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Background: Diabetes ranks among the most widespread diseases globally, with

the kidneys being particularly susceptible to its vascular complications. The

identification of proteins for pathogenesis and novel drug targets remains

imperative. This study aims to investigate roles of circulating inflammatory

proteins in diabetic renal complications.

Methods: Data on the proteins were derived from a genome-wide protein

quantitative trait locus (pQTL) study, while data on diabetic renal complications

came from the FinnGen study. In this study, proteome-wide Mendelian

randomization (MR) and colocalization analyses were used to assess the

relationship between circulating inflammatory proteins and diabetic

renal complications.

Results: MR approach indicated that elevated levels of interleukin 12B (IL-12B)

(OR 1.691, 95%CI 1.179–2.427, P=4.34×10-3) and LIF interleukin 6 family cytokine

(LIF) (OR 1.349, 95%CI 1.010–1.801, P=4.23×10-2) increased the risk of type 1

diabetes (T1D) with renal complications, while higher levels of fibroblast growth

factor 19 (FGF19) (OR 1.202, 95%CI 1.009–1.432, P=3.93×10-2), fibroblast growth

factor 23 (FGF23) (OR 1.379, 95%CI 1.035–1.837, P=2.82×10-2), C-C motif

chemokine ligand 7 (CCL7) (OR 1.385, 95%CI 1.111–1.725, P=3.76×10-3), and

TNF superfamily member 14 (TNFSF14) (OR 1.244, 95%CI 1.066–1.451,

P=5.63×10-3) indicated potential risk factors for type 2 diabetes (T2D) with

renal complications. Colocalization analysis supported these findings, revealing

that most identified proteins, except for DNER, likely share causal variants with

diabetic renal complications.
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Conclusion: Our study established associations between specific circulating

inflammatory proteins and the risk of diabetic renal complications, suggesting

these proteins as targets for further investigation into the pathogenesis and

potential therapeutic interventions for T1D and T2D with renal complications.
KEYWORDS

diabetic with renal complications, circulating inflammatory proteins, Mendelian
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Introduction

Diabetes remains a significant global health concern, with

approximately 463 million cases reported worldwide in 2019 (1).

The kidneys are particularly susceptible organs to diabetic vascular

complications, leading to glomerular disorders primarily

manifested as diabetic nephropathy (DN) (2). DN has emerged as

the principal cause of end-stage renal disease (ESRD) (3). DN is

characterized by proteinuria and a sustained decline in the

estimated glomerular filtration rate (eGFR), with its pathogenesis

likely involving oxidative stress, hemodynamic imbalances, chronic

inflammation, and fibrosis (4, 5). Most importantly, an increasing

number of studies have considered that chronic inflammation is a

key driver of diabetes complications, especially in the development

of DN (6–8). It was demonstrated that immune cells (such as

lymphocytes, macrophages, and neutrophils) were involved in the

emergence and development of DN, and that maintaining the

immune homeostasis of these cells reduced the production of

pro-inflammatory cytokines, such as interleukin 1b (IL-1b), IL-6,
tumor necrosis factor alpha-like (TNF-a), and monocyte

chemoattractant protein 1(MCP-1), thereby ameliorating the

progression of DN (9–12). Assessing the role of inflammatory

proteome in diabetic renal complications is crucial to elucidate

their pathophysiology and explore potential therapeutic targets.

Plasma proteins play an essential role in a range of biological

processes, such as signaling and modulation of inflammation (13).

The imbalance between pro-inflammatory and anti-inflammatory

immunoregulatory responses, driven by inflammatory proteins, is

hypothesized to contribute to DN pathogenesis, including

proteinuria, extracellular matrix (ECM) accumulation, and a

progressive decrease in eGFR (14). Genome-wide association

studies (GWAS) have identified genetic variants that influence

circulating inflammatory protein concentrations, represented by

strongly correlated single nucleotide polymorphisms (SNPs) and

known as protein quantitative trait loci (pQTL) (15). These findings

provide significant materials to examine the causal effects of

inflammatory proteins on diabetic renal complications through

Mendelian randomization (MR) analysis.

MR analysis leverages genetic variations from GWAS summary

statistics as instrumental variables (IVs) to discern causal links between

exposures and outcomes, circumventing confounding biases and
02
reverse causation inherent in observational studies (15). Given the

random categorization of genetic variants during meiosis akin to the

procedure in a randomized controlled trial, and the lifetime impact of

genetic variation, MR analysis is preferable for detecting the long-term

causal effects of risk or protective factors on outcomes (16). For a

genetic instrument to be deemed valid, it must satisfy three critical

assumptions: (i) It exhibits causality related to the exposure; (ii) it

remains uninfluenced by confounding variables; (iii) its association

with the outcome is mediated solely through the exposure. Based on

publicly available GWAS data, we conducted a proteome-wide MR

analysis to investigate the causal relationships between circulating

inflammatory proteins and diabetic renal complications. In addition,

we performed colocalization analysis in order to assess whether the

identified proteins and diabetic renal complications existed shared

causal variants.
Methods

Study design and data sources

Figure 1 illustrates the research design employed in this

investigation. We explored the causal links between genetically

predicted levels of circulating inflammatory proteins and diabetic

renal complications through MR analysis. Genetic instruments

pertaining to circulating inflammatory proteins were derived from

a genome-wide pQTL study within the SCALLOP Consortium’s

framework. The study utilized the Olink Target platform to

measure 91 circulating inflammatory proteins across 11 cohorts,

totaling 14,824 individuals of European descent (17). The summary

statistics of type 1 diabetes (T1D) (1,579 cases and 308,280controls)

and type 2 diabetes (T2D) (2,684 cases and 308,280 controls) with

renal complications were extracted from the FinnGen study R9 (18).

Patients were diagnosed with type 1 diabetes with renal complications

(E10.2†) or type 2 diabetes with renal complications (E11.2†), in

accordance with the International Classification of Diseases, 10th

Edition (ICD-10). In the ICD-10, diabetes with kidney complications

is a subclassification, specifically referring to glomerular disorders in

diabetes mellitus (N08.3*). All participants included in this analysis

were of European ancestry, with no overlapping between the datasets

for exposure and outcomes.
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To ascertain relevant SNPs for each circulating inflammatory

protein, the following methods were applied. As a limited number of

SNPs met the genome-wide significant threshold (p<5×10-8) with

circulating inflammatory proteins, we adopted a more lenient

threshold of p<1×10-5 to select our IVs following the previous

study (19). For multiple SNPs achieving genome-wide significance

and exhibiting LD R2 > 0.001 within 10 Mb of loci, we selected the

SNP with the lowest p-value linked to the traits of circulating

inflammatory proteins. The SNPs referenced above were

subsequently extracted from the GWAS on outcome traits. Based

on the 1000 Genomes European reference panel, SNPs that are

associated with proteins but are unavailable in the outcome data

were replaced with SNP proxies that have a high linkage

disequilibrium (R2 ≥ 0.8). We harmonized the exposure and

outcome datasets and acquired the SNP effects along with their

accompanying standard errors (20).

The GWAS summary statistics used in this study are publicly

available, and all original research received ethical approval, thus

the requirement for ethical approval of our study was waived.
Statistical analysis

Mendelian randomization analysis
The inverse-variance weighted (IVW) method served as the

principal analysis method, offering high-powered estimates

contingent upon the postulate that all SNPs are valid IVs. The

weighted median and MR-Egger methods refine the IVW-derived

estimates by providing more robust assessments across a broader

array of scenarios, but with reduced efficiency. The weighted
Frontiers in Endocrinology 03
median generates credible estimates when a minimum of 50% of

the weight originates from effective genetic variants. If the effective

genetic variance falls below 50%, MR-Egger can still generate

pleiotropy robust estimates of causal effects. Furthermore, other

approaches for two-sample MR, such as weighted mode and simple

mode, were also used as references. Cochran’s Q test was conducted

to assess the presence of heterogeneity. The MRPRESSO method

was applied to detect and remove outliers potentially affected by

horizontal pleiotropy. Additionally, the MR-Egger intercept and

leave-one-out analyses were also undertaken to explore the

potential pleiotropy (21). Noteworthy, associations with p-values

below 2.75 × 10-4 (0.05/182, the Bonferroni correction) were

deemed to be statistically significant evidence of association,

whereas those in the range of 2.75 × 10-4 ~ 0.05 were considered

suggestive of an association (22).

Colocalization analysis
To further investigate whether the identified proteins and

diabetic renal complications existed shared causal variants, we

conducted a colocalization analysis, which targeted inflammatory

proteins significantly associated with diabetic renal complications

according to MR results. We posited five distinct exclusion

hypotheses for each genomic locus: H0 proposes no association

with either trait; H1 suggests an association with protein levels but

not the disease; H2 indicates an association with the disease but not

protein levels; H3 implies associations with both traits but via

distinct SNPs; and H4 posits a joint association with both traits

through a common SNP. The analysis yields posterior probabilities

for these hypotheses. Approximate Bayes factors were computed

with the standard errors and effect estimates for each SNP, and the
FIGURE 1

Study design: investigating causal relationships between 91 circulating inflammatory proteins and diabetic renal complications. LD, linkage
disequilibrium; SNP, single nucleotide polymorphism; IVW, inverse-variance weighted; PP: posterior probability; T1D, type 1 diabetes; T2D, type
2 diabetes.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1406442
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1406442
log Bayes factor was then computed for each hypothesis. Lastly, the

posterior probability (PP) for each hypothesis was computed with

the Bayes factor and the prior probability. Colocalization analysis

was conducted on all variants that were within a 1 MB region

(upstream or downstream) of the gene. We deemed the

colocalization of an SNP with both traits as significant if the PP

for H4 exceeded 80% (23).

All statistical analyses were performed using RStudio (version

4.2.2, Posit PBC, Boston, MA, USA) with the software packages

“TwoSampleMR”, “MR-PRESSO” and “coloc R”.
Results

MR analysis

We evaluated the causal effects of genetically predicted levels of

91 circulating inflammatory proteins on T1D and T2D with renal

complications. This study aimed to identify whether specific

inflammatory proteins are causally linked to diabetes with renal

complications and to pinpoint potential risk or protective factors,

thereby informing future functional and clinical research. For

example, detailed molecular mechanism studies on the identified

proteins can elucidate their roles in the disease, advancing

prevention and treatment strategies.
Causal estimates of circulating
inflammatory proteins on T1D with
renal complications

The primary outcomes for the causal effects of genetically

predicted circulating inflammatory proteins on T1D with renal
Frontiers in Endocrinology 04
complications were depicted in Figures 2 and 3. The MR estimates

demonstrated that the genetically elevated predicted levels of IL12B

(IVW: OR 1.691, 95% CI 1.179–2.427, P =4.34×10-3) and LIF

interleukin 6 family cytokine (LIF) (IVW: OR 1.349, 95% CI

1.010–1.801, P =4.23×10-2) were associated with an increased risk

of T1D with renal complications. Conversely, artemin (ARTN)

(IVW: OR 0.702, 95% CI 0.529–0.933, P =1.46×10-2), C-C motif

chemokine ligand 28 (CCL28) (IVW: OR 0.740, 95% CI 0.549–

0.999, P =4.95×10-2) and S100 calcium binding protein A12

(S100A12) (IVW: OR 0.729, 95% CI 0.564–0.944, P =1.64×10-2)

were associated with reduced risks (Table 1; Figure 4). Cochran’s Q

test indicated heterogeneity for IL-12B (IVW-derived Q statistic =

38.763; P = 0.007), and the MR-PRESSO test identified an outlier,

the overall estimates were generally consistent after correction. The

MR-Egger intercept analysis indicated no pleiotropy for IL-12B (P >

0.05). For LIF, ARTN, CCL28, and S100A12, neither MR-Egger

intercept analysis (P > 0.05) nor Cochran’s Q test (P > 0.05)

indicated the presence of pleiotropy or heterogeneity, and no

outliers were detected by MR-PRESSO (Supplementary Figure 1).
Causal estimates of circulating
inflammatory proteins on T2D with
renal complications

The principal results for the causal effects of genetically

predicted circulating inflammatory proteins on T2D with renal

complications were showed in Figures 2 and 5. The MR estimates

indicated that elevated levels of fibroblast growth factor 19 (FGF19)

(IVW: OR 1.202, 95% CI 1.009–1.432, P =3.93×10-2), fibroblast

growth factor 23 (FGF23) (IVW: OR 1.379, 95% CI 1.035–1.837, P

=2.82×10-2), C-C motif chemokine ligand 7 (CCL7) (IVW: OR

1.385, 95% CI 1.111–1.725, P =3.76×10-3) and TNF superfamily
A B

FIGURE 2

Summary results of 91 circulating inflammatory proteins and diabetic renal complications used IVW, MR-Egger, and weighted median methods in MR
analysis. Circular plots show the MR results of 91 circulating inflammatory proteins in T1D (A) and T2D (B) with renal complications, respectively. MR,
mendelian randomization; IVW, inverse-variance weighted; T1D, type 1 diabetes; T2D, type 2 diabetes.
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member 14 (TNFSF14) (IVW: OR 1.244, 95% CI 1.066–1.451, P

=5.63×10-3) were potential risk factors of T2D with renal

complications, whereas elevated levels of delta/notch like EGF

repeat containing (DNER) (IVW: OR 0.701, 95% CI 0.527–0.932,

P =1.45× 10-2) and IL-13 (IVW: OR 0.792, 95% CI 0.644–0.974, P

=2.72× 10-2) may serve as protective factors (Table 1; Figure 4). For

FGF19, FGF23, CCL7, TNFSF14, DNER and IL-13, no significant

heterogeneity was observed by Cochran’s Q test (P > 0.05), andMR-

PRESSO identified no outliers. The MR-Egger intercept analysis

suggested no pleiotropy (P > 0.05) (Supplementary Figure 2).
Colocalization analysis

Through colocalization analysis, we can provide robust

evidence supporting the causal relationship between proteins

identified via MR analysis and diabetes with renal complications.

This method minimizes confounding effects from genetic

backgrounds, thus enhancing the reliability of causal inference.

The primary objectives of colocalization analysis are to identify

shared causal variants (common SNPs) and determine whether a

variant affects both protein levels and disease risk, indicating a

potential causal relationship.

Colocalization analysis was performed for proteins that were

significantly related to diabetic renal complications in MR analysis.

Our colocalization analysis revealed that H4 PPs between ARTN,

CCL28, S100A12, IL-12B, and LIF levels and T1D with renal

complications were greater than 0.8, respectively (ARTN at
Frontiers in Endocrinology 05
H4 = 0.996, CCL28 at H4 = 0.903, S100A12 at H4 = 0.997, IL-

12B at H4 = 0.943, and LIF at H4 = 0.973) (Supplementary

Figure 3). Similar findings were observed for proteins in T2D

with renal complications (IL-13 at H4 = 0.984, FGF19 at

H4 = 0.979, FGF23 at H4 = 0.954, CCL7 at H4 = 0.991, and

TNFSF14 at H4 = 0.976) (Supplementary Figures 4B–F). It was

highly supported that these two traits shared single causal variant

within the 1Mb region of the gene, reinforcing the genetic and

biological connection between these proteins and diabetic renal

complications. However, we found that the H4 PP of DNER levels

and T2D with renal complications was low (H4 = 0.347), and as

such indicated weak colocalization evidence in support of a shared

causal variant (Supplementary Figure 4A). These finding might

provide valuable insights into the genetic mechanisms and potential

therapeutic targets for diabetic renal complications, underscoring

the importance of specific proteins in disease progression and

treatment strategies.
Discussion

We performed proteome-wide MR and colocalization analyses

to investigate the causal effects of 91 circulating inflammatory

proteins on diabetic renal complications. Our findings

demonstrated that genetically predicted higher levels of IL-12B

and LIF likely increased the risk of T1D with renal complications,

whereas higher levels of ARTN, CCL28, and S100A12 were related

to a decreased risk. Likewise, elevated levels of FGF19, FGF23,
A B C

D E

FIGURE 3

Scatter plots of causal associations for genetically predicted levels of IL-12B (A), LIF (B), ARTN (C), CCL28 (D), and S100A12 (E) on T1D with renal
complications used IVW, MR-Egger, weighted median, weighted mode, and simple mode methods in MR analysis. MR, mendelian randomization;
IVW, inverse-variance weighted; T1D, type 1 diabetes; IL-12B, interleukin 12B; LIF, LIF interleukin 6 family cytokine; ARTN, artemin; CCL28, C-C motif
chemokine ligand 28; S100A12, S100 calcium binding protein A12.
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CCL7 and TNFSF14 were potential risk factors of T2D with renal

complications, whereas elevated levels of DNER and IL-13 may

serve as protective factors. Colocalization evidence reinforced these

associations, suggesting that in addition to DNER, the other

circulating inflammatory proteins showed evidence of sharing

causal SNPs with diabetic renal complications. Prior studies have

shown that proteins including S100A12, IL-12B, LIF, FGF19,

FGF23, CCL7, TNFSF14, and IL-13 play a role in the

inflammatory processes of diabetic renal complications. However,

direct evidence elucidating how ARTN, CCL28, and DNER

influence diabetic renal complications and their potential as

therapeutic targets remains scarce.

The IL-12B gene encodes the p40 subunit of cytokines IL-12

and IL-23, which are pivotal in modulating immune responses

through the stimulation of Th1 and Th17 cell differentiation and

activation (24). T1D predominantly arises from autoimmune

reactions that destroy pancreatic beta cells, a process that IL-12

and IL-23 might intensify in autoimmune conditions (25). Elevated

levels of IL-12 and IL-23 can enhance Th1 and Th17 cell-mediated

inflammation, culminating in an excessive production of pro-

inflammatory cytokines, including interferon gamma (IFN-g),
TNF-a, IL-17, and IL-22 (25, 26). Such cytokine overproduction

likely initiates inflammation and subsequent tissue damage in the

kidneys. LIF, a member of the interleukin 6 cytokine family, exhibits

multifunctional properties. Xu et al. (27) found that LIF was

significantly upregulated in renal fibrotic lesions in both humans
Frontiers in Endocrinology 06
and mice, with its mRNA expression inversely associated with

eGFR. Meanwhile, elevated LIF levels were observed in

individuals with DN. Mechanistically, LIF may contribute to the

activation of renal mesangial cells under hyperglycemic conditions

by activating the STAT and MAPK signaling pathways (28, 29).

Additionally, LIF has been implicated in the upregulation of MCP-1

expression in glomerular mesangial cells, thereby fostering

glomerular inflammation (30).

Studies have reported that T2D patients with increased plasma

FGF23 concentrations experienced a higher all-cause mortality rate

(31, 32). FGF23 was identified as a significantly prognostic marker

for renal outcomes, particularly in DN patients with severe

proteinuria (33). Inhibition of FGF23 in db/db mice has been

shown to attenuate inflammation and fibrosis, thereby

ameliorating outcomes of DN (34). Moreover, plasma levels of

FGF23 tend to escalate during the initial phases of CKD with renal

function declining, a response that appear to enhance phosphate

excretion per nephron, maintaining phosphate homeostasis.

However, studies have suggested that the severity of tubular

damage and interstitial fibrosis correlated positively with the

phosphate excretion per nephron unit (35).

Upon release into damaged or infected tissue, CCL7 facilitates the

recruitment of macrophages and monocytes to inflammatory sites by

interacting with CC chemokine receptor 2 (CCR2). This process can

potentially intensify inflammatory responses and contribute to

disease progression (36). Studies have indicated that serum CCL7
TABLE 1 MR and colocalization analyses results of causal associations between circulating inflammatory proteins and diabetic renal complications.

outcome exposure nSNP
IVW Cochran’s Q test

MR-Egger
intercept
analysis

Colocalization
analysis

OR (95%CI) P value

IVW
derived

Q
statistic

IVW
derived
P value P value PH4

T1D with renal complications

ARTN 19 0.702 (0.529–0.933) 1.46E-02 23.745 0.164 0.186 0.996

CCL28 21 0.740 (0.549–0.999) 4.95E-02 22.887 0.294 0.620 0.903

S100A12 16 0.729 (0.564–0.944) 1.64E-02 9.053 0.875 0.214 0.997

IL-12B 21 1.691 (1.179–2.427) 4.34E-03 38.763 0.007 0.469 0.943

LIF 16 1.349 (1.010–1.801) 4.23E-02 13.578 0.558 0.761 0.973

T2D with renal complications

DNER 17 0.701 (0.527–0.932) 1.45E-02 25.048 0.069 0.320 0.347

IL-13 17 0.792 (0.644–0.974) 2.72E-02 13.565 0.631 0.703 0.984

FGF19 20 1.202 (1.009–1.432) 3.93E-02 15.437 0.694 0.427 0.979

FGF23 15 1.379 (1.035–1.837) 2.82E-02 18.527 0.184 0.920 0.954

CCL7 16 1.385 (1.111–1.725) 3.76E-03 17.743 0.276 0.897 0.991

TNFSF14 20 1.244 (1.066–1.451) 5.63E-03 7.570 0.991 0.714 0.976
MR, mendelian randomization; SNP, single nucleotide polymorphism; IVW, inverse-variance weighted; PP, posterior probability; T1D, type 1 diabetes; T2D, type 2 diabetes; ARTN, artemin;
CCL28, C-C motif chemokine ligand 28; S100A12, S100 calcium binding protein A12; IL-12B, interleukin 12B; LIF, LIF interleukin 6 family cytokine; DNER, delta/notch like EGF repeat
containing; IL-13, interleukin 13; FGF19, fibroblast growth factor 19; FGF23, fibroblast growth factor 23; CCL7, C-C motif chemokine ligand 7; TNFSF14, TNF superfamily member 14.
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levels were elevated in patients with T2D. It is posited that CCL7 may

play a role in the onset of adipose tissue inflammation and insulin

resistance in T2D and could be linked to the advancement of

inflammation and fibrosis in DN (37). TNFSF14 is known for its

pro-inflammatory properties. Preliminary research has shown that

TNFSF14 concentrations were higher in individuals with T2D and

that it can induce islet cell dysfunction in vitro (38). Evidence

suggested that the absence of TNFSF14 can enhance glucose

tolerance and insulin sensitivity, alter immune cell phenotypes, and

decrease the secretion of inflammatory cytokines, including IL-6, IL-

8, IL-17, and TNF-a (39).

IL-13 suppresses Th1 and Th17 cell-mediated immune

responses, augments Th2 cell responses, and prompts

macrophage activation to reduce pro-inflammatory cytokine

production (such as IL-1b, TNF-a, IL-17) while fostering the

generation of anti-inflammatory cytokines (such as IL-10) (40).

This cascade of events manifests as an anti-inflammatory effect.

Furthermore, IL-13 was posited to be pivotal in ameliorating kidney

fibrosis (41). Evidence indicates that IL-13 modulates glucose

homeostasis via the IL-13ra1-STAT3 signaling pathway in

hepatocytes, potentially providing a therapeutic target for glucose

regulation in T2D (42). While IL-13 could decelerate T2D

progression, particularly when renal complications are present, its

precise biological roles and prospective therapeutic targets deserve

additional exploration.

The proteins mentioned above have been corroborated by prior

research. Through MR and colocalization analyses, we have further

reinforced the causal links between these proteins and diabetic renal

complications. Simultaneously, we have identified several unverified

proteins that may offer novel insights into the pathogenic

mechanisms underlying diabetic renal complications.
Frontiers in Endocrinology 07
ARTN predominantly functions within the nervous system,

playing a crucial role in the promotion of neuronal growth and

development (43). CCL28 falls under the CC chemokine family

classification. By interacting with specific receptors, such as CCR10,

it orchestrates the migration of immune cells and is involved in

inflammatory processes and immune regulation (44). Our MR

estimates indicated that ARTN and CCL28 may confer a

protective effect against T1D with renal complications, although

this has not been demonstrated in extant studies. In the context of

diabetic nephropathy, we postulated that ARTN may be

instrumental in supporting the survival and repair of injured

neurons or other cell types, while CCL28 is likely implicated in

modulating inflammation, immune responses, and tissue repair

mechanisms. The implications of these novel findings warrant

further investigation. Besides, our findings also indicated an

inverse correlation between increased DNER levels and the risk of

T2D with renal complications. However, this association lacked

evidence from colocalization analysis.

Studies have demonstrated that serum S100A12 levels were

elevated in T1D patients, and such elevations were associated with

inflammatory responses and diabetes in patients with stage 5

chronic kidney disease (CKD) (45, 46). Contrary to these

findings, our results suggested that S100A12 may act as a

protective protein in T1D with renal complications. Prior

research has identified FGF19 as a potential target for managing

diabetes and its associated complications (47). It is also contradicted

with our MR results. This suggests a pleiotropic role for

inflammatory proteins inside diabetic renal complications that

warrants further investigation.

For future research, it is crucial to investigate the biological

pathways and functional roles of these proteins in diabetic renal
A B

FIGURE 4

Summary results of 91 circulating inflammatory proteins and diabetic renal complications using the IVW method in MR analysis. Volcano plots show
the MR results of 91 circulating inflammatory proteins on the risk of T1D (A) and T2D (B) with renal complications, respectively. MR, mendelian
randomization; IVW, inverse-variance weighted; T1D, type 1 diabetes; T2D, type 2 diabetes; ARTN, artemin; CCL28, C-C motif chemokine ligand 28;
S100A12, S100 calcium binding protein A12; IL12B, interleukin 12B; LIF, LIF interleukin 6 family cytokine; DNER, delta/notch like EGF repeat
containing; IL-13, interleukin 13; FGF19, fibroblast growth factor 19; FGF23, fibroblast growth factor 23; CCL7, C-C motif chemokine ligand 7;
TNFSF14, TNF superfamily member 14.
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complications. Employing advanced techniques such as single-cell

RNA sequencing, proteomics, and gene editing in both cellular and

animal models will be essential. Moreover, expanding studies to

include diverse population cohorts will enhance the generalizability

of the findings. Importantly, the genes corresponding to these

proteins—S100A12, IL12B, LIF, FGF19, FGF23, CCL7, TNFSF14,

IL-13, ARTN, and CCL28—are considered druggable, with their tier

levels being Tier 3B, Tier 1, Tier 3A, Tier 3B, Tier 3B, Tier 3A, Tier

1, Tier 1, Tier 3B, and Tier 3B, respectively (48). Investigating the

therapeutic potential of targeting these proteins could lead to

personalized treatment strategies, ultimately improving clinical

outcomes for patients with diabetic renal complications. Lastly, to

facilitate clinical translation, future research should incorporate

preclinical studies to evaluate the efficacy and safety of potential

therapies targeting these proteins, followed by clinical trials to assess

their effectiveness in human subjects. Additionally, establishing

reliable biomarkers for early detection and treatment monitoring

will be essential.

There are some limitations in our study. Firstly, a limited

number of SNPs reached the significance threshold of 5×10-8 for

the MR analysis. Therefore, with reference to similar studies, we

adopted a relatively lenient genetic instrument threshold of 1×10-5

(19). Besides, our analyses focused on populations of European

descent, reducing demographic bias but potentially limiting the

generalizability of our findings to other ethnic groups. Future

studies should include diverse population cohorts from various
Frontiers in Endocrinology 08
ethnic backgrounds. In addition, the p values for the causal

associations we observed reached the thresholds of suggestive

association rather than the Bonferroni-corrected thresholds. Thus,

we cannot rule out the possibility of false positives in the observed

associations between inflammatory proteins and diabetic renal

complications. Lastly, horizontal pleiotropy is also a potential

constraint in MR studies. We further verified our findings

through sensitivity analyses using methods like MR-PRESSO,

weighted median, MR-Egger, weighted mode and simple mode to

mitigate pleiotropy, reinforcing the reliability and robustness of our

findings. Although these tests provided no evidence of horizontal

pleiotropy, residual pleiotropy is impossible to completely exclude.
Conclusions

In conclusion, our two-sample MR analysis provided evidence

for the causal relationships between circulating inflammatory

proteins and diabetic renal complications. Previous research has

established that parts of these proteins play roles in the progression

of diabetic renal complications. It was notable that IL12B, LIF and

S100A12 emerged as potential therapeutic targets for T1D with

renal complications, and that FGF19, FGF23, CCL7, TNFSF14 and

IL-13 also deserved attention for T2D with renal complications.

Future research should be directed towards elucidating the

mechanisms of action and signaling pathways of these prospective
A B C

D E F

FIGURE 5

Scatter plots of causal associations for genetically predicted levels of FGF19 (A), FGF23 (B), CCL7 (C), TNFSF14 (D), DNER (E), and IL-13 (F) on T2D
with renal complications used IVW, MR-Egger, weighted median, weighted mode, and simple mode methods in MR analysis. MR, mendelian
randomization; IVW, inverse-variance weighted; T2D, type 2 diabetes; FGF19, fibroblast growth factor 19; FGF23, fibroblast growth factor 23; CCL7,
C-C motif chemokine ligand 7; TNFSF14, TNF superfamily member 14; DNER, delta/notch like EGF repeat containing; IL-13, interleukin 13.
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targets, thus aiding in the development of novel therapeutic

methods for diabetic renal complications.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

WL: Data curation, Formal analysis, Writing – original draft,

Visualization. JZ: Data curation, Formal analysis, Writing – original

draft. DZ: Writing – review & editing. LZ: Conceptualization,

Funding acquisition, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This project

was supported in part by grants from the State Key Laboratory of

Dampness Syndrome of Chinese Medicine (SZ2021ZZ16),

Guangzhou City-school-enterprise joint funding project

(SL2023A03J00958), Guangzhou Science and Technology Project

(Grant numbers 202206010076).
Acknowledgments

We extend our gratitude to all participants and the investigators

involved in the genome-wide pQTL study of circulating

inflammatory proteins, as well as to the FinnGen study for their

data contribution.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Endocrinology 09
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2024.1406442/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Leave one out analysis of causal associations for genetically predicted levels
of IL-12B (A), LIF (B), ARTN (C), CCL28 (D), and S100A12 (E) in T1D with renal

complications. T1D, type 1 diabetes; IL-12B, interleukin 12B; LIF, LIF
interleukin 6 family cytokine; ARTN, artemin; CCL28, C-C motif chemokine

ligand 28; S100A12, S100 calcium binding protein A12.

SUPPLEMENTARY FIGURE 2

Leave one out analysis of causal associations for genetically predicted levels
of FGF19 (A), FGF23 (B), CCL7 (C), TNFSF14 (D), DNER (E), and IL-13 (F) in T2D

with renal complications. T2D, type 2 diabetes; FGF19, fibroblast growth
factor 19; FGF23, fibroblast growth factor 23; CCL7, C-C motif chemokine

ligand 7; TNFSF14, TNF superfamily member 14; DNER, delta/notch like EGF

repeat containing; IL-13, interleukin 13.

SUPPLEMENTARY FIGURE 3

Colocalization analysis was performed for identified proteins that were

significantly related to T1D with renal complications in MR analysis. (A)
Colocalization analysis of the cis-pQTL for ARTN (B) Colocalization analysis

of the cis-pQTL for CCL28 (C) Colocalization analysis of the cis-pQTL for

S100A12 (D) Colocalization analysis of the cis-pQTL for IL-12B (E)
Colocalization analysis of the cis-pQTL for LIF. MR, mendelian

randomization; T1D, type 1 diabetes; pQTL, protein quantitative trait loci;
IL-12B, interleukin 12B; LIF, LIF interleukin 6 family cytokine; ARTN, artemin;

CCL28, C-C motif chemokine ligand 28; S100A12, S100 calcium binding
protein A12.

SUPPLEMENTARY FIGURE 4

Colocalization analysis was performed for identified proteins that were

significantly related to T2D with renal complications in MR analysis. (A)
Colocalization analysis of the cis-pQTL for DNER (B) Colocalization analysis

of the cis-pQTL for IL-13 (C) Colocalization analysis of the cis-pQTL for
FGF19 (D) Colocalization analysis of the cis-pQTL for FGF23 (E)
Colocalization analysis of the cis-pQTL for CCL7 (F) Colocalization analysis

of the cis-pQTL for TNFSF14. MR, mendelian randomization; T2D, type 2
diabetes; pQTL, protein quantitative trait loci; FGF19, fibroblast growth factor

19; FGF23, fibroblast growth factor 23; CCL7, C-C motif chemokine ligand 7;
TNFSF14, TNF superfamily member 14; DNER, delta/notch like EGF repeat

containing; IL-13, interleukin 13.
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