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The role of multimodality
imaging in diabetic
cardiomyopathy: a brief review
Fadi W. Adel and Horng H. Chen*

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
Diabetic cardiomyopathy (DMCM), defined as left ventricular dysfunction in the

setting of diabetes mellitus without hypertension, coronary artery disease or

valvular heart disease, is a well-recognized entity whose prevalence is certainly

predicted to increase alongside the rising incidence and prevalence of diabetes

mellitus. The pathophysiology of DMCM stems from hyperglycemia and insulin

resistance, resulting in oxidative stress, inflammation, cardiomyocyte death, and

fibrosis. These perturbations lead to left ventricular hypertrophy with associated

impaired relaxation early in the course of the disease, and eventually culminating

in combined systolic and diastolic heart failure. Echocardiography, cardiac

nuclear imaging, and cardiac magnetic resonance imaging are crucial in the

diagnosis and management of the structural and functional changes associated

with DMCM. There appears to be a U-shaped relationship between glycemic

control and mortality. Exogenous insulin therapy, while crucial, has been

identified as an independent risk factor for worsening cardiovascular

outcomes. On the other hand, Glucagon-like Peptide-1 Receptor Agonists and

Sodium–Glucose Cotransporter 2 Inhibitors appear to potentially offer glycemic

control and cardiovascular protection. In this review, we briefly discuss the

pathophysiology, staging, role of multimodality imaging, and therapeutics

in DMCM.
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Introduction

In 2023, foremost societies, including the American Heart Association (AHA), the

American College of Cardiology (ACC), and the European Society of Cardiology (ESC)

endorsed its formal definition (1). Diabetic cardiomyopathy (DMCM) is defined as left

ventricle (LV) dysfunction in the presence of diabetes mellitus (DM), whether it is type 1

(DM1) or type 2 (DM2), and in the absence of hypertension (HTN), obstructive epicardial

coronary artery disease (CAD), and valvular heart disease (VHD) (2, 3).
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Worldwide, the prevalence of DM increased from 151 million in

2000 to 537 million in 2021, and it is projected to increase to 643

million by 2030 (4). Among diabetic patients, the prevalence of

DMCM ranges from 16.9% (5) to about 67% (6), depending on the

criteria used for definition.

In this review, we will briefly discuss the pathophysiology,

staging, and therapeutics, with a dedicated focus on the role of

multi-modality imaging.
Pathophysiology & staging

The pathophysiology of DMCM involves a complex interplay of

insulin resistance mediating hyperglycemia and lipotoxicity (Figure 1).

In that milieu, oxidative stress ensues, with accompanying

inflammation, resulting in cardiomyocyte calcium dyshomeostasis (7,

8), cardiomyocyte death (9, 10) and, later, hypertrophy (11), along with

endothelial damage (12, 13) and interstitial fibrosis (14–16).
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Early, patients usually experience impaired myocardial

relaxation, which manifests as mild diastolic dysfunction (10, 17).

As the disease progresses, patients develop left ventricular

hypertrophy (LVH) in the setting of cardiomyocyte hypertrophy,

interstitial fibrosis, and maladaptive inflammatory response.

Clinically, this manifests as more advanced diastolic dysfunction

and possibly early systolic dysfunction (10). In the late stages of the

disease, severe neurohormonal disturbances, such as activation of

both the Angiotensin-II and sympathetic nervous systems (17), lead

to significant increases in LV thickness, mass, and size, with an

accompanying impairment in both systolic and diastolic function

(10, 17, 18).
Role of multimodality imaging

From a clinical perspective, the diagnosis of DMCM requires

the utilization of at least one imaging modality to confirm LV
FIGURE 1

The pathophysiological mechanisms of diabetic cardiomyopathy. Schematic representation of the systemic, cellular, and molecular changes leading
to structural remodeling and cardiac dysfunction in diabetic cardiomyopathy. Systemic changes such as hyperglycemia, insulin resistance,
lipotoxicity, advanced glycation end-products (AGEs), and increased angiotensin II (Ang II) contribute to cellular and molecular derangements,
including metabolic dysregulation, oxidative stress, inflammation, endoplasmic reticulum (ER) stress, and calcium dysregulation. These changes
promote structural remodeling characterized by cardiomyocyte hypertrophy, interstitial fibrosis, and endothelial/microvascular dysfunction,
ultimately leading to diastolic and systolic cardiac dysfunction. AGEs, Advanced Glycation End-products; Ang II, Angiotensin II; FFA, Free Fatty Acids;
GLUT4, Glucose Transporter Type 4; TCA cycle, Tricarboxylic Acid Cycle; ROS, Reactive Oxygen Species; NF-kB, Nuclear Factor Kappa-Light-Chain-
Enhancer of Activated B Cells; TLR4, Toll-like Receptor 4; ER, Endoplasmic Reticulum; SR, Sarcoplasmic Reticulum.
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structural and functional impairments. Imaging also aids in

monitoring the course of the disease and assess the impact of

treatment. Furthermore, different imaging modalities allow the

assessment of different mechanisms contributing to the

development and progression of DMCM (3, 19, 20).
Echocardiography

Echocardiography is the gold standard in diagnosing DMCM,

owing to its high temporal and spatial resolutions, accessibility,

affordability, and harmlessness (19, 21). One of the earliest features

of DMCM is the impairment of diastolic function (19). In a case-

control study among patients with DM2 with a median duration of

> 5 years, systolic function was preserved among all patients.

However, 54% of the diabetic patients had diastolic dysfunction,

compared to 11% among non-diabetic controls, with more incident

diastolic dysfunction correlating with duration of diabetes (22).

Further, Somaratane et al. inspected the prevalence of LVH in a

cohort of DM2, and found that 56% of the diabetic population

exhib i ted this s t ructura l abnormal i ty . Interes t ing ly ,

electrocardiograms (EKG) only detected 5% of LVH cases, and

while NT-proBNP was superior to EKG, it remained inadequate;

this study underscores the significant utility of echocardiography in

detecting LVH (23).

Additionally, in patients with DM1 and average HbA1c of 8%,

the lateral mitral annular early diastolic velocity was lower

compared to non-diabetic controls, which is a marker of diastolic

dysfunction (24). Moreover, in DM2 patients with a mean diabetes

duration of 6.3 years, 45% demonstrated abnormal global

longitudinal strain, which conferred a higher risk for the

development of all-cause mortality or hospitalization (25).

Impaired diastolic parameters among diabetic patients are

evidently associated with worse clinical outcomes. Rorth et al.

showed that, among DM1 patients, higher filling pressures, as

measured by early mitral inflow velocity and mitral annular early

diastolic velocity ratio (e/e’), was associated with a higher risk of

non-fatal myocardial infarction, cerebrovascular accidents, and

death (26). Similarly, From et al. demonstrated that, among DM2

patients, the cumulative probability of both the incidence of heart

failure and death more than doubled among diabetics with higher

filling pressures as measured by e/e’ ratios (27).

In summary, echocardiography remains indispensable in the

early detection and monitoring of DMCM, providing critical

prognostic information that guides clinical decision-making and

management. Its ability to identify subtle changes in cardiac

structure and function underscores its role as the gold standard

imaging modality in this patient population.

However, this technique is not without its challenges; the

diagnostic accuracy can be operator-dependent, and image quality

may be compromised in patients with poor acoustic windows, such

as those with obesity or chronic lung disease (28). Additionally,

while echocardiography is excellent for structural assessment, it

provides limited information on myocardial tissue characterization

and metabolism, which are crucial for understanding the

pathophysiology of DMCM (3).
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Cardiac magnetic resonance imaging

Cardiac magnetic resonance imaging (CMR) possesses higher

spatial and temporal resolution than echocardiography, in addition

to allowing the assessment of myocardial fibrosis and altered

metabolism, which are hallmarks of DMCM (3, 19, 21).

Among DM1 patients, average HbA1c levels were inversely

associated with stroke volume and positively correlated with the

presence of myocardial scar tissue (29). Additionally, myocardial

perfusion reserve and diastolic strain rate were abnormal in diabetic

patients when compared to controls; further, increased myocardial

triglyceride content, but not impaired myocardial flow reserve, was

associated with abnormal diastolic function, suggesting that

steatosis, but not necessarily small vessel disease, may be

responsible for early diastolic dysfunction in DMCM (30). In a

cohort derived from the general population, CMR revealed that pre-

DM and DM were associated with LV remodeling compared to

non-diabetic controls (31). Fibrotic tissue, as determined by late

gadolinium enhancement, can be easily assessed using CMR and it

has been associated with worse major adverse cardiovascular events

(MACE) in diabetic patients (32).

However, CMR remains underutilized, largely owing to its

perceived expense burden, patient comfort issues, and longer

examination times (33). Additionally, traditional, older generation

Gadolinium-based contrast media (CGBM) were associated with a

low but serious risk of nephrogenic systemic fibrosis. Thankfully, with

group II CGMB, this risk is significantly diminished (34).With further

advancements in imaging and technology, it may be feasible in the

future to incorporate CMR as a cornerstone in DMCMmanagement.
Nuclear imaging

Nuclear imaging allows the detection of low-density processes,

making it possible to measure myocardial metabolism and to assess

molecular imaging (20). Gated SPECT possesses the capability to

assess myocardial perfusion and LV function; however, limited data

exist on its widespread clinical utility in DMCM (3).

Positron emission tomography (PET) allows flexibility in

radiotracer design radiolabeled with a variety of radionuclides,

and radiotracers administered at low doses do not alter metabolic

processes (20). In order to circumvent the low spatial resolution

observed in PET, it is usually combined with computer tomography

or CMR to allow for accurate radiotracer localization (3, 20).

PET imaging has been utilized to study a multitude of metabolic

parameters in DMCM. Using PET-CMR in DM2 patients with

average HbA1c of 7.1% and mean diabetes duration of 4 years,

Rijzewijk et al. demonstrated impaired diastolic parameters among

diabetics; more importantly, they revealed increased myocardial

fatty acid uptake and oxidation compared to controls, indicating

myocardial metabolic remodeling (35). Similarly, in DM1 patients,

PET imaging revealed increased free fatty acid utilization and

decreased myocardial glucose uptake (36). Further, phase analysis

of gated SPECT MPI revealed that asymptomatic DM2 patients

with normal perfusion scans exhibited significant left ventricular

mechanical dyssynchrony, particularly in those with a diabetes
frontiersin.org

https://doi.org/10.3389/fendo.2024.1405031
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Adel and Chen 10.3389/fendo.2024.1405031
duration of more than 15 years (37). In a study investigating the

association between diabetes mellitus and myocardial glucose

uptake using 18F-FDG PET/CT, it was demonstrated that DM is

significantly associated with decreased myocardial glucose

metabolism, with up to 84% of diabetic patients showing poor

FDG uptake. Furthermore, multivariate logistic regression analysis

revealed that gender (male), Homeostatic Model Assessment of

Insulin Resistance, and metabolic dysfunction-associated steatotic

liver disease were independent risk factors for poor myocardial

FDG uptake in diabetic patients (38).

In summary, nuclear imaging techniques like PET and gated

SPECT are valuable in assessing myocardial metabolism and

function in DMCM, revealing significant alterations such as

impaired diastolic parameters, increased myocardial fatty acid

uptake and oxidation, decreased myocardial glucose uptake, and

left ventricular mechanical dyssynchrony, particularly in patients

with prolonged diabetes duration.

The main challenges associated with nuclear imaging include its

high cost and limited availability (20). Additionally, the relatively low

spatial resolution of PET compared to CMR can limit its ability to

detect small areas of myocardial scar or fibrosis (19). The use of

ionizing radiation in both PET and SPECT raises concerns about

radiation exposure, particularly in younger patients and those

requiring repeated imaging studies (20). Furthermore, the

interpretation of nuclear imaging studies requires specialized

expertise, which may not be readily available in all clinical settings (3).

In conclusion, while each imaging modality offers unique benefits

in the assessment of DMCM, they also come with specific challenges

(Table 1). A multimodality approach, leveraging the strengths of each

technique, can provide a comprehensive evaluation of diabetic

cardiomyopathy, improving diagnostic accuracy and informing

therapeutic strategies. Future advancements in imaging technology

and reductions in cost may further enhance the integration of these

modalities into routine clinical practice.
Therapeutics

In the UK Prospective Diabetes Study (UKPDS), a 1% decrease

in HbA1c was associated with a 16% decrease in risk of myocardial

infarction (39). Yet, it has become apparent that there is a U-curve

relationship between HbA1c and mortality in diabetic patients with

heart failure (40). Indeed, intensive glycemic control did not reduce

cardiovascular events, and it was associated with a 47% increase in

incident heart failure (41). Exogenous insulin therapy, which is

utilized by all DM1 patients and 1/3rd of DM2 with heart failure

patients (42), has been shown to be a risk factor for incident heart

failure (43). Similarly, exogenous insulin use is associated with a

higher risk of all-cause mortality, and HF rehospitalization (44). In

a preclinical rodent model of experimental DM, insulin use was

associated with increased interstitial fibrosis and cardiomyocyte

apoptosis compared to both non-diabetic and untreated diabetic

controls, further supporting the hypothesis that long-term

exogenous insulin may adversely affect the myocardium (45).

Metformin use has yielded inconsistent results. In a metanalysis

including 13,110 DM patients, metformin use did not bestow any
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HF benefit (46). On the other hand, in the UKPDS, metformin use

was associated with a 39% reduction in the risk of myocardial

infarction (47).

Sulfonylureas and thiazolidinediones have been associated with an

increase in all-cause mortality and/or HF hospitalization among DM2

patients (48, 49). Dipeptidyl Peptidase 4 Inhibitors (DPP-4i) have not

been associated with any cardiovascular benefit. In fact, saxagliptin has

been associated with an increased risk of heart failure hospitalization

(50). In the American Diabetes Association (ADA) Consensus Report

in 2022, DPP-4i should be avoided in DM patients with ACC/AHA

stage B and C (51). Glucagon-like Peptide-1 Receptor Agonists (GLP-1

RAs) use has been associated with a decreased risk of MACE in DM2

patients with established cardiovascular disease (52). While

randomized clinical trials for GLP-1 RAs have shown no benefit

when it comes to heart failure (53–56), the HARMONY Outcomes

trial suggested a 29% reduction in heart failure hospitalization as a

secondary outcome (57); further, in one meta-analysis, there was a 9%

reduction in heart failure hospitalization (58). In STEP-HFpEF, heart

failure hospitalization, as an exploratory end-point, seemed to be lower

in the semaglutide group compared to placebo (59).

Sodium–Glucose Cotransporter 2 Inhibitors (SGLT2i) have

been shown to decrease the risk of MACE and heart failure

hospitalization among diabetics (60, 61). In fact, the ADA

recommends SGLT2i use among DM patients with heart

disease (62).
TABLE 1 Strengths and limitations of multimodality imaging techniques
in diabetic cardiomyopathy.

Modality Strength Limitation

Echocardiography • High temporal and
spatial resolutions,
accessibility, affordability,
harmlessness
• Effective in detecting
early diastolic dysfunction
• Critical for early
detection and monitoring
of DMCM

• Operator-dependent
diagnostic accuracy
• Compromised image
quality in patients with poor
acoustic windows
• Limited information on
myocardial tissue
characterization
and metabolism

Cardiac MRI • Higher spatial and
temporal resolution,
assesses myocardial fibrosis
and altered metabolism
• Can identify myocardial
scar tissue and abnormal
diastolic function
• Comprehensive tissue
characterization, high-
resolution imaging

• Perceived expense
burden, patient comfort
issues, longer examination
times
• Risk of nephrogenic
systemic fibrosis with older
generation Gadolinium-
based contrast media

Nuclear Imaging • Detects low-density
processes, measures
myocardial metabolism,
assesses molecular imaging
• Flexible radiotracer
design, accurate radiotracer
localization with combined
techniques
• Reveals significant
metabolic alterations
in DMCM

• High cost and limited
availability
• Low spatial resolution
compared to CMR,
concerns about radiation
exposure
• Requires specialized
expertise for interpretation
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Conclusion

In conclusion, DMCM is a major and increasing health

concern, fueled by the global rise in DM incidence (4–6). The

complex pathophysiology of DMCM, characterized by insulin

resistance, hyperglycemia, and lipotoxicity (18), leads to oxidative

stress, inflammation, cardiomyocyte death, and fibrosis. These

processes result in LVH and dysfunction (7–14). Multimodality

imaging, encompassing echocardiography, CMR, and nuclear

imaging, is crucial for the diagnosis, staging, and management of

DMCM. Each imaging modality provides distinct insights into

cardiac structure and function, metabolic changes, and tissue

characterization, thus enhancing our comprehension and

management of this intricate condition.
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