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Background: Observational studies and clinical trials have implicated

polyunsaturated fatty acids (PUFAs) in potentially safeguarding against diabetic

microvascular complication. Nonetheless, the causal nature of these

relationships remains ambiguous due to conflicting findings across studies.

This research employs Mendelian randomization (MR) to assess the causal

impact of PUFAs on diabetic microvascular complications.

Methods: We identified instrumental variables for PUFAs, specifically omega-3

and omega-6 fatty acids, using the UK Biobank data. Outcome data regarding

diabetic microvascular complications were sourced from the FinnGen Study. Our

analysis covered microvascular outcomes in both type 1 and type 2 diabetes,

namely diabetic neuropathy (DN), diabetic retinopathy (DR), and diabetic kidney

disease (DKD). An inverse MR analysis was conducted to examine the effect of

diabetic microvascular complications on PUFAs. Sensitivity analyses were

performed to validate the robustness of the results. Finally, a multivariable MR

(MVMR) analysis was conducted to determine whether PUFAs have a direct

influence on diabetic microvascular complications.

Results: The study indicates that elevated levels of genetically predicted omega-

6 fatty acids substantially reduce the risk of DN in type 2 diabetes (odds ratio (OR):

0.62, 95% confidence interval (CI): 0.47–0.82, p = 0.001). A protective effect

against DR in type 2 diabetes is also suggested (OR: 0.75, 95% CI: 0.62–0.92, p =

0.005). MVMR analysis confirmed the stability of these results after adjusting for

potential confounding factors. No significant effects of omega-6 fatty acids were

observed on DKD in type 2 diabetes or on any complications in type 1 diabetes.

By contrast, omega-3 fatty acids showed no significant causal links with any of

the diabetic microvascular complications assessed.
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Conclusions: Our MR analysis reveals a causal link between omega-6 fatty acids

and certain diabetic microvascular complications in type 2 diabetes, potentially

providing novel insights for further mechanistic and clinical investigations into

diabetic microvascular complications.
KEYWORDS

diabetic microvascular complications, polyunsaturated fatty acids, Mendelian
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1 Introduction

Diabetes poses a significant global health challenge, affecting

approximately 10% of the adult population worldwide (1). This

condition markedly elevates the risk of microvascular

complications, such as diabetic neuropathy (DN), diabetic

retinopathy (DR), and diabetic kidney disease (DKD) (2).

Significantly, >50% of those diagnosed with diabetes have DN,

which can result in chronic pain, progressive sensory loss, and non-

traumatic amputations (3). Additionally, 30%–40% of the patients

are at risk for DR, a leading cause of blindness (4), and 30%–40% of

the patients may develop DKD—the leading cause of end-stage

renal disease (5). These statistics highlight the urgent need for

improved prevention and treatment strategies for diabetic

microvascular complications (6).

Traditionally, research on diabetic complications has focused

on glucose metabolism (7). Despite intense glucose control efforts,

complications continue to be prevalent, suggesting that other

factors also contribute (7). Recent evidence indicates that lipids,

including polyunsaturated fatty acids (PUFAs), play a crucial role in

these complications (8). PUFAs mainly include omega-3 and

omega-6 fatty acids. Observational studies have found that

omega-6 fatty acids might protect against DN (9–11) and DR (12,

13), but their impact on DKD is uncertain (14, 15). To date, no

randomized controlled trial (RCT) has evaluated the effects of

omega-6 fatty acids on these conditions. By contrast, the effects of

omega-3 fatty acids have been comprehensively investigated in both

observational studies and RCTs, suggesting that omega-3 fatty acids

may reduce the risk and severity of DN (16, 17), but their effects on

DR (18–20) and DKD (14, 15, 21, 22) have been inconsistent. This

emphasizes the need for research on the roles of PUFA in diabetic

microvascular complications.

Mendelian randomization (MR), which employs genetic

variations to simulate the random allocation inherent in RCTs,

serves as an effective method for examining causal relationships in

scenarios where RCTs are impractical (23). This approach precludes

reverse causation by utilizing genetic predispositions that are

established before disease onset (24). Although one MR study

associated PUFA intake with reduced risk of DR, it did not

differentiate between types of diabetes (25). This research used
02
MR to investigate the causal links between PUFAs, specifically

omega-6 and omega-3 fatty acids, and diabetic microvascular

complications, including type 1 DN (T1DN), type 1 DR (T1DR),

type 1 DKD (T1DKD), type 2 DN (T2DN), type 2 DR (T2DR), and

type 2 DKD (T2DKD).
2 Methods

2.1 Study design

We conducted a two-sample MR analysis using summary

statistics from genome-wide association studies (GWAS) to

investigate the causal relationship between PUFAs and diabetic

microvascular complications. Genetic variants were used as

instrumental variables (IVs) to assess the causal effects of

exposure (omega-3 and omega-6) on outcomes (T1DN, T1DR,

T1DKD, T2DN, T2DR, and T2DKD). Subsequently, an inverse MR

analysis was performed to determine the effect of diabetic

microvascular complications on PUFA levels. Given the role of

lifestyle and physical conditions in the development of diabetic

microvascular complications, we conducted a multivariable MR

(MVMR) analysis to ascertain whether the effects of PUFAs on

diabetic microvascular complications were direct or mediated by

other factors. The study design is illustrated in Figure 1.

Additionally, the causal effects of omega-3 and omega-6 fatty

acids on type 1 diabetes (T1D) and type 2 diabetes (T2D) were

evaluated to understand mechanisms of action. This study follows

the STROBE-MR guidelines for reporting findings (26).
2.2 Data source

Genetic data pertaining to PUFAs were sourced from the UK

Biobank, a comprehensive cohort study in the United Kingdom that

recruited participants between 2006 and 2010 (27). Eligibility criteria

required participants to be 40–69 years of age at recruitment (27).

The UK Biobank provides a rich resource of genetic and phenotypic

information (27). From this repository, we selected a random subset

of >110,000 baseline EDTA plasma samples from the general
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population. These samples underwent analysis at Nightingale Health,

where nuclear magnetic resonance and specialized software facilitated

the evaluation of >200 metabolic biomarkers, including omega-6 and

omega-3 fatty acids, from each blood sample (28). Among UK

Biobank participants, mean concentration of omega-3 fatty acids

was 0.53 mmol/L (SD: 0.22) and omega-6 fatty acids was 4.51 mmol/

L (SD: 0.69).

Summary-level data on diabetic microvascular complications

were obtained from the FinnGen Study, a collaborative research

project in Finland (29). This project utilizes nationwide longitudinal

health registry data collected from every resident in Finland since

1969, with continuous follow-up and data collection (29). This

project integrates genotype data from Finnish biobanks with digital

health records from national registries, to understand the genetics

of various diseases in a cohort comprising 500,000 participants (29).

T1DN, T1DR, T1DKD, T2DN, T2DR, and T2DKD were identified

using ICD-10 codes.

The UK Biobank and FinnGen studies are based on different

cohorts and geographic regions, thus minimizing the risk of sample

overlap and bias. Both studies primarily consist of individuals of

European ancestry, ensuring that the genetic background is similar

and the associations are comparable. Standard imputation algorithms

were employed in both datasets to ensure data completeness, allowing

for the inclusion of all available participants. The mRnd online

calculator (https://shiny.cnsgenomics.com/mRnd/) was utilized to

calculate statistical power (30). With sample sizes of 310,174,

312,452, 310,964, 309,357, 313,482, and 309,859 for T2DN,

T2DR, T2DKD, T1DN, T1DR, and T1DKD, respectively, the

powers to detect an odds ratio (OR) of 0.7 for developing these

conditions per standard deviation increase in PUFA levels

(assuming genetic variants explain approximately 5% variance in

PUFA levels) were 0.83, 0.99, 0.93, 0.59, 1.0, and 0.76, respectively.

In the MVMR analysis, variables such as C-reactive protein (CRP),

glucose, and smoking were sourced from the UK Biobank, while
Frontiers in Endocrinology 03
interleukin 6 (IL-6) data were obtained from the study by Jing Hua

Zhao et al. (31). Additionally, data for T1D and T2D used in the

supplementary analyses were sourced from the Finnish database.

Further details on the datasets can be found in Supplementary Table 1.

The UK Biobank study was approved by the North West Multi-

centre Research Ethics Committee, and all participants provided

written informed consent (27). The FinnGen study protocol

received approval from the Ethics Committee of the Hospital

District of Helsinki and Uusimaa (29). For this project, ethical

approval was not required because the data were derived from the

summary statistics of published GWAS and did not involve

individual-level data.
2.3 Selection of IVs

IVs, identified as single nucleotide polymorphisms (SNPs), were

selected through a rigorous screening process consistent with the core

MR principles of relevance (IV is closely related to exposure),

independence (IV is not related to confounders), and exclusion

restriction (IV affects the outcome only through exposure) (24).

Genetic variants were chosen as IVs based on their strong

association with exposure, applying stringent criteria (p < 5 × 10−8

and F-statistic > 10) to ensure robustness. Their independence was

confirmed via linkage disequilibrium analysis, adopting an R2

threshold of <0.001 to affirm IV independence. Alignment of SNPs

related to both outcome and exposure was verified to maintain

methodological consistency. To identify and address potential

confounding factors, we utilized the PhenoScanner database. SNPs

introducing potential bias were iteratively excluded, guided by

increasing p-values from the MR-PRESSO outlier test, until no

significant outliers were detected (p > 0.05) in the MR-PRESSO

global test. The detailed methodology, including the IV selection

process, is further explicated in Supplementary Figure 1.
FIGURE 1

Graphical representation of the MR assumptions in a two-sample MR design, including (i) relevance; (ii) independence; and (iii) exclusion restriction.
LD, linkage disequilibrium; SNPs, single nucleotide polymorphisms; IVW, inverse variance weighted; T1DN, type 1 diabetes neuropathy; T1DR, type 1
diabetes retinopathy; T1DKD, type 1 diabetic kidney disease; T2DN, type 2 diabetes neuropathy; T2DR, type 2 diabetes retinopathy; T2DKD, type 2
diabetic kidney disease.
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2.4 MR analysis and sensitivity analyses

Primary outcomes were analyzed using the inverse-variance-

weighted (IVW) method. This approach is most accurate when all

selected SNPs act as valid IVs (26). In the IVW method, the SNPs

were weighted by the inverse of their variance. This weighting

scheme provides more precise estimates by giving more weight to

SNPs with smaller standard errors. The weights were derived from

the GWAS summary statistics, ensuring that the contribution of

each SNP to MR analysis was proportional to its precision (32). In

cases of heterogeneity, we opted for a random-effects model IVW

(33). We augmented the robustness of our estimates by

incorporating the weighted median (WM) and MR-Egger

methods. The WM method provides consistent estimates when

>50% of the data comes from valid SNPs (34), whereas MR-Egger

addresses potential pleiotropic effects independent of the variant-

exposure association (35). Ultimately, the causal estimates were

expressed as ORs with their corresponding 95% confidence

intervals (CIs).MR-Egger regression was employed to assess the

influence of pleiotropy among IVs. In MR-Egger regression, the

intercept term serves as a test for directional pleiotropy. A non-

significant intercept (p > 0.05) indicates the absence of systematic

bias in the causal estimate due to pleiotropy. Relative symmetry in

funnel plots suggests an absence of directional pleiotropy.

Cochran’s Q test was conducted to assess potential heterogeneity

among IVs, indicated by a non-significant result (p > 0.05). The

“leave-one-out” analysis, which sequentially excludes one SNP at a

time, further validated our results by assessing the influence of

individual SNPs on the overall causal estimate (30).
2.5 Statistical analyses

All analyses were conducted in R version 4.3.2, using “Two-

Sample MR,” “Mendelian Randomization,” “MVMR,” and “MR-

PRESSO” to facilitate MR analyses. To tackle the issue of multiple

testing arising from examining the relationship between two traits

and six diabetes complications, Bonferroni’s correction was applied.

Significance thresholds were set at p-value <0.004 (0.05/(2*6)) for

significance, p-value <0.05 for nominal significance, and p-values

between 0.004 and 0.05 for suggestive evidence.
3 Results

3.1 IVs for PUFAs and diabetic
microvascular complications

Following a stringent screening process grounded in the

principles of independence and exclusivity, in addition to the

harmonization and elimination of palindromic SNPs with

intermediate allele frequencies, we identified 36–44 SNPs for MR

analysis (Supplementary Tables 2-13). The F-statistics for these IVs

exceeded the threshold of 10, signifying their adequate strength for

MR analysis and reducing the risk of bias due to weak instruments.
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3.2 Association between genetically
predicted omega-6 and diabetic
microvascular complications

3.2.1 Omega-6 fatty acid and DN
Figure 2 demonstrates that our primary IVW analysis detected a

significant risk reduction for T2DN correlated with an increase of

one standard deviation in genetically predicted omega-6 fatty acid

levels, yielding an OR of 0.62 (95% CI: 0.47–0.82, p = 0.001). This

translates to a 38% reduction in risk, suggesting a protective role of

omega-6 fatty acids against neuropathy in patients with T2D. The

WM method confirmed this association with an OR of 0.64 (95%

CI: 0.44–0.93, p = 0.020), closely mirroring the outcomes of IVW

analysis. Although MR-Egger analysis did not reach statistical

significance (OR: 0.72, 95% CI: 0.41–1.28; p = 0.268), it exhibited

a consistent direction of effect (Figure 3).

However, our analyses did not identify a statistically significant

causal link between omega-6 levels and T1DN risk, with both IVW

and WM methods resulting in p-values > 0.05 (Figure 2). However,

MR-Egger estimates suggested a potential protective effect of omega-

6 (OR: 0.51, 95% CI: 0.27–0.97; p = 0.045), albeit with caution.

3.2.2 Omega-6 fatty acid and DR
The IVW method revealed a causal association between higher

genetically predicted omega-6 fatty acid levels and decreased risk of

T2DR, documented by an OR of 0.75 (95% CI: 0.62–0.92, p = 0.005).

However, applying Bonferroni’s correction for multiple comparisons

suggested that these findings are suggestive, and not conclusive, of a

causal relationship. Additional MR methods, including WM (OR:

0.89, 95% CI: 0.68–1.15, p = 0.369) and MR-Egger (OR: 0.81, 95% CI:

0.53–1.24, p = 0.345) supported the direction of the effect but did not

achieve statistical significance. This directional consistency is visually

supported by Figure 3, indicating alignment across IVW, MR-Egger,

and WM. Therefore, our research indicates a potential causal

connection between omega-6 levels and reduced incidence of

T2DR, awaiting further validation.

However, our analyses did not find a significant association

between omega-6 fatty acids and T1DR using any MR approach

(Figure 2, all p-values >0.05).

3.2.3 Omega-6 fatty acid and DKD
Our study did not reveal any significant correlations between

omega-6 fatty acid levels and either T1DKD or T2DKD, as evidenced

by all employed analytical methods (Figure 2, all p-values > 0.05).
3.3 Association between genetically
predicted omega-3 and diabetic
microvascular complications

Our analysis did not identify any significant association between

omega-3 fatty acids and microvascular complications in both types of

diabetes, as determined by all analytical approaches used (Figure 2, all

p-values > 0.05). Scatter plots offering a visual representation of these

results can be found in Supplementary Figure 2.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1406382
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1406382
3.4 Sensitivity analysis

Heterogeneity was observed in the MR analysis of omega-6

fatty acids on T2DR, with MR-Egger and IVW p-values of 0.034

and 0.041, respectively (Supplementary Table 14). Given the

heterogeneity, we employed a random-effects IVW estimate to

assess the causal relationship (33). This approach confirmed that

higher levels of omega-6 fatty acids are significantly associated with
Frontiers in Endocrinology 05
a reduced risk of T2DR (Figure 2). Importantly, the MR-Egger

intercept test showed no evidence of horizontal pleiotropy (p-values

> 0.05), indicating the associations are likely genuine and not

confounded by pleiotropic effects (Supplementary Table 14). The

symmetry in funnel plots (Supplementary Figure 3) further

supports this, indicating no directional pleiotropy or biases

affecting the results. Moreover, leave-one-out sensitivity analysis

reinforced the robustness of our findings, showing that no single IV
FIGURE 2

Forest plot of MR estimates of the causal associations of omega-3 and omega-6 with diabetic microvascular complications. SNP, single-nucleotide
polymorphism; MR, Mendelian randomization; IVW, inverse variance weighted; WM, weighted median; T1DN, type 1 diabetes neuropathy; T1DR, type
1 diabetes retinopathy; T1DKD, type 1 diabetic kidney disease; T2DN, type 2 diabetes neuropathy; T2DR, type 2 diabetes retinopathy; T2DKD, type 2
diabetic kidney disease; CI, confidence interval; OR, odds ratio.
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disproportionately influenced overall conclusion (Supplementary

Figures 4, 5).
3.5 Inverse MR analysis

In the inverse analysis, the IVs for diabetic microvascular

complications were 7–36. The IVW method revealed that T2DN

and T2DKD had no effect on omega-3 or omega-6, whereas T2DR

was negatively associated with omega-6 (OR: 0.98, 95% CI: 0.97–

0.99, p = 3.71 × 10−4). The full details of inverse MR analysis,

including results for T1DN, T1DR, and T1DKD, are provided in

Supplementary Table 15. Analyses of heterogeneity and pleiotropy

are presented in Supplementary Table 16.
3.6 MVMR analysis

After adjusting for confounding factors, including smoking,

glucose, IL-6, and CRP, omega-6 fatty acids were negatively

associated with both T2DN and T2DR (Figure 4 and Supplementary

Table 17). Furthermore, the MVMR Egger regression showed no

significant evidence of a nonzero intercept, thereby reinforcing the

robustness of the MVMR analysis results (Supplementary Table 18).
3.7 Association between genetically
predicted PUFAs and diabetes

We evaluated the potential causal relationships between omega-

3 and omega-6 fatty acids and the risk of both T1D and T2D. The
Frontiers in Endocrinology 06
IVs were 13–41, with all F-statistics >10 (Supplementary Tables 19-

22). The IVW analysis identified a significant reduction in the risk

of T2D associated with an increase of one standard deviation in

genetically predicted omega-6 fatty acid levels (OR: 0.87, 95% CI:

0.82–0.93, p = 3.67 × 10−5). This finding was corroborated by the

WM method, which yielded an OR of 0.83 (95% CI: 0.76–0.91, p =

3.39 × 10−5), closely aligning with the results of IVW. Although

MR-Egger analysis did not achieve statistical significance (OR: 0.90,

95% CI: 0.79–1.03, p = 0.146), the direction of the effect remained

consistent (Supplementary Table 23).

By contrast, our analyses did not reveal any significant

association between omega-3 fatty acids and T1D or T2D, nor

between omega-6 and T1D using any MR approach

(Supplementary Table 23, all p-values > 0.05).

The Q-test did not detect heterogeneity in any of the analyses.

Furthermore, the MR-Egger intercept test showed no evidence of

horizontal pleiotropy (all p-values > 0.05), indicating that these

associations are likely genuine and not confounded by pleiotropic

effects (Supplementary Table 24).
4 Discussion

This study employed a two-sample MR approach to investigate

the causal effects of genetically determined PUFAs, specifically

omega-6 and omega-3, on microvascular complications in both

T1D and T2D. Our findings indicate that in T2D, elevated omega-

6 levels are linked to a decreased risk of DN andDR. This relationship

remained significant after adjusting for confounding factors,

including smoking, glucose, IL-6, and CRP. However, omega-6

levels do not significantly influence DKD. Conversely, omega-6
FIGURE 3

Scatter plots illustrating the effects of omega-6 polyunsaturated fatty acids on various diabetic microvascular complications, as determined by
Mendelian Randomization analyses. Different colors represent the analytical methods used: light blue indicates the Inverse Variance Weighted (IVW)
method, dark blue signifies MR-Egger regression, and green highlights the Weighted Median (WM) method. The conditions analyzed include: (A) type
1 diabetes neuropathy (T1DN); (B) type 1 diabetes retinopathy (T1DR); (C) type 1 diabetic kidney disease (T1DKD); (D) type 2 diabetes neuropathy
(T2DN); (E) type 2 diabetes retinopathy (T2DR); (F) type 2 diabetic kidney disease (T2DKD).
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levels do not seem to have a substantial effect on microvascular

complications in T1D, and no significant relationships were observed

between omega-3 levels and microvascular complications in either

diabetes type.

Studies have focused on the effects of omega-6 fatty acids on

DN, especially within the context of T2D (9–11). Aligning with

these findings (9–11), our MR analysis indicates a link between

omega-6 fatty acids and decreased risk of T2DN. This correlation

was not observed in T1DN, implying distinct pathophysiological

mechanisms underpinning DN across diabetes types. In T1DN,

effective glucose management halts disease progression, whereas its

influence on T2DN is less significant (36). This suggests that T2DN

might be subject to additional factors, including changes in

inflammation (37, 38), plasma lipid levels, and metabolic

alterations (8, 39).

Previous MR studies have investigated the effects of gut

microbiota and PUFAs on DR (25, 40). Kangcheng Liu et al.

demonstrated a causal relationship between specific gut

microbiota and DR, supporting the “gut-retina” axis concept (40).

Shaojie Ren et al. found that higher levels of PUFAs, including

omega-3 and omega-6, were associated with a reduced risk of DR

(25). However, these studies did not distinguish between T1DR and

T2DR. In contrast, our study analyzed the impact of PUFAs on both

T1D and T2D and their respective retinopathies (T1DR, T2DR),

providing a more comprehensive understanding of the differential

effects of PUFAs on these conditions. Our findings propose a

protective role of omega-6 fatty acids against T2DR and T2D,

corroborating other observational studies (12, 13, 41). However,

this protective effect is not observed in T1DR, possibly due to

different pathogenetic mechanisms. Managing glycemic levels is

crucial in controlling T1DR (42, 43), whereas T2DR may be

influenced by a broader array of factors, such as inflammation

(44, 45), blood pressure (46), and lipid metabolism (47, 48).

RCTs have demonstrated that diets high in omega-6 fatty acids

can reduce inflammation (49, 50) Linoleic acid (LA), a primary

omega-6 fatty acids, can be metabolized to arachidonic acid (AA),

which is proinflammatory (51). However, only ~0.2% of dietary LA

is converted to AA (52). Moreover, the levels of AA in tissues do not

change with the dietary intake of LA (53). Recent studies have
Frontiers in Endocrinology 07
shown that increasing dietary LA can mitigate inflammation (50,

51). For instance, LA is negatively associated with high-sensitivity

CRP (54). Pinolenic acid, another omega-6 fatty acid, demonstrated

significant anti-inflammatory and anti-atherosclerotic effects by

reducing the expression of inflammatory markers, such as TNF-a
and IL-6 (55). Elevated levels of high-sensitivity CRP, IL-6, and

TNF-a were positively associated with the risk of microvascular

complications in patients with diabetes (56, 57). Therefore, omega-6

fatty acids may protect against microvascular complications by

reducing inflammation.

The presence of metabolic syndrome, which includes

hyperglycemia, hypertension, low high-density lipoprotein

cholesterol (HDL-C), high triglycerides, and increased waist

circumference, significantly elevates the risk of developing

microvascular complications in patients with T2D (58). Diets rich

in PUFAs have been associated with a reduced risk of metabolic

syndrome (59). Our study indicates a negative association between

omega-6 fatty acids and the risk of T2D, while no significant

relationship was found between omega-3 fatty acids and T2D

risk. These findings are consistent with results from cohort

studies conducted in Asian (n = 6,393) and European (n =

14,558) populations (41). In the study, 154 metabolic biomarkers

were analyzed, and 13 metabolites, including omega-6 PUFAs, were

identified as being associated with a lower risk of T2D (41).

However, no statistically significant association was found

between omega-3 fatty acids and T2D risk (41). Additionally, a

meta-analysis indicated that omega-6 PUFAs were inversely related

to the risk of hypertension (60). MR analysis further demonstrated

that higher serum levels of omega-6 fatty acids, particularly adrenic

acid, significantly increased HDL-C levels and significantly

decreased triglyceride levels (61). Omega-6 fatty acids, especially

LA, were negatively associated with increase in waist circumference

(62). These results further support the potential protective role of

omega-6 fatty acids against microvascular complications associated

with T2D.

Observational studies originating from Brazil suggest a role for

omega-6 fatty acids in reducing the risk of DKD (15), yet our MR

analysis, alongside observational research from China (14), has

failed to establish a significant link. This discrepancy may reflect
FIGURE 4

Forest plot of multivariate Mendelian randomization estimates of the causal associations after adjustment for glucose, CRP, IL-6, and smoking. SNP,
single-nucleotide polymorphism; IVW, inverse variance weighted; T2DN, type 2 diabetes neuropathy; T2DR, type 2 diabetes retinopathy; CRP, C-
reactive protein; IL-6, Interleukin 6; CI, confidence interval; OR, odds ratio. .
frontiersin.org

https://doi.org/10.3389/fendo.2024.1406382
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1406382
methodological divergence and genetic difference across

populations. Regarding omega-3 fatty acids, although certain

observational studies have posited benefits for DKD (14, 15, 21),

our MR findings, complemented by results from a subsequent RCT

(22), do not corroborate a significant impact. This emphasizes the

critical role of robust study designs, such as MR and RCTs, in

identifying causal relationships. Similarly, although observational

studies from the United States (16) and a single-arm, open-label

clinical trial (17) have suggested that omega-3 fatty acids potentially

mitigate the risk of DN, our MR study has not found a significant

association between the two.

Our investigation into the effect of omega-3 on DR did not

reveal benefits, aligning with a major RCT in the UK (20). Although

evidence from an earlier MR study (25) and an RCT in Spain (19)

suggest a potential role for omega-3 against proliferative DR, our

study did not distinguish between retinopathy subtypes. Given the

lower prevalence of sight-threatening DR, including proliferative

DR, which accounts for ~6% of the patients with diabetes (63),

compared with the general incidence of DR among patients with

diabetes estimated at 30%–40% (4), this disparity in proportions

might explain why we did not observe potential benefits of omega-3

on specific DR subtypes.

Although this study offers significant insights into the influence

of PUFAs on diabetic microvascular complications, several

limitations merit attention. First, the MR method is inherently

dependent on the assumption that selected genetic variants are

accurate proxies for the exposure of interest. Despite our diligence

in choosing robust instruments, the risk of bias from pleiotropic

effects—where a single gene impacts multiple traits—cannot be

completely disregarded, which might skew our results. We

conducted sensitivity analyses to address this concern (64).

Second, the genetic makeup of our study population reflects

European ancestry, potentially restricting the generalizability of

our findings to other ethnic groups. The interactions between

genetics and environmental factors influencing diabetic

complications may vary considerably across populations (65),

emphasizing the need for conducting similar studies in more

ethnically diverse cohorts. Estimations of PUFA intake using

genetic proxies might not capture the intricate relationship

between diet and disease comprehensively. Direct biomarker

analysis would provide a more accurate depiction of PUFA’s

influence; however, such data were not available for this research.

Last, concentrating on particular PUFA subtypes enabled the

identification of their specific impacts on diabetic microvascular

complications. Nonetheless, this method overlooks possible

synergistic or cumulative effects of different fatty acids and does

not encompass broader dietary and lifestyle factors. Future research

should examine the overarching influence of diet on diabetic

complications, incorporating a wider array of dietary patterns and

lifestyle considerations.
5 Conclusion

In conclusion, our study has established that genetic variants

linked to omega-6 fatty acids significantly modulate the risk of
Frontiers in Endocrinology 08
T2DN and T2DR. Conversely, our analysis revealed that omega-3

fatty acids exhibit no significant correlation with diabetic

microvascular complications. These findings suggest that dietary

strategies emphasizing omega-6 fatty acids offer a viable

preventative approach for some diabetic microvascular

complications. Our results question the protective efficacy of

omega-3 fatty acids in this context. Crucially, our research sets

the stage for further investigations into the differential effects of

omega-6 and omega-3 fatty acids, providing a foundation for future

studies dedicated to uncovering mechanisms by which PUFAs

influence diabetic microvascular complications.
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