenylalanine, tyrosine, and

tryptophan biosynthesis, followed by sphingolipid metabolism,

glycerophospholipid metabolism, and phenylalanine metabolism

(Table 2). Significantly enriched metabolic pathways and detailed

information on the comparisons between the HC and CKD and HC

and CKD-SHPT groups are listed in Supplementary Table S2.
3.5 Differential metabolite analysis

A total of 31 metabolites met the criteria for significant

differences between the CKD and CKD-SHPT groups (Table 3).

These differential metabolites mainly included uremic toxins,

amino acids and their derivatives, carnitine, and lipids. Of the 31
Frontiers in Endocrinology 06
differential metabolites, 29 were increased and two were decreased

in the CKD-SHPT group compared with the CKD group. The two

downregulated metabolites, L-tryptophan and (R)-(+)-1-

phenylethylamine, were amino acids and their derivatives, the

levels of other amino acids and their derivatives were increased.

Similarly, all uremic toxins, carnitine, and lipids were upregulated

in the CKD-SHPT group compared with the CKD group. The

normalized intensity peak areas of the selected differentials in ESI+

and ESI− modes are shown in Figure 4.
3.6 Correlation of differential metabolites
with laboratory indices

To further clarify whether differential lipid metabolites were

associated with decreased renal function and abnormal lipid levels in

patients with CKD-SHPT, Spearman correlations were performed. All

the differential lipid metabolites were correlated with conventional

indices of renal function and blood lipid levels; they were positively

correlated with urea, serum creatinine, cystatin C, and TG and

negatively correlated with eGFR, TC, HDL-C, and LDL-C (Table 4).
4 Discussion

Few studies have examined the metabolic signature of SHPT. In

the present study, we selected patients with CKD stages 3−5 and

SHPT who were not receiving dialysis and attempted to understand
A B

FIGURE 3

Metabolic pathway analysis. (A) Bubble diagram of differential metabolic pathways. (B) Histogram of metabolic pathways.
TABLE 2 Top four enriched metabolic pathways between groups.

Comparison Pathway name KEGG.id -log(p) Impact Hits

CKD
vs.
CKD-SHPT

Phenylalanine, tyrosine and
tryptophan biosynthesis

hsa00400 1.91 1.00 2

Sphingolipid metabolism hsa00600 1.15 0.43 5

Glycerophospholipid metabolism hsa00564 0.22 0.36 5

Phenylalanine metabolism hsa00360 1.35 0.36 3
CKD, chronic kidney disease; CKD-SHPT, chronic kidney disease complicated with secondary hyperparathyroidism; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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the overall metabolic signature. We found that biotin and uridine

levels were upregulated in SHPT, consistent with previous studies

(11, 12). Notably, more differential metabolites were identified,

including byproducts of tryptophan and phenylalanine

metabolism. This indicates that disorders in amino acid
Frontiers in Endocrinology 07
metabolism caused by decreased biosynthesis or increased

metabolism of tryptophan and phenylalanine occur in SHPT.

Tryptophan and phenylalanine are essential amino acids, the

metabolism of which is directly and indirectly regulated by

intestinal microorganisms. Their metabolites are related to
TABLE 3 Significantly differential metabolites between CKD and CKD-SHPT groups.

Metabolites m/z Rt(s) Scan mode FC VIP p Trend(SHPT)

L-Tryptophan 203.083 4.536 ESI− 0.42 1.12 2.36E-11 ↓***

N-Acetyl-D-tryptophan 267.085 6.548 ESI− 1.86 1.14 6.93E-20 ↑***

5-Hydroxytryptophan 439.161 5.495 ESI− 3.44 1.06 1.43E-11 ↑***

Tryptophyl-Leucine 318.191 4.376 ESI+ 4.86 1.14 6.93E-20 ↑***

2-Picolinic acid 106.037 5.041 ESI+ 4.37 1.12 8.63E-18 ↑***

Nicotinuric acid 181.060 4.789 ESI+ 4.10 1.22 4.40E-23 ↑***

Lysyl-Phenylalanine 292.164 7.747 ESI− 1.72 1.45 4.71E-05 ↑***

(R)-
(+)-1-Phenylethylamine

122.097 4.767 ESI+ 0.09 1.03 1.68E-09 ↓***

Phenylacetyl-
L-glutamine

265.118 4.963 ESI+ 3.48 1.03 3.96E-16 ↑***

3-Indole carboxylic
acid glucuronide

336.073 5.093 ESI− 3.18 1.32 1.24E-20 ↑***

Indoxyl sulfate 425.012 5.065 ESI− 3.93 1.20 1.97E-16 ↑***

Indoxyl glucuronide 308.078 4.578 ESI− 2.92 1.03 1.89E-11 ↑***

Kynurenic acid 190.050 4.710 ESI+ 3.25 1.17 7.33E-19 ↑***

Hippuric acid 178.051 5.022 ESI− 3.68 1.12 7.15E-13 ↑***

Creatinine 114.067 0.950 ESI+ 2.41 1.26 8.03E-26 ↑***

Uridine 245.078 7.157 ESI+ 3.69 1.10 2.26E-10 ↑***

Biotin 245.095 4.256 ESI+ 1.99 1.20 1.02E-22 ↑***

L-Acetylcarnitine 204.123 1.226 ESI+ 2.71 1.16 1.49E-20 ↑***

O-Butanoylcarnitine 232.154 4.447 ESI+ 3.20 1.14 1.72E-20 ↑***

O-Decanoyl-L-carnitine 316.248 6.134 ESI+ 2.57 1.03 1.57E-10 ↑***

L-Palmitoylcarnitine 400.342 7.660 ESI+ 1.95 1.05 1.20E-16 ↑***

Stearoylcarnitine 428.373 8.488 ESI+ 1.91 1.08 8.90E-16 ↑***

Linoleyl carnitine 424.342 7.383 ESI+ 2.23 1.06 5.90E-18 ↑***

Oleoylcarnitine 426.357 7.844 ESI+ 2.06 1.12 4.37E-18 ↑***

LysoPC(O-18:0) 532.369 5.576 ESI+ 2.12 0.73 6.28E-09 ↑***

SM d35:3 734.525 7.181 ESI+ 1.66 1.08 1.31E-24 ↑***

PA(18:1(9Z)/
22:4(7Z,10Z,13Z,16Z))

751.526 6.193 ESI+ 2.19 1.27 1.31E-25 ↑***

PE(13:0/16:1(9Z)) 648.453 5.991 ESI+ 1.99 1.20 1.02E-22 ↑***

PE(14:1(9Z)/P-16:0) 646.473 7.285 ESI+ 1.57 1.09 3.59E-08 ↑**

PS(P-16:0/12:0) 664.448 5.641 ESI+ 2.11 1.00 8.12E-21 ↑***

LDGTS 7:0 348.238 4.793 ESI+ 3.33 1.74 6.22E-20 ↑***
frontiersin.org
**p<0.01, ***p<0.001. CKD-SHPT group versus CKD group. CKD, chronic kidney disease; CKD-SHPT, chronic kidney disease complicated with secondary hyperparathyroidism; FC, fold
change; SHPT, secondary hyperparathyroidism; VIP, variable importance in projection.
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inflammation and immune, metabolic, and neuroregulatory

functions, and have become therapeutic targets for various

diseases. The concentration of tryptophan in human tissues is

very low, as it is degraded by three main metabolic pathways:

kynurenine (accounting for ~95% of tryptophan degradation),

serotonin (~5%), and indole pathways. The kynurenine pathway

is responsible for the de novo synthesis of NAD+, through an

unstable intermediate that is easily converted to 2-picolinic acid,

thereby limiting NAD+ production. Our study showed that patients

with SHPT have increased levels of 2-picolinic acid, indicating

restricted NAD+ synthesis. As the NAD+ level is an index of

mitochondrial function (12), these findings suggest mitochondrial

dysfunction in patients with SHPT.

Patients with SHPT and long-term high levels of PTH can

experience damage to multiple systems, including the skeletal

system. PTH acts on osteoclasts, causing severe bone pain,

osteoporosis, bone collapse, deformity, periarticular lesions, and

pathological fractures (20, 21). In this paper, we showed that

phenylalanine, tyrosine, and tryptophan metabolic pathways are

disturbed in patients with CKD-SHPT. It has been reported that

some related metabolites of this pathway, such as kynurenic acid

and 5-hydroxytryptophan, have a harmful effect on bone (22, 23),

reduce bone mineral density, and increase fracture risk (24, 25).

Otherwise, kynurenic acid is associated with bone marrow stromal

cells and bone metabolism, and elevated kynurenic acid levels

inhibit osteoblast metabolism through impaired mitochondrial

respiration and reduce osteoblast numbers in vivo (26). This

process also produces a large amount of reactive oxygen species,

which can damage cells and inhibit the activity of osteoblasts. In

addition, other metabolites have been reported to be associated with

bone turnover. Indoxyl sulfate has been shown to decrease bone

mineral density and increase fracture risk (25). The binding of 5-

hydroxytryptophan to its receptor reduces the proliferation and

differentiation of osteoblasts (23). The above metabolites were also
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significantly up-regulated in patients with CKD-SHPT in this study,

suggesting that bone damage should be monitored in patients with

SHPT to allow timely intervention.

Tryptophan can also be converted by the intestinal microbiota

into indole and its derivatives to maintain intestinal homeostasis by

regulating pro- and anti-inflammatory cytokines (27). Recent

studies have revealed that PTH regulates bone mass through

interactions with microbial metabolites, the immune system, and

bone (28). Indoxyl sulfate is a pro-inflammatory metabolite that has

nephrotoxic effects on renal proximal tubular cells (29), reducing

bone formation, stimulating osteoblast apoptosis, and suppressing

osteoclast differentiation (30). Indoxyl sulfate may also induce

skeletal resistance to PTH in patients with CKD (31). Gut

dysbiosis commonly develops in patients with CKD due to the

accumulation of uremic toxins, dietary changes, frequent antibiotic

therapy, altered intestinal mobility, and drug treatment (32, 33);

accumulated uremic toxins may also exacerbate renal

osteodystrophy in patients with SHPT. Uremic toxins accumulate

throughout the body; those deposited in kidney tissue can increase

oxidative stress and inflammatory cytokine production, thereby

further promoting renal fibrosis (34). In this study, we found

increased levels of uremic toxins in patients with SHPT.

Acylcarnitines, formed by the combination of fatty acids and

carnitine, are associated with the b-oxidation of fatty acids. In

addition to being valuable markers of inherited fatty acid

metabolism disorders (35), they have also been linked to diabetes,

cardiovascular disease, and cancer (36–38). Short-chain

acylcarnitines are the most abundant, accounting for 80% or

more of all acylcarnitines; L-acetylcarnitine is the most common.

Long-chain acylcarnitines are mainly responsible for transporting

long-chain fatty acids to the mitochondria for normal energy

metabolism (39). In the present study, the levels of two short-

chain acylcarnitines (L-acetylcarnitine and O-butanoylcarnitine),

one medium-chain acylcarnitine (O-decanoyl-L-carnitine), and
FIGURE 4

Normalized peak intensity of 31 representative differential metabolites between the HC and CKD-SHPT groups. CKD, chronic kidney disease; CKD-
SHPT, chronic kidney disease complicated with secondary hyperparathyroidism.
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four long-chain acylcarnit ines (L-palmitoylcarnit ine ,

stearoylcarnitine, linoleyl carnitine, and oleoylcarnitine) were

significantly higher in patients with SHPT than in those without

and healthy controls, indicating obstruction of fatty acid oxidation

and disordered mitochondrial metabolism. These results suggest

that restoring normal endogenous fatty acid metabolism and

mitochondrial oxidative phosphorylation may help slow CKD

progression. In addition, long-chain acylcarnitines were more

prevalent than short- and medium-chain acylcarnitines among

the differential metabolites between patients with CKD with and

without SHPT (with some not listed). Previous studies have shown

that long-chain acylcarnitines may also contribute to the

development of malignant ventricular arrhythmias in certain

individuals (40, 41). Therefore, long-chain acylcarnitines may

contribute to the increased incidence of cardiovascular events in

patients with SHPT.

Increased levels of long-chain acylcarnitines in plasma is also an

indicator of lipid metabolism disorder. Impaired fatty acid

oxidation leads to disordered lipid metabolism, causing excessive

deposition of various types of lipids, including free fatty acids,
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cholesterol, and phospholipids, in cells other than adipocytes,

leading to lipotoxicity (42). In this study, the levels of several

lipids were found to be increased in SHPT, indicating disordered

lipid metabolism and deposition in patients with CKD and SHPT.

Kang et al. (43) reported that the levels of key factors related to fatty

acid oxidation and lipid deposition were low in the renal tubular

epithelial cells of fibrotic human and mouse kidneys; the main

deposited lipids were stearic, palmitoleic, and linoleic acids. This is

consistent with the long-chain acylcarnitines found in the present

study. Dysfunctional mitochondria are unable to process these

long-chain fatty acids, leading to elevated plasma concentrations

and deposition in renal mesangial cells, podocytes, and renal

tubular epithelial cells. This further causes mitochondrial injury,

oxidative stress, endoplasmic reticulum stress, and even renal cell

apoptosis, eventually accelerating the progression of CKD in

patients with SHPT.

Dysregulated lipid metabolism, which leads to dyslipidemia, has

been reported in several kidney diseases. Uremia manifests as

elevated levels of TG and LDL-C, and decreased levels of HDL-C

(42); nephrotic syndrome is characterized by high levels of TC, TG,
TABLE 4 Correlation of lipid metabolites with clinical indicators of renal function and blood lipids.

Metabolites Urea SCr CysC eGFR TC TG HDL-C LDL-C

Carnitine
0.594,
<0.001

0.725,
<0.001

0.770,
<0.001

-0.771,
<0.001

-0.285,
<0.001

0.203,
0.007

-0.226,
<0.001

-0.337,
<0.001

O-Butanoylcarnitine
0.706,
<0.001

0.796,
<0.001

0.819,
<0.001

-0.825,
<0.001

-0.286,
<0.001

0.229,
0.001

-0.281,
<0.001

-0.337,
<0.001

O-Decanoyl-L-carnitine
0.510,
<0.001

0.664,
<0.001

0.668,
<0.001

-0.697,
<0.001

-0.286,
<0.001

0.229,
0.001

-0.281,
<0.001

-0.337,
<0.001

L-Palmitoylcarnitine
0.519,
<0.001

0.638,
<0.001

0.693,
<0.001

-0.691,
<0.001

-0.303,
<0.001

0.254,
<0.001

-0.298,
<0.001

-0.344,
<0.001

jiStearoylcarnitine
0.489,
<0.001

0.612,
<0.001

0.665,
<0.001

-0.677,
<0.001

-0.346,
0.001

0.213,
0.001

-0.296,
0.001

-0.391,
<0.001

Linoleyl carnitine
0.471,
<0.001

0.632,
<0.001

0.680,
<0.001

-0.677,
<0.001

-0.278,
<0.001

0.273,
<0.001

-0.330,
<0.001

-0.306,
<0.001

Oleoylcarnitine
0.541,
<0.001

0.656,
<0.001

0.700,
<0.001

-0.710,
<0.001

-0.375,
0.002

0.207,
0.002

-0.312,
<0.001

-0.423,
<0.001

LysoPC(O-18:0)
0.549,
<0.001

0.658,
<0.001

0.681,
<0.001

-0.693,
<0.001

-0.298,
<0.001

0.264,
0.003

-0.361,
<0.001

-0.292,
<0.001

SM d35:3
0.441,
<0.001

0.513,
<0.001

0.517,
<0.001

-0.537,
<0.001

-0.218,
0.002

0.214,
0.003

-0.261,
<0.001

-0.215,
0.003

PA(18:1(9Z)/
22:4(7Z,10Z,13Z,16Z))

0.557,
<0.001

0.669,
<0.001

0.684,
<0.001

-0.695,
<0.001

-0.301,
<0.001

0.239,
0.001

-0.315,
<0.001

-0.312,
<0.001

PE(13:0/16:1(9Z))
0.519,
<0.001

0.625,
<0.001

0.639,
<0.001

-0.652,
<0.001

-0.302,
<0.001

0.278,
0.002

-0.343,
<0.001

-0.320,
<0.001

PE(14:1(9Z)/P-16:0)
0.411,
<0.001

0.503,
<0.001

0.495,
<0.001

-0.524,
<0.001

-0.192,
0.007

0.209,
0.003

-0.270,
<0.001

-0.212,
0.003

PS(P-16:0/12:0)
0.578,
<0.001

0.698,
<0.001

0.701,
<0.001

-0.708,
<0.001

-0.337,
<0.001

0.265,
0.003

-0.380,
<0.001

-0.342,
<0.001

LDGTS 7:0
0.620,
<0.001

0.746,
<0.001

0.797,
<0.001

-0.792,
<0.001

-0.396,
<0.001

0.198,
0.013

-0.338,
<0.001

-0.430,
<0.001
Data are expressed as r, p. CysC, cystatin C; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SCr, serum
creatinine; TC, total cholesterol; TG, triglycerides.
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and LDL-C, and normal levels of HDL-C (44). This study showed

no statistical differences in HDL-C and LDL-C levels between

patients with SHPT and those without, suggesting that

dyslipidemia in SHPT with CKD differs from that in uremia and

nephrotic syndrome. Recent studies have reported that indoxyl

sulfate can directly induce macrophage inflammation and impair

cholesterol efflux to HDL, leading to the formation of foam cells and

accelerating atherosclerosis in patients with CKD (45). This may

explain the downregulated serum TC and HDL-C levels in patients

with SHPT. Furthermore, correlation analysis showed that 14 lipid

metabolites were significantly correlated with routine renal function

and lipid indices, indicating that with the deterioration of renal

function, the manifestations of disorders of lipid metabolism and

dyslipidemia in the progression of CKD are complex.

Kyoto Encyclopedia of Genes and Genomes analysis revealed

phenylalanine, tyrosine, and tryptophan biosynthesis as the metabolic

pathway that differed most significantly between patients with and

without SHPT. Nutrients from food can be metabolized by intestinal

microorganisms to produce uremic toxins or their precursors. With

decreased renal function in patients with CKD, these uremic toxins

cannot be effectively removed and accumulate in the body. The

predominance of bacterial families that produce the enzymes urease,

uricase, indole, and p-cresol in patients with CKD (46) further

increases the conversion of nutrients to uremic toxins, creating a

vicious circle. These toxins accumulate in the circulation and damage

tissues and organs throughout the body. Several studies have shown

that uremic toxins produced in amino acid metabolism pathways are

closely related to the progression of CKD (47–49), and therapeutic

strategies targeting the intestinal microbiota to regulate gut-derived

uremic toxins in patients with CKD have attracted considerable

interest. Malnutrition in patients with CKD changes the balance

between commensals and pathogens; the overgrowth of pathogenic

bacteria can cause intestinal inflammation and loss of intestinal

barrier function, allowing the transfer of bacterial components and

even live bacteria. This induces an immune response leading to

systemic inflammation. Amino acid metabolism plays important

roles in adaptive and innate immunity, regulation of immune cell

activation, and antibody production (50). Furthermore, amino acid

sensing is associated with control of intestinal inflammation (51). In

the present study, disturbances in phenylalanine, tyrosine, and

tryptophan biosynthesis, and phenylalanine metabolism may be

associated with increased systemic inflammation in SHPT.

This study has certain limitations. First, although the sample size

of this study was larger than those of previous studies (11, 12), it was

still small, meaning that subgroup analyses, for example according to

CKD stage, could not be performed. Second, nutritional therapy is an

important strategy to delay the progression of CKD, and most

patients with CKD have restricted diets; therefore, the differential

metabolites may reflect patients’ current nutritional and metabolic

status. In addition, early treatment with medications such as

phosphate binders and vitamin D analogs may have induced

changes in metabolic pathways. Unfortunately, the treatment

history of each patient was not recorded. Third, the differential
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metabolites identified lacked targeted validation. Future studies are

therefore required to validate our findings and elucidate the

metabolic characteristics of SHPT.

In summary, our study indicated that phenylalanine, tyrosine,

and tryptophan biosynthesis was the most altered metabolic

pathway in patients with CKD complicated by SHPT. Significant

changes in amino acids, carnitines, and lipids were also observed;

differential metabolites were correlated with aggravated renal

function and abnormal blood lipid levels. For the first time, we

outlined the metabolomic profile of patients with CKD stages 3−5

and SHPT who were not undergoing dialysis, which may provide a

therapeutic foundation for the clinical management of SHPT.
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