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for type 2 diabetes mellitus and
acute pancreatitis through
a comprehensive
bioinformatic analysis
Lei Zhong1†, Xi Yang2†, Yuxuan Shang2†, Yao Yang1, Junchen Li1,
Shuo Liu3, Yunshu Zhang1*, Jifeng Liu1* and Xingchi Jiang1*

1Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian,
Liaoning, China, 2Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical
University, Dalian, Liaoning, China, 3Department of Endocrinology and Metabolic Diseases, The First
Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that

accounts for > 90% of all diabetes cases. Acute pancreatitis (AP) can be triggered

by various factors and is a potentially life-threatening condition. Although T2DM

has been shown to have a close relationship with AP, the common mechanisms

underlying the two conditions remain unclear.

Methods: We identified common differentially expressed genes (DEGs) in T2DM

and AP and used functional enrichment analysis and Mendelian randomization to

understand the underlying mechanisms. Subsequently, we used several machine

learning algorithms to identify candidate biomarkers and construct a diagnostic

nomogram for T2DM and AP. The diagnostic performance of the model was

evaluated using ROC, calibration, and DCA curves. Furthermore, we investigated

the potential roles of core genes in T2DM and AP using GSEA, xCell, and single-

cell atlas and by constructing a ceRNA network. Finally, we identified potential

small-molecule compounds with therapeutic effects on T2DM and AP using the

CMap database and molecular docking.

Results: A total of 26 DEGs, with 14 upregulated and 12 downregulated genes,

were common between T2DM and AP. According to functional and DisGeNET

enrichment analysis, these DEGs were mainly enriched in immune effector

processes, blood vessel development, dyslipidemia, and hyperlipidemia.

Mendelian randomization analyses further suggested that lipids may be a

potential link between AP and T2DM. Machine learning algorithms revealed

ARHGEF9 and SLPI as common genes associated with the two diseases. ROC,

calibration, and DCA curves showed that the two-gene model had good

diagnostic efficacy. Additionally, the two genes were found to be closely

associated with immune cell infiltration. Finally, imatinib was identified as a

potential compound for the treatment of T2DM and AP.
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Conclusion: This study suggests that abnormal lipid metabolism is a potential

crosstalk mechanism between T2DM and AP. In addition, we established a two-

gene model for the clinical diagnosis of T2DM and AP and identified imatinib as a

potential therapeutic agent for both diseases.
KEYWORDS
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1 Introduction

The incidence of acute pancreatitis (AP), an inflammatory

disease, varies based on the geographic location, with the annual

incidence being approximately 34 cases per 100,000 individuals in the

general population worldwide (1). Patients with moderately severe or

severe AP have pancreatic necrosis or pancreas failure and an

extended hospital stay (2). Exocrine pancreatic insufficiency,

walled-off pancreatic necrosis, and recurring AP are long-term

sequelae in approximately 20% of the patients (3, 4). Although the

overall morbidity and mortality rates of AP have decreased as a result

of advances in aggressive fluid resuscitation, supportive treatment,

and early risk stratification, the mechanisms and risk factors that

underlie these improvements and affect intermediate and long-term

outcomes remain unknown (5). Therefore, a deeper understanding of

the pathological mechanisms underlying AP is necessary to identify

novel biomarkers for early diagnosis and treatment.

Diabetes mellitus (DM) is a common metabolic condition

worldwide. According to the World Health Organization (WHO), an

estimated 422 million people have DM worldwide, with type 2 diabetes

mellitus (T2DM) being the most prevalent (6). Studies have shown that

pancreatic fat deposition can lead to long-term exposure of pancreatic

beta cells to high levels of fatty acids and triglycerides, resulting in

abnormal insulin secretion signaling and an increased risk of T2DM (7).

A meta-analysis of seven observational studies showed that individuals

with T2DM had an 84% higher risk of developing AP than those

without DM (8). In addition, two recent meta-analyses have shown that

approximately 23% of patients with APmay develop DMwithin 3 years

of discharge, highlighting the high incidence rate and chronic nature of

AP-related DM (9, 10). These findings indicate the presence of a

common pathological mechanism between AP and T2DM.

Although earlier studies have provided valuable insights into the

relationship between T2DM and AP, more comprehensive studies are

required to address existing knowledge gaps. In recent years, integrated

bioinformatic analysis has been used to identify disease-associated

novel genes that may be used as diagnostic and prognostic biomarkers.

Unknown exists regarding the shared diagnosis and related genes

between T2DM and AP. Therefore, this study aimed to identify

biomarkers for AP and T2DM through bioinformatic analysis. The

findings may provide a theoretical foundation for developing novel

diagnostic and therapeutic strategies for the two conditions.
02
2 Methods

2.1 Data collection from GEO databases

The datasets analyzed in this study were obtained from the GEO

database, which included T2DM datasets GSE20966 (11),

GSE25724 (12), and one AP dataset, GSE194331 (13). The T2DM

datasets GSE20966 and GSE25724 were merged for analysis by the

“sva” package (14). The |log2 Fold change (FC)| > 0.585 and adjust

p <0.05 were set as the criteria for identifying differentially

expressed genes (DEGs) of AP and T2DM using the “limma”

package (15). Finally, the Venn map was applied to select their

common genes.
2.2 Analysis of functional enrichment

The STRING database (https://cn.string-db.org/) was used to

investigate protein interactions, with the validity of such

interactions being determined by a composite score greater than

0.15 (16). Meanwhile, GeneMANIA database (https://genemania.

org/) prioritized genes for functional tests (17). Functional

enrichment studies were performed by Metascape database

(https://metascape.org/), which was designed to provide an

extensive resource for annotating and analyzing gene lists to

investigate the biological roles and routes implicated in certain

genes (18).
2.3 Mendelian randomization analysis

Mendelian randomization analysis was conducted using the R

package “TwoSampleMR (v.0.5.6)” and strictly adhered to the three

fundamental assumptions of Mendelian randomization (MR): (I)

There exists a strong association between the instrumental variables

(IVs) and the exposure; (II) The IVs are not associated with potential

confounding factors; (III) The IVs influence the outcome solely

through the exposure. The inverse-variance weighted (IVW)

method was employed as the primary analytical approach (19),

complemented by four additional methods. The datasets utilized in

this study were sourced from the IEU OPEN GWAS (https://
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https://cn.string-db.org/
https://genemania.org/
https://genemania.org/
https://metascape.org/
https://gwas.mrcieu.ac.uk/
https://doi.org/10.3389/fendo.2024.1405726
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhong et al. 10.3389/fendo.2024.1405726
gwas.mrcieu.ac.uk/). Specifically, the GWAS for HDL-C included

94,595 participants and a total of 2,418,527 single nucleotide

polymorphisms (SNPs); the GWAS for LDL-C comprised 173,082

participants and 2,437,752 SNPs; the GWAS for triglycerides (TG)

involved 177,861 participants and 2,439,433 SNPs; and the GWAS

for apolipoprotein A-I (APOA-I) encompassed 393,193

participants and 12,321,875 SNPs. The threshold for instrumental

variable selection was set at p<5E-08, r2<0.001, with a clumping

distance of 10,000 kb. Heterogeneity testing was performed using

the “mr_heterogeneity” function, and horizontal pleiotropy testing

was conducted via the “mr_pleiotropy_test” function and “MR-

PRESSO” R package (19), and sensitivity analysis was executed

using the “leave-one-out” method.
2.4 Using machine learning to screen
characteristic genes

LASSO, RF, and SVM-RFE were performed to filter genes in

both AP and T2DM, respectively. To mitigate overfitting among

genes, LASSO regression analysis was applied, followed by cross-

validation by the package “glmnet” (20, 21). The “Random Forest”

R software was used to conduct RF (22). Genes with importance > 2

in AP samples and importance > 1 in T2DM samples were selected

as feature genes. In addition, SVM-RFE was performed using the R

package “e1071”, aiming to optimize the learning performance by

minimizing the empirical error (23). The hub genes for the

following studies were then selected from the intersection of the

three subsets. The intersection of the core genes of AP and T2DM

was used as the biomarkers for the two diseases. The expression

levels of the core genes in the disease and control groups are shown

in boxplots (wilcox test).
2.5 Construction of the nomogram

The ROC curves were computed using the “pROC” program in

order to assess the predictability of the model (24). Using the “rms”

package, a nomogram incorporating model genes was created (25).

In addition, the model’s predicted accuracy was assessed using the

DCA and calibration curves (26).
2.6 Validation of core genes

We downloaded the human T2DM dataset GSE95849 (27) to

further validate the expression levels of core genes in T2DM. The

wilcox test was used to compare the difference in expression of core

genes between disease and control groups, with p < 0.05 considered

statistically significant. However, due to the lack of another human

AP dataset in the public database, we chose mouse dataset GSE77983

(28) for validation. We used the GEO2R (based on the R package

“limma”) online tool of the GEO database to analyze GSE77983 to

verify the differential expression of core genes between the AP and

control groups.
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2.7 Cell culture and quantitative real-time
PCR analysis

The mouse pancreatic acinar cell line 266-6 (ATCC; VA, USA),

were cultured in DMEM with 10% fetal bovine serum, 100 IU/ml

penicillin and 100 mg/ml streptomycin. To induce pancreatitis in

vitro, the 266-6 cells were stimulated with 250mM Sodium

taurocholate (STC) (29). Twenty-four hours later, cells were

collected for the following qPCR analysis.

Total RNA from cells was extracted using Trizol reagent

(Accurate Biology, Hunan), and the circRNAs were reversely

transcribed using the Evo M-MLV for qPCR (Accurate Biology,

Hunan). Then, cDNAs were synthesized and quantified via SYBR

Green Pro Taq HS (Accurate Biology, Hunan) under the following

cycle scheme: 95°C for 30s, then 95°C for 5 s and 60°C for 30 s for 40

cycles. The RNA expression levels were analyzed and quantified

using the DDCt method, and the expression levels of the target genes

were compared between the two groups using the t-test. The

following primers were employed: IL-6 primer (forward: 5’-GAG

AGGAGACTTCACAGAGGATACC-3’; reverse: 5’-TCATTTCCA

CGATTTCCCAGAGAAC-3’), IL-1b primer (forward: 5’-AGG

TCGGTGTGAACGGATTTG-3’; reverse: 5’-TGAGAAGAGG

CTGAGACATAGGC-3’), SLPI primer (forward: 5’-GAAGC

CACAATGCCGTACTGAC-3’; reverse: 5’-GGAACAGGATTC

ACGCACTTGG-3’), ARHGEF9 primer (forward: 5’-GAAGCA

GTGCCGAAAGAGAAGG-3’; reverse: 5’-ACGAAGCCCATCTG

AAATCTGTATATG-3’), and Actin primer (forward: 5’-ACTGC

CGCATCCTCTTCCTC-3’; reverse: 5’-AACCGCTCGTTGCCA

ATAGTG-3’).
2.8 Potential functions of model genes in
AP and T2DM

Gene set enrichment analysis (GSEA) is utilized to elucidate the

molecular mechanisms between high- and low-core gene expression

samples, and results with a p value < 0.05 were considered

significant (30). Meanwhile, the xCell method was also used to

assess the correlation between significantly different enriched

immune cell types and characteristic genes, which was considered

to be correlated at p < 0.05.
2.9 Construction of ceRNA network

The TargetScan, miRDB, and miRanda databases were used to

anticipate miRNA-mRNA pairs in order to identify the ceRNA

network that might be influenced by model genes. Genes that were

simultaneously listed in three databases were the only ones that were

thought to be possible mRNA targets for further research. To predict

miRNA-lncRNA pairs, the spongeScan database was used. At last, the

ceRNA network could be seen using Cytoscape (31). Meanwhile,

the Human Protein Atlas (HPA: https://www.proteinatlas.org/) was

utilized to examine the model genes’ immunofluorescence and

single-cell type atlases.
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2.10 Identifying potential small molecule
compounds for the treatment of AP
and T2DM

The CMap database (https://clue.io/) can link diseases, genes

and drugs based on similar or opposite gene expression profiles

(32). Commonly upregulated DEGs in AP and T2DM were entered

into the CMap database to identify potential small molecule

compounds for the treatment of AP and T2DM. Then, the

protein structures of the feature genes were obtained from the

PDB database, and the AutoDock tool was applied to calculate

the protein hydrogenation and charge. PubChemdatabase to

download the chemical structure of the drug’s active ingredient.

The AutoDock tool is used to check the charge balance and

rotatable bonds of tiny molecules. To generate docking energy,

AutoDock Vina runs docking simulations. Finally, PyMol software

was used to check the docking complex.
3 Results

3.1 Identification and analysis of DEGs in
AP and T2DM

A flowchart demonstrating the study protocol is presented in

Figure 1. Initially, we merged two T2DM datasets and corrected

batch effects using the “sva” software package. As shown in

Figures 2A, B, the differences between batches were effectively

eliminated after data normalization, indicating that the two datasets

could be merged. The volcano map presented in Figures 2C, D shows

DEGs in T2DM and AP (|log2 FC| > 0.585 and adjusted p < 0.05).
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Venn diagram, the up-regulated and down-regulated genes of the two

datasets were crossed, respectively, and 14 up-regulated DEGs and 12

down-regulated DEGs were obtained (Figures 2E, F). Figure 2G shows

the locations of these common DEGs on chromosomes.
3.2 PPI network and functional enrichment
analyses of DEGs

The 26 common DEGs were imported into the STRING database

to construct a PPI network (Figure 3A). Subsequently, GeneMANIA

was then used to further analyze DEGs for co-localization, co-

expression, and shared protein domains (Figure 3B). The genes in

the PPI network were mainly enriched in glycosyl compound

metabolism, insulin-like growth factor binding, and complement

activation. Furthermore, we used Metascape to determine biological

processes and pathways related to the DEGs. According to the results,

the DEGs were involved in immune effector processes and blood

vessel development (Figure 3C) and were closely related to conditions

such as hypertriglyceridemia and dyslipidemia (Figure 3D).
3.3 Mendelian randomization analysis

MR analysis was performed to assess the potential relationship

between dyslipidemia and T2DM or AP (Supplementary Figures

S1A, B). IVW analysis showed that HDL-C and Apoa-I exhibited

significant protective effects against both T2DM (P = 1.57E-09 and

0.0007, respectively) and AP (P = 0.0269 and 0.0232, respectively).

Notably, TG (P = 0.0001) were identified as a significant risk factor

for T2DM. These results remained consistent in most models,
FIGURE 1

The process of data analyzing in this study.
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demonstrating their robustness. However, some degree of

heterogeneity was observed (Supplementary Table S1). To address

this issue, we used a random-effect model to minimize potential

biases and errors. In addition, we used the MR-PRESSO method to

identify and eliminate potential outliers, ensuring non-pleiotropy

and the accuracy of the results. Finally, we validated the sensitivity

of the results using the leave-one-out test (Supplementary Figures

S1C–G). Altogether, the results suggested that dyslipidemia may be

a common underlying mechanism of T2DM and AP.
3.4 Selection of characteristic genes using
machine learning algorithms

To identify key genes associated with the development of both

AP and T2DM, we constructed three machine-learning models

based on the 26 DEGs. In AP samples, ten key genes were identified
Frontiers in Endocrinology 05
using the LASSO regression (Figures 4A, B). Seventeen genes

extracted from these genes by the SVM-RFE were identified as

the best genes for AP patients (Figures 4C, D). According to the RF,

six genes with importance greater than 2 were included in the

subsequent analysis (Figures 4E, F). Then, five AP characteristic

genes were screened out by the Venn diagram (Figure 4G).

Similarly, the LASSO regression has shown eleven genes as

potential indicators for diagnosis (Figures 5A, B). Using the SVM-

RFE, seven genes were identified from these genes as potential

biomarkers (Figures 5C, D). Eight genes with importance higher

than 1 were included in the subsequent analysis based on the RF

(Figures 5E, F). A Venn diagram was constructed to intersect these

three gene sets, resulting in the identification of 4 key genes

associated with T2DM (Figure 5G). Among the key genes

identified in AP and T2DM, we found two common genes, SLPI

and ARHGEF9, at the intersection of the Venn diagrams

(Supplementary Figure S2). These two genes may serve as a link
FIGURE 2

Identification of DEGs. (A, B) PCA analysis before and after merging of T2DM datasets; (C) The volcano plot for T2DM (|log2 FC| > 0.585 and adjust p
<0.05); (D) The volcano plot for AP (|log2 FC| > 0.585 and adjust p <0.05); (E) The intersection of AP up-regulated DEGs and T2DM up-regulated
DEGs; (F) The intersection of AP down-regulated DEGs and T2DM down-regulated DEGs; (G) The location of DEGs on chromosomes.
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between AP and T2DM, playing a key role in the development of

both conditions.
3.5 Development of a diagnostic model
and assessment of its predictive efficacy

A box plot was constructed to demonstrate the expression levels

of the two key genes in the disease and control groups (Figures 6A,

B). Specifically, the expression of ARHGEF9 was significantly lower

in the AP group than in the control group, whereas the expression

of SLPI showed the opposite trend (p < 0.001). As shown in the

ROC curve in Figure 6C, both SLPI and ARHGEF9 had high

diagnostic value in AP. The AUC value of the 2-gene prediction

model was 0.928, which demonstrated the high diagnostic value of

both genes (Figure 6D). In addition, the DCA curve of the two genes

showed a better overall clinical benefit than if none or all of the tests

were used for diagnosing AP (Figure 6E). Furthermore, we

developed a nomogram to assess the possible risks associated with

AP (Figure 6F). Figure 6G shows that there was a minimal

difference between the actual and anticipated risk for AP as

indicated by the calibration curve.

The expression levels of ARHGEF9 and SLPI in the T2DM

group were consistent with those in the AP group (Figures 7A, B).

The ROC curve showed that both SLPI and ARHGEF9 had high

diagnostic value in T2DM (Figure 7C). The AUC value of the 2-

gene model was 0.985, which emphasized the diagnostic value of

the two genes (Figure 7D). Furthermore, the DCA curve of the two

genes (Figure 7E) showed a better overall clinical benefit than if all

or none of the tests were used for diagnosing T2DM.

Subsequently, a nomogram to gauge the possible harm that

T2DM individuals could cause (Figure 7F). The calibration
Frontiers in Endocrinology 06
curve indicates that our nomogram also has a good predictive

value for T2DM (Figure 7G).
3.6 Validation of the two key genes
associated with T2DM and AP

The GSE95849 dataset was used to validate the expression levels

of SLPI and ARHGEF9 in T2DM. The expression of SLPI was

higher in the T2DM group than in the control group, whereas that

of ARHGEF9 was significantly lower in the T2DM group than in

the control group (Supplementary Figures S3A, B). These results

were consistent with those observed in the training set. Owing to the

lack of another suitable human AP dataset, we analyzed the mouse

AP dataset GSE77983 using the GEO2R tool to validate the

expression levels of the two key genes in AP. As shown in

Supplementary Figures S3C, D, the expression of ARHGEF9 was

lower in the AP group than in the control group, whereas that of

SLPI showed the opposite trend (p < 0.05). These results were

consistent with those observed in the training set.

To additionally verify the expression levels of the two genes in

AP, we developed a cell model of pancreatitis by stimulating the

mouse pancreatic acinar cell line 266-6 with STC. As shown in

Supplementary Figure S3E, the expression levels of IL-6 and IL-1b
were significantly higher in the model group than in the control

group, indicating that the AP model was successfully established.

Subsequently, we evaluated the expression levels of SLPI and

ARHGEF9 in the cells. The results showed that SLPI was

upregulated in the AP group (p < 0.05), which is consistent with

the results observed in the training set. However, no significant

difference in ARHGEF9 expression was observed between the two

groups (Supplementary Figure S3F).
FIGURE 3

Functional enrichment analysis of DEGs. (A) PPI of the DEGs; (B) The GeneMANIA analysis for DEGs; (C, D) Functional and DisGeNET enrichment
analyses by the Metascape database.
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3.7 Enrichment analysis of the two
key genes

GSEA was used to determine the biological functions of the

two key genes in AP and T2DM. According to the results of GSEA

in the AP group, ARHGEF9 was significantly downregulated in

pathways related to DNA regulation and metabolism (Figures 8A,

B), whereas SLPI was significantly upregulated in pathways

related to the regulation of protein response and localization

(Figures 8C, D). Subsequently, we investigated the relationship

between the two key genes and the immune environment of AP.

The results showed that ARHGEF9 expression was significantly
Frontiers in Endocrinology 07
negatively correlated with the proportions of resting NK T cells,

endothelial cells, and aDCs, whereas SLPI expression was

significantly positively correlated with the proportions of

epithelial cells, M1 and M2 macrophages, endothelial cells, and

basophils (Figure 8E).

According to the results of GSEA in the T2DM group,

ARHGEF9 was significantly downregulated in pathways related to

amino acid metabolism and regulation (Figures 9A, B), whereas

SLPI was significantly upregulated in pathways related to hormone

regulation and cell interactions (Figures 9C, D). With regard to the

relationship between the two genes and the immune environment

of T2DM, ARHGEF9 expression was negatively correlated with the
FIGURE 4

The characteristic genes of AP were screened by machine learning method. (A) LASSO regression analysis and (B) cross-validation for identifying key
genes and assessing partial likelihood deviance; (C, D) Seventeen characteristic genes found by SVM-RFE; (E, F) RF ranked the importance of all
genes to get 6 genes with scores for importance greater than 2; (G) The Venn diagram exhibiting the intersection of three machine learning models.
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proportions of resting NK T cells, endothelial cells, aDCs, and

mesangial cells, whereas SLPI expression was positively correlated

with the proportions of epithelial cells, M1 macrophages, mast cells,

and basophils (Figure 9E).
3.8 ceRNA networks, single-cell maps, and
immunofluorescence analysis

SLPI- and ARHGEF9-based ceRNA networks were separately

constructed using various public databases. Eventually, 14 objective
Frontiers in Endocrinology 08
miRNAs and 47 objective lncRNAs interacting with ARHGEF9

(Figure 10A) and 1 objective miRNA and 5 objective lncRNAs

interacting with SLPI (Figure 10B) were identified. The ceRNA

networks constructed based on these miRNAs and lncRNAs

revealed transcriptional regulatory mechanisms for the two genes.

Furthermore, SLPI was found to be distributed primarily in

exocrine gland cells and endothelial cells, whereas ARHGEF9 was

found to be distributed primarily in duct cells (Figures 10C, D).

With regard to their locations in cells, SLPI was detected in

mitochondria, whereas ARHGEF9 was detected in mitochondria

and endoplasmic reticulum (Figures 10E, F).
FIGURE 5

The characteristic genes of T2DM were screened by machine learning method. (A) LASSO regression analysis and (B) cross-validation for identifying
key genes and assessing partial likelihood deviance; (C, D) Seven characteristic genes found by SVM-RFE; (E, F) RF ranked the importance of all
genes to get 8 genes with scores for importance greater than 1; (G) The Venn diagram exhibiting the intersection of three machine learning models.
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3.9 Identification of potential small-
molecule compounds for the treatment of
AP and T2DM

To identify potential drugs for the treatment of AP and T2DM,

we imported the 14 upregulated DEGs common between AP and

T2DM into the CMAP database for analysis. The top 10 small-

molecule compounds are shown in Table 1. Notably, the tyrosine

kinase inhibitor imatinib had the highest negative connectivity

score. Subsequently, we performed molecular docking of these 10

small-molecule compounds with SLPI and ARHGEF9

(Supplementary Figures S4, S5). The minimum binding energies

of all docked complexes are shown in Table 1. The minimum

binding energies of complexes were typically less than -6.0 kcal/mol,

which indicated that both proteins had a good binding affinity for

the 10 small-molecule compounds. In particular, the SLPI–imatinib

(-9.1 kcal/mol) and ARHGEF9–imatinib (-10.4 kcal/mol)
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complexes had the lowest free binding energies. These results

suggest that imatinib is a promising therapeutic agent for both

AP and T2DM.
4 Discussion

AP is an acute inflammatory condition of the pancreas that can

lead to various severe symptoms (33). This condition often presents

with serious comorbidities and is associated with a high mortality

rate (34, 35). Fu et al. (36) showed that the mortality rate of AP was

3.8%, whereas that of severe AP was 16.3%. Currently, gallstones,

alcoholism, and dyslipidemia are considered to be the major

predisposing factors for AP (37). The pathological mechanisms

underlying pancreatitis are complex owing to the wide range of

potential etiological factors, including genetic, behavioral, and

environmental factors, and the interactions between them (38).
FIGURE 6

Diagnostic effect of the two-gene model on AP. Box plots showed the expression difference in (A) ARHGEF9 and (B) SLPI between AP and normal
samples, ***P < 0.001; (C) ROC curve of diagnostic performance of ARHGEF9 and SLPI for AP; (D) ROC curve of the two-gene model for AP;
(E) DCA curve of the model; (F) Nomogram for forecasting AP risk; (G) The calibration curve of nomogram model prediction in AP.
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Therefore, an in-depth understanding of the pathogenesis of AP

and early diagnosis and treatment are keys to reducing the

morbidity and mortality rates of AP.

According to a survey conducted by the International Diabetes

Federation (39), the number of individuals with DM is projected to

increase from 536.6 million in 2021 to 783.2 million by 2045

worldwide, making it one of the most prevalent endocrine

illnesses. T2DM is a chronic metabolic disease characterized by

insulin resistance and elevated blood glucose levels (40). T2DM

involves a number of complex pathophysiological mechanisms, and

it has been found that high sugar intake and dysregulation of

glucose and lipid metabolism may be a major contributing factor

in the development of diabetes (41, 42). Notably, T2DM has similar

pathogenic risk factors to AP such as hypertriglyceridemia and

alcohol. T2DM has been shown to have a positive correlation with

the risk of AP (43). A recent prospective study showed that 3%, 7%,

9%, and 11% of participants developed DM at 6, 12, 18, and 24
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months after an AP episode, respectively (44). Despite these

findings, information regarding the exact time during which

endocrine dysfunction occurs after AP is lacking. Some studies

have shown complete resolution or notable improvements over

time, whereas others have shown persistent endocrine dysfunction

(45–47). These findings suggest that dysregulation of glucose

metabolism is common in patients with AP; however, it may be

reversible. Moreover, according to an extensive cohort study,

individuals with T2DM are more likely to develop AP than those

without DM (48). An Asian population-based cohort study

supported this finding, showing that individuals with DM had a

2-fold higher incidence of AP than those without DM (49).

However, the mechanisms underlying the complex interplay

between AP and T2DM remain unclear. In this study, we

identified key genes associated with both AP and T2DM through

bioinformatic analysis. The findings may improve early

identification, treatment, and prevention of the two diseases.
FIGURE 7

Diagnostic effect of the two-gene model on T2DM. Box plots showed the expression difference in (A) ARHGEF9 and (B) SLPI between T2DM and
normal samples, ***P < 0.001; (C) ROC curve of diagnostic performance of ARHGEF9 and SLPI for T2DM; (D) ROC curve of the two-gene model for
T2DM; (E) DCA curve of the model; (F) Nomogram for forecasting T2DM risk; (G) The calibration curve of nomogram model prediction in T2DM.
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Initially, we identified 26 common DEGs, including 14

upregulated and 12 downregulated genes, between AP and

T2DM. To determine the potential mechanisms underlying the

interaction between AP and T2DM, we used the Metascape

database to perform functional and DisGeNET enrichment

analyses of 26 DEGs. The results showed that the DEGs were

involved in immune effector processes and blood vessel

development and were closely related to hypertriglyceridemia and

dyslipidemia, suggesting a relationship between lipid metabolism

and the two diseases. In addition, subsequent MR analysis showed

that dyslipidemia might serve as a link between AP and T2DM. AP

is independently associated with hyperlipidemia, and

hypertriglyceridemia-induced pancreatitis frequently presents

with a severe course of illness (50–52). A large prospective cohort

study found that cumulative exposure to hypertriglyceridemia was

significantly associated with an increased risk of T2DM (53).

Overproduction of large triglyceride-rich lipoproteins and
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impairment of catabolism are associated with insulin resistance,

which contributes to hypertriglyceridemia frequently seen

in patients with DM (54). DM is the most common secondary

factor contributing to hypertriglyceridemia-induced pancreatitis.

Patients with untreated or poorly managed DM have higher

triglyceride levels, which increase the risk of pancreatitis (55).

In a cohort study on patients with severe hypertriglyceridemia

associated AP, 62% had T2DM, rising to 79% in patients

with severe hypertriglyceridemia (56). In addition, severe

hypertriglyceridemia was specifically associated with DM treated

with insulin, which suggested that advanced or uncontrolled DM

was the primary metabolic cause of hypertriglyceridemia-induced

pancreatitis. Moreover, lower triglyceride levels are thought to be

associated with a lower incidence of pancreatitis (50). On the

contrary, hypertriglyceridemia and obesity increase the risk of

developing T2DM and AP. Their existence before the onset of AP

increases the likelihood of developing T2DM after AP and may
FIGURE 8

Functional enrichment and immune cell correlation analysis of characteristic genes in AP. (A-D) Enrichment biological functions and pathways of
two hub genes identified by GSEA; (E) Immune cell correlation analysis of ARHGEF9 and SLPI. *P < 0.05; **P < 0.01; ***P < 0.001.
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accelerate the onset of overt T2DM (57). The findings of this study

suggest that hypertriglyceridemia and dyslipidemia are key factors

contributing to the development of AP and T2DM. Therefore,

strategies aimed at preventing and treating dyslipidemia may help

control or delay the development of AP and T2DM.

AP is diagnosed if at least two of the following three criteria are

met: (1) typical abdominal pain; (2) serum lipase activity at least

three times greater than the upper limit of normal; and (3)

characteristic morphological findings on imaging (58). The

diagnostic criteria for DM are as follows: typical diabetic

symptoms and random blood glucose levels of ≥11.1 mmol/L or

fasting blood glucose levels of ≥7.0 mmol/L or 2-h blood glucose

levels of ≥11.1 mmol/L on OGTT or HbA1c levels of ≥6.5% (59). In

the early stage of AP, abdominal pain is not evident and serum

lipase levels often begin to increase after 24 hours of onset.
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Consequently, the diagnosis is delayed and the prognosis is

affected. Early diagnosis and assessment of patients with AP may

play a role in improving the prognosis and facilitate the

development of novel clinical treatments for AP. The diagnosis of

DM often relies on already elevated blood glucose levels; therefore,

recognizing the onset of the disease early, before the blood glucose

level increases, is particularly important for controlling disease

development. In this study, we identified two key genes associated

with both AP and T2DM (SLPI and ARHGEF9) using several

machine learning algorithms and developed a 2-gene diagnostic

model. Subsequently, we used multiple analytical methods to

evaluate the predictive performance of the diagnostic model in

AP and T2DM. Specific expression patterns of ARHGEF9 and SLPI

were observed in AP and T2DM, and both genes were found to have

high diagnostic value in the two diseases. These findings highlight
FIGURE 9

Functional enrichment and immune cell correlation analysis of characteristic genes in T2DM. (A-D) Enrichment biological functions and pathways of
two hub genes identified by GSEA; (E) Immune cell correlation analysis of ARHGEF9 and SLPI. *P < 0.05; **P < 0.01; ***P < 0.001.
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the genetic similarity between AP and T2DM. These results suggest

that ARHGEF9 and SLPI are promising diagnostic biomarkers for

AP and T2DM, which may facilitate early diagnosis and prompt

treatment in clinical settings.
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The SLPI gene is an important regulator of innate and acquired

immunity and controls the growth of the gut microbiota (60). The

ARHGEF9 gene is involved in the growth and development of

cranial nerves (61) and has been shown to play a role in inhibiting
FIGURE 10

The ceRNA networks, single-cell maps, and immunofluorescence of ARHGEF9 and SLPI. (A) The ceRNA network of ARHGEF9; (B) The ceRNA
network of SLPI; (C) The single-cell type atlases of ARHGEF9 in the pancreatic tissues; (D) The single-cell type atlases of SLPI in the pancreatic
tissues; (E) The immunofluorescence of ARHGEF9 in cell line A-431, target protein (green), nucleus (blue), microtubules (red); (F) The
immunofluorescence of SLPI in cell line SiHa, target protein (green), nucleus (blue), microtubules (red).
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the growth of both hepatocellular carcinoma (62) and gastric cancer

(63) cells. However, the functions of ARHGEF9 and SLPI in AP and

T2DM and the common mechanisms and pathways involved in the

development of the two diseases remain unclear. In this study, we

performed an in-depth analysis to investigate the potential roles and

mechanisms of SLPI and ARHGEF9 in AP and T2DM. The results

showed that in both AP and T2DM, ARHGEF9 was significantly

downregulated in pathways related to DNA regulation, fatty acid

metabolism, cytokine–cytokine receptor interactions, and

chemokine signaling, whereas SLPI was significantly enriched in

pathways related to the regulation of protein response and

localization, glyoxylate and dicarboxylate metabolism, and

cytokine–cytokine receptor interactions. Regarding the

relationship between the two genes and the immune environment

of the two diseases, ARHGEF9 expression was significantly

negatively correlated with the proportions of resting NK T cells,

endothelial cells, and aDCs, whereas SLPI expression was

significantly positively correlated with the proportions of

epithelial cells, M1 macrophages, and basophils.

Finally, we found that SLPI and ARHGEF9 serve as potential

therapeutic targets for AP and T2DM and that imatinib may inhibit

disease progression by targeting these genes. Imatinib has been

shown to delay the development of diabetes and induce remission of

diabetes in non-obese diabetic mice (64). The safety and efficacy of

imatinib in the treatment of type 1 diabetes mellitus have been

assessed in a clinical study. The findings indicated that participants

in the imatinib group required less insulin and had lower HBA1c

levels during treatment than those in the placebo group; however,

these effects subsided after the treatment ended. Imatinib may

improve peripheral insulin sensitivity and beta-cell activity, which

may account for its metabolic effects (65). Furthermore, inhibition

of discoidin domain receptors by imatinib has been shown to

prevent pancreatic fibrosis in a mouse model of chronic

pancreatitis (66). Therefore, imatinib is a promising drug for the

treatment of AP and T2DM as well as to inhibit the correlation

between the two diseases.
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To the best of our knowledge, this study is the first to elucidate

the relationship between T2DM and AP and identify common genes

involved in the development of both diseases through comprehensive

bioinformatic analysis. However, this study has some limitations that

should be acknowledged. First, the limited dataset, small sample size,

and lack of clinical information might not have adequately

represented the characteristics of the target population. Therefore,

large-sample multi-center prospective randomized controlled trials

should be conducted to validate the predictive efficacy of the 2-gene

diagnostic model developed in this study. Second, owing to the

limitations of the datasets used in this study, we could not

differentiate between patients with T2DM with or without AP and

patients with AP with or without T2DM. Consequently, we could not

assess the significance of the diagnostic model in predicting that

patients with APmay have concurrent T2DM or patients with T2DM

may have concurrent AP. Third, additional experiments are

warranted to validate dyslipidemia as the link between AP and

T2DM and to investigate the mechanisms of SLPI and ARHGEF9

in AP and T2DM and their relationship with dyslipidemia.
5 Conclusion

Our study identified dyslipidemia as a possible common

mechanism of T2DM and AP and constructed a two-gene diagnostic

model for early recognition of T2DM and AP through a series of

machine learning approaches. Most importantly, we found that

imatinib may be a potential treatment for T2DM and AP.
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TABLE 1 Potential treatment options for AP and T2DM analyzed by CMap and molecular docking.

Rank
CMap
name

Moa Norm_cs FDR
Free binding energy (kcal/mol)

SLPI ARHGEF9

1 imatinib PDGFR inhibitor|Bcr-Abl inhibitor|KIT inhibitor -2.1003 15.6536 -9.1 -10.4

2 procainamide Sodium channel inhibitor -2.0882 15.6536 -5.3 -6.2

3 simvastatin HMGCR inhibitor -2.0699 15.6536 -6.5 -9.1

4 BIBX-1382 EGFR inhibitor|Tyrosine kinase inhibitor -2.0666 15.6536 -6.9 -8.9

5 physostigmine Cholinesterase inhibitor|Acetylcholinesterase inhibitor -2.051 15.6536 -6.2 -7.8

6 carbamazepine Carboxamide antiepileptic -2.0306 15.6536 -6.8 -9.5

7 phentermine
Dopamine receptor antagonist|Serotonin
reuptake inhibitor

-2.0163 15.3525 -4.7 -6.0

8 TCPOBOP CAR agonist -2.0096 15.3525 -6.3 -8.4

9 rigosertib Cell cycle inhibitor|PLK inhibitor -2.0082 15.3525 -5.8 -7.5
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