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Metabolic factors are not the
direct mediators of the
association between type 2
diabetes and osteoporosis
Qifan Yang1, Xinyu Wang1, Yanwei Liu1, Jing Liu2

and Dong Zhu1*

1Department of Orthopedics, The First Hospital of Jilin University, Changchun, China, 2Department of
Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First
Medical University, Jinan, China
Objective: The causal relationship between type 2 diabetes mellitus (T2DM) and

osteoporosis (OS) remains unclear. This study aims to investigate the causal

relationship and explore the potential metabolic mechanism and its

mediating role.

Methods: We conducted a comprehensive study, gathering data on 490,089

T2DM patients from the genome-wide association study (GWAS) database and

selecting OS data from FinnGen and MRC-IEU sources, including 212,778 and

463,010 patients, respectively, for causal analysis. Simultaneously, we explored

the potential roles of three obesity traits and 30 metabolic and inflammation-

related mediating variables in the causal relationship.

Results: There is a strong causal relationship between T2DM and OS. The data

from our two different database sources appeared in the same direction, but after

correcting for body mass index (BMI), waist circumference (WC), and waist-to-

hip ratio (WHR), the direction became the same. T2DM may increase the risk of

OS [odds ratio (OR) > 1.5, p < 0.001]. Steiger’s test results show that there is no

reverse causality. No risk factors related to glycolipid metabolism, amino acid

metabolism, and inflammation were found to mediate the causal relationship.

Conclusion: This study’s findings indicate a robust causal relationship between

T2DM and OS, influenced by relevant factors such as BMI. Our results shed light

on the pathogenesis of OS and underscore the importance for clinicians to treat

metabolic disorders to prevent osteoporosis.
KEYWORDS
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Introduction

Abnormal glucose metabolism, a condition characterized by the

body’s poor absorption, transport, and glucose metabolism, is a

significant health concern. This includes impaired fasting glucose,

abnormal glucose tolerance, and diabetes. The prevalence of

diabetes will rise dramatically, reaching 782.1 million individuals

(approximately 12.2% of the adult population) by 2045 (1). This

alarming trend underscores the importance of understanding the

relationship between abnormal glucose metabolism and other

health complications, such as bone degeneration. Notably,

approximately 35% of patients with type 2 diabetes mellitus

(T2DM) experience abnormal glucose metabolism and bone

degeneration, leading to osteoporosis (OS), a chronic bone

complication that poses a serious threat to human health (2).

Research has demonstrated that T2DM adversely affects bone

metabolism, reducing bone mass and increasing bone fragility

and fracture risk.

Furthermore, the impact of T2DM on bone health is not

straightforward. It affects not only bone geometric characteristics

(3–6), bone composition, microstructure, and mechanical

properties but also intricate underlying mechanisms (7, 8). For

instance, T2DM can lead to bone loss by damaging the primary cilia

of osteoblasts. This process involves the generation of excessive

reactive oxygen species (ROS), which further disrupts osteoblasts’

mitochondrial metabolism and primary cilia structure. Currently,

there are numerous basic studies on T2DM and OS. However, the

potential role of lipid metabolism, amino acid metabolism, and

inflammatory factors in these mechanisms should be fully explored.

As of now, the globalization trend of OS has accelerated. At

present, studies have proved that different fatty acids can affect

osteoclasts. Omega-3 polyunsaturated fatty acids and omega-7 fatty

acids can reduce the number of osteoclasts, inhibit the downstream

signal activation of RANKL, and reduce bone loss (9). Excessive

inflammatory cytokines lead to increased bone absorption and

decreased bone mass. ROS scavenging hydrogel can significantly

inhibit inflammatory factors and reduce ROS in bone tissue of

patients with OS complicated with hips; hydrogen peroxide (H2O2),

hydroxyl radical (OH−), and superoxide anion (O2
−) increase the

expression of osteoblast-related factors (10, 11). Basic research on

T2DM and OS has been abundant, but we still need to further explore

the genetic relationship between various metabolic factors and OS.

Given the lack of consideration of confounding factors and lack

of proof of causality, this study adopted Mendelian randomization

(MR) analysis to analyze the causality between T2DM and OS. MR

represented relevant traits by instrumental variable (IV) to explore

the inherent causality of heredity. Because life follows random

allocation of chromosomes at conception, MR analyses resemble

clinical randomized trials and are less susceptible to confounding

and reverse causality. We analyze different factors that may affect

T2DM and OS through multivariate analysis [multivariable MR

(MVMR)] and mediation analysis. As far as we know, this MR

study, for the first time, included the analysis of glucose metabolism,

lipid metabolism, amino acid metabolism, and inflammatory factors

in the causal relationship between T2DM and OS. We hope this

article can provide relevant diagnosis and treatment ideas for
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clinicians and researchers to study the pathogenesis and

treatment of T2DM and OS.
Materials and methods

Study design

During the study, we always followed the STROBE-MR

Guidelines (Supplementary Table 1) (12) and insisted on three

basic assumptions of MR: first, IVs are strongly correlating with

exposure factors (T2DM). Second, IVs are not associated with

confounding factors between T2DM and OS. Third, IVs affect OS

only through T2DM and not through any direct or indirect route. All

original studies cited in this study have received ethical approval and

informed consent. This study consists of three stages. In the first

phase, we conducted a univariate MR study of T2DM and OS using

pooled data from a genome-wide association study (GWAS) to assess

the causal relationship between the two. In the second stage, we used

MVMR to analyze obesity indicators: waist-to-hip ratio (WHR), body

mass index (BMI), and waist circumference (WC). We used

mediating MR to evaluate the effects of glucose metabolism, lipid

metabolism, amino acids, and inflammatory factors. In the third

stage, we verified the OS data from “UKB-B-17796” (Figure 1),

indicating the MR hypothesis followed the study design.
Data sources for and selection of
genetic instruments

Table 1 summarizes the database information involved in this

study and sets the selection criteria for single-nucleotide

polymorphisms (SNPs) as p < 5 × 10−8, R2 = 0.001, and window

= 10,000 kb based on the significance level of the whole genome

(13). In order to ensure that the selected IVs have sufficient strength,

we used F-value >10 as the inclusion criterion (14) and eventually

used the included SNPs for subsequent MR analysis.
Type 2 diabetes

IVs associated with T2DM were obtained from the European

Bioinformatics Institute (EBI) (15), PMID: 34594039, GWAS ID:

ebi-a-GCST90018926, including 38,841 cases and 451,248 controls,

adjusted for sex. The diagnostic criteria adopted for T2DM were 1)

glycosylated hemoglobin (HbA1c) ≥6.5% and 2) fasting glucose

level >125 mg/dL, and Supplementary Table 3 shows the specific

SNP information.
Adiposity traits

T2DM patients are often associated with obesity, but the

inclusion database of exposure factors did not adjust BMI. In this

study, adult BMI, adult WC, and WHR were included for

multivariate analysis. BMI (PMID: 34017140) (16) was a study of
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407,746 individuals of white British ancestry in the UK Biobank

database, and 471,762 genotyping SNPs were retained through

screening. WC (PMID: 35399580) (17) was derived from a study

of 70,409 Hispanics/Latinos; WHR (PMID: 29892013) (18) was

derived from 10,759 independent GWAS sites.
Candidate mediators

T2DM is closely related to glucose metabolism, lipid

metabolism, fatty acid metabolism, amino acid metabolism, and

inflammatory factors (19–24). Databases with baseline

characteristics similar to exposure and outcomes were collected as

data sources for candidate moderators (Table 1). In the course of

onset, T2DM patients always have metabolic disorders (16, 25, 26),

so metabolic factors were focused on, which include four

indications of glucose metabolism—fasting insulin (FI), fasting

blood glucose (FG), 2-H glucose, and HbA1c—with the

maximum sample sizes for each of the first three traits ranging

from 85,916 (2-H glucose) to 281,416 (FG), and participants of

European ancestry dominated the sample sizes for all traits (27).

HbA1c data were derived from a 1,000,000 population sample of

white British or UK Biobank’s complete European ancestry set,

stratified among first-, second-, and third-degree relatives of

participants. In terms of lipid metabolism factors, apolipoprotein

A-I (Apo A-I), apolipoprotein B (APO-B), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),

and triglycerides (TG) were included, among which the Apo A-I

and APO-B data came from 393,193 and 439,214 samples in the

UKB database, containing 440 and 255 genetic variants, respectively

(25). HDL-C was also derived from the above HbA1c database, and
Frontiers in Endocrinology 03
LDL-C data were used from the UK Biobank (n = 431,167), the

Global Lipids Genetics Consortium (n = 188,577), and the

Consortium for Diabetes Genetics Replication and Meta-Analysis

(n = 188,577) (26). HDL-C was attained from the above HbA1c

database, and LDL-C data were used from the UK Biobank (n =

431,167), the Global Lipids Genetics Consortium (n = 188,577), and

the Consortium for Diabetes Genetics Replication and Meta-

Analysis (n = 188,577) (28), and TNF-a and IL-17 data were

derived from GWAS of 8,293 Finnish individuals (29). The

European ancestry provides IL-1b information on approximately

2,994 protein analyses in 3,301 individuals. The rest include seven

fatty acids [saturated fatty acids (SFA), monounsaturated fat acids

(MUFA), polyunsaturated fat acids (PUFA), omega-3 fatty acids,

omega-6 fatty acids, docosahexaenoic acid (DHA), and linoleic

acid] and nine amino acids (isoleucine, leucine, valine,

phenylalanine, tyrosine, alanine, glutamine, glycine, and histidine).
OS

The Finnish database included 3,203 patients and 209,575

controls, with 16,380,452 SNPs, which we selected for OS. The

MRC-IEU database provided the validation OS database, which

included 1,976 patients and 461,034 controls with 9,851,867 SNPs.
Statistical analyses

Univariable and multivariable MR analyses
This study used MR-Egger, weighted median, inverse variance

weighting (IVW), simple model, and weighted model function to
FIGURE 1

MR study design. Stage I: MR analysis of T2DM and OS samples was performed. Stage 2: to explore the potential role of obesity indicators and
mediating variables in causality. MR, Mendelian randomization; T2DM, type 2 diabetes mellitus; OS, osteoporosis.
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analyze the two-sample MR. The IVWmethod used meta-analysis to

process the Wald ratio estimate of SNP into causality value, which

was selected as the most accurate method (13). Statistical values of

Cochran’s Q test evaluate heterogeneity. According to the MR-Egger

regressionmodel, judgments weremade according to intercept and p-

values to conduct a horizontal pleiotropic analysis (30, 31). “MRlap”

was used to measure the sample overlap rate between exposure and

outcome, and the results were respectively 0.7% and 0.4%, with no

bias. To eliminate other SNP interference, SNPs associated with other

traits of T2DM were excluded using the LDtrait tool (https://

ldlink.nih.gov/?tab=ldtrait), and Steiger’s test was performed (32).

In the MVMR analysis, according to the results of multivariate

inverse variance weighting (MV-IVW), it was determined whether

obesity traits partially mediated the causal relationship between

T2DM and OS. Multivariate Mendelian randomized Egger

(MVMR-Egger) and MV-IVW methods were used for

sensitivity analysis.

Effect of T2DM on OS
In this study, we used two-sample MR to analyze the causal

association between T2DM and OS and odds ratio (OR) and 95%

confidence interval (CI) to determine risk events. The MR-PRESSO

method detects and removes abnormal SNPs to exclude their

influence on horizontal pleiotropy (33). T2DM patients are often

associated with obesity, and both have a strong genetic susceptibility

to OS. Therefore, in this study, obesity indicators BMI, WC, and

WHR were considered potential confounders and analyzed using the

MVMR method. For the results of the two-sample MR and MVMR,

we verified the OS database with GWAS ID: “UKB-B-17796”.
Mediation analysis

In the preliminary experiments of this study, it was found that

the disorder of glucose metabolism and lipid metabolism would

reduce osteogenic proteins and increase the expression of

inflammatory factors (Figure 2). Therefore, 30 candidate

moderating variables associated with T2DM and OS were

searched. Two-sample MR analysis (b1) was performed on

T2DM and mediating variables to screen out 17 causal mediating

factors, and then heterogeneity and horizontal pleiotropy analysis
Frontiers in Endocrinology 04
were performed. The existing level of pleiotropic intermediary

factors on http://www.phenoscanner.medschl.cam.ac.uk/ eliminate

the SNPs associated with other exposures; MVMR further analyzed

the 17 mediating factors and T2DM to quantify the possible

mediating effect between T2DM and OS (b2). All MR analyses

were performed on R software (R version 4.2.2), involving R

packages including “TwoSampleMR”, “MRPRESSO”, “MRlap”,

and “MendelianRandomization”.

Western blotting
Western blotting assay extracts proteins from cell samples by

radioimmunoprecipitation assay (RIPA) lysis buffers and protease

and phosphatase inhibitors. The protein sample was dissolved on

ice for 20 min, mixed with 5× sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE) sample loading

buffer (WB3002; NCM Biotech, Newport, RI, USA), and heated at

100°C for 5 min. After cooling, denatured proteins were isolated in

SDS-PAGE gel (PG112; Epizyme, Cambridge, MA, USA). They

were transferred to polyvinylidene fluoride (PVDF) membrane

(Millipore Corp., Billerica, MA, USA), sealed with a rapid sealing

solution (PS108P; Epizyme), and combine with Collagen I

(ab268843; Abcam, Cambridge, UK), Osterix (ab209484; Abcam),

IL-1b (31202S; CST, Danvers, MA, USA), and b-actin (AF0003;

Beyotime, Shanghai, China). They were incubated overnight at 4°C

with gentle shaking. On the second day, the membrane and

horseradish peroxidase (HRP)-labeled secondary antibodies were

incubated at room temperature for 1 hour. Color development was

performed using a supersensitive ECL chemiluminescence kit

(P10300; NCM Biotech), and imaging was performed on a

chemiluminescence gel imaging system (Fusion Solo S; Vilber,

Collégien, France). The gray values of the strips were analyzed

using ImageJ software 1.53a (Wayne Rasband, National Institutes of

Health, USA).

Alkaline phosphatase staining
Alkaline phosphatase staining was conducted using a BCIP/

NBT alkaline phosphatase chromogenic kit (Beyotime, China).

The cells were spread into six-well plates at 15w/well and cultured

with ordinary medium or medium containing 0.3 mM palmitic

acid for 7 days on the second day; the medium was changed every

3 days. The cells were flushed with phosphate-buffered saline
TABLE 1 MR results for the causal effect of type 2 diabetes on osteoporosis.

Outcome Methods No. of SNPs F statistic OR 95% CI—low 95% CI—up p-Values

Osteoporosis

MR-Egger 235

89

0.94 0.83 1.07 0.363

Weighted
median

235 0.87 0.79 0.96 0.005

IVW 235 0.890 0.84 0.94 < 0.001

Osteoporosis (UKB-
B-17796)

MR-Egger 180

89

1.09 1.01 1.17 0.032

Weighted
median

180 1.06 1.00 1.11 0.035

IVW 180 1.05 1.02 1.09 0.003
f

MR, Mendelian randomization; SNPs, single-nucleotide polymorphisms; IVW, inverse variance weighting.
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(PBS) during staining and then fixed with neutral buffered

formalin (10%) for 15 min. The cells were then flushed, and a

liquid substrate of BCIP/NBT was added to each well. Finally, after

the cell color turned blue/purple, the cells were washed with

ddH2O and photographed.
Results

Impact of T2DM on OS

In the first step, the mean F-value of T2DM instrumental

variables was calculated to be 89, indicating that the SNPs used in

this study analysis were robust and could avoid potential bias. In the

two-sample MR analysis, when OS data from the FinnGen database

were used as the outcome variable, the results showed that the

incidence of OS decreased by 11% with each 1-SD increase in

T2DM risk (OR = 0.89, 95% CI = 0.84–0.94, p < 0.001), and then the

sensitivity analysis of this causal relationship was carried out using

the MR-Egger method, and no obvious horizontal pleiotropy was

detected (p intercept = 0.286). In the analysis of heterogeneity, the

consistency analysis was carried out using MR-Egger and IVW

methods, and Cochran’s Q statistics showed that there was no

heterogeneity (pheterogeneity − IVW = 0.716). In the validation

dataset, the OS data of “UKB-B-17796” were used, and it was

found that contrary to the above results, T2DM was a risk factor for

OS (OR = 1.05, 95% CI = 1.02–1.09, p = 0.003), there was no

horizontal pleiotropy (p intercept = 0.360), and heterogeneity exists

(pheterogeneity − IVW < 0.001) (Figures 3–5). For details, see Tables 1,

2, and Supplementary Table 4.
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Since the two results were opposite, MVMR analysis was

conducted for correction. It was found that T2DM (FinnGen

database) became a risk factor; that obesity indicators WHR,

BMI, and WC played an important role in the causal relationship

between T2DM and OS; and that the OR values after correction

were 1.67, 1.66, and 1.53, respectively, p < 0.05. This result was

confirmed in the verification set, and the two maintained a strong

causal relationship (Table 3; Supplementary Table 6; Figure 6). In

order to exclude the influence of relevant confounders, reverse MR

analysis was conducted, and it was found that no relevant SNP was

extracted. Subsequently, Steiger’s test was conducted (p < 0.05),

SNPs related to other traits of T2DM were excluded by the LDtrait

tool, and the outcome was consistent with that of MVMR

(Supplementary Tables 5, 7).
Effect of 30 mediating variables on
causality between T2DM and OS

In this study, 30 candidate regulatory factors related to glucose

metabolism, lipid metabolism, fatty acid metabolism, amino acid

metabolism, and inflammatory factors were included, among which

17 regulatory factors strongly related to T2DM were found to be

related to glucose metabolism (Supplementary Table 8): 1) the FI

(OR = 1.06, 95% CI = 1.04–1.07, p < 0.001), 2) FG (OR = 1.03, 95%

CI = 1.02–1.05, p < 0.001), 3) 2-H glucose (OR = 0.98, 95% CI =

0.97–0.99, p < 0.001), and 4) HbA1c (OR = 1.080, 95% CI = 1.06–

1.10, p < 0.001). Lipid metabolism index was related to 1) Apo A-I

(OR = 0.99, 95% CI = 0.98–0.99, p = 0.011), 2) HDL-C (OR = 0.980,

95% CI = 0.97–0.99, p = 0.001), 3) the LDL-C (OR = 1.016, 95% CI =
A B

FIGURE 2

T2DM can induce changes in inflammatory factors and osteogenic proteins. (A) Western blotting: palmitic acid decreases the expression of
osteogenic proteins and increases the expression of inflammatory factors. (B) Alkaline phosphatase staining: osteoblasts were treated with palmitic
acid, and their osteogenic differentiation ability decreased. T2DM, type 2 diabetes mellitus.
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A B

FIGURE 4

The forest plot: causal relationship between T2DM and OS. (A) Osteoporosis (finn-b-M13_OSTEOPOROSIS). (B) Osteoporosis (UKB-B-1 7796).
T2DM, type 2 diabetes mellitus; OS, osteoporosis.
A B

FIGURE 3

The scatter plots: causal relationship between T2DM and OS. (A) Osteoporosis. (B) Osteoporosis (U KB-B-17796). T2DM, type 2 diabetes mellitus;
OS, osteoporosis.
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1.01–1.03, p = 0.001), and 4) TG (OR = 1.04, 95% CI = 1.02–1.06,

p < 0.001). Fatty acid metabolism was related to 1) SFA (OR = 1.016,

95% CI = 1.00–1.03, p = 0.018) and 2) MUFA (OR = 1.03, 95% CI =

1.01–1.04, p = 0.001). Amino acid was correlated to 1) isoleucine

(OR = 1.04, 95% CI = 1.03–1.06, p < 0.001), 2) leucine (OR = 1.05,

95% CI = 1.03–1.06, p < 0.001), 3) valine (OR = 1.05, 95% CI = 1.04–

1.07, p < 0.001), 4) phenylalanine (OR = 1.03, 95% CI = 1.01–1.04, p

< 0.001), 5) tyrosine (OR = 1.03, 95% CI = 1.01–1.05, p < 0.001), 6)

alanine (OR = 1.05, 95% CI = 1.03–1.07, p < 0.001), and 7) histidine

(OR = 1.03, 95% CI = 1.01–1.01, p < 0.001).

We used the MR-Egger method to detect the horizontal

pleiotropy of 17 mediating factors, among which tyrosine showed

horizontal pleiotropy (p intercept = 0.286). There was heterogeneity in

Cochran’s Q test (p < 0.001) (Supplementary Tables 9, 10). Then,

tyrosine data from http://www.phenoscanner.medschl.cam.ac.uk/
Frontiers in Endocrinology 07
ruled out confounding SNPs, horizontal ple iotropic ,

and heterogeneity.

Finally, the MVMR analysis of T2DM and 17 candidate

mediating factors with OS showed no causal association between

T2DM and OS (Supplementary Table 11), and no evidence proved

that mediating variables played a role in the causal association

between T2DM and OS.
Discussion

According to the results of this study, there is a strong causal

association between T2DM and OS. With the aggravation of

diabetes, the risk of OS increases, and the pathogenesis is closely
A B

FIGURE 5

The funnel plot: causal relationship between T2DM and OS. (A) Osteoporosis. (B) Osteoporosis (UKB-B-17796). T2DM, type 2 diabetes mellitus;
OS, osteoporosis.
TABLE 2 Univariable MR horizontal pleiotropy and heterogeneity.

Horizontal pleiotropy

Outcome
Egger

intercept
Intercept

se
pintercept

Osteoporosis −0.005 0.005 0.286

Osteoporosis
(UKB-B-17796)

−0.003 0.003 0.360

Heterogeneity test

Method
Q

statistic
Q pheterogeneity

Osteoporosis

MR-Egger 220 233 0.719

Inverse
variance
weighted

221 234 0.716

Osteoporosis
(UKB-B-17796)

MR-Egger 279 178 <0.001

Inverse
variance
weighted

281 179 <0.001
MR, Mendelian randomization.
TABLE 3 MVMR estimates for the independent effect of type 2 diabetes
on osteoporosis with adjustment for covariates.

Outcome Method OR (95% CI) p-Values

Osteoporosis

Type 2 diabetes MV-IVW 1.67 (1.38–2.04) <0.001

Waist-to-hip ratio 1.15 (1.06–1.24) 0.001

Type 2 diabetes MV-IVW 1.66 (1.36–2.02) <0.001

Body mass index 1.69 (1.33–2.15) <0.001

Type 2 diabetes MV-IVW 1.53 (1.26–1.85) <0.001

Waist circumference 2.02 (1.53–2.66) <0.001

Osteoporosis (UKB-B-17796)

Type 2 diabetes MV-IVW 2.07 (1.22–3.52) 0.007

Waist-to-hip ratio 1.08 (0.87–1.34) 0.490

Type 2 diabetes MV-IVW 2.16 (1.28–3.65) 0.004

Body mass index 2.02 (1.26–3.24) 0.004

Type 2 diabetes MV-IVW 2.29 (1.34–3.91) 0.003

Waist circumference 2.52 (1.38–4.59) 0.003
f

MVMR, multivariable Mendelian randomization; IVW, inverse variance weighting.
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related to obesity. To our knowledge, this study is the first to include

glucose metabolism, lipid metabolism, amino acid metabolism, and

inflammatory factors in the causal analysis of T2DM and OS.

T2DM has a high genetic predisposition and is often associated

with unhealthy diet and obesity. In a randomized controlled study

of 73,105 patients with abdominal obesity, most of whom had

diabetes, most of these patients had T2DM, and the results showed

that abdominal fat thickness increased the incidence of OS by 23%

(34). With the deepening understanding of bone, researchers have

found that bone is not only a weight-bearing organ but also an

endocrine organ. It can secrete osteocalcin (OCN), lipocalin-2

(LCN2), sclerostin (SOST), and fibroblast growth factor-23 (FGF-

23) to regulate patients’ appetite and blood sugar, and it can be

regulated by other endocrine organs (35–37). Many fundamental

studies have proved that T2DM has a damaging effect on bone.

Physiological insulin doses can promote osteoblast proliferation

and collagen synthesis and inhibit osteoclast activity. T2DM

patients are often accompanied by insulin deficiency, decreased

bone density, and bone trabecular density, resulting in further
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aggravation of OS. Similar to previous studies, after excluding the

possible effects of obesity-related indicators, we found that T2DM

still maintained a robust causal relationship with OS, and following

the possession of T2DM, which can aggravate the severity of OS,

different severity of T2DM may cause different damage to OS.

This study screened 30 traits related to metabolism and

inflammation to explore the possible causal relationship between

metabolic factors. Seventeen metabolic traits were found to have a

causal relationship with T2DM and were subsequently associated

with OS to explore whether they mediate the regulatory effect.

However, no metabolic factors play a role in the causal relationship.

Given this result, the disorders of glucose metabolism, lipid

metabolism, amino acid metabolism, and inflammatory

metabolism are mostly related to acquired life habits. In the early

stage of T2DM patients, bone mineral density not only does not

decrease but increases (38). With the aggravation of diabetes,

advanced glycation end products (AGEs) will accumulate in bone

cells and then cause mitochondrial swelling (39), induce iron death,

and produce a large number of reactive oxygen species, resulting in
A

B

FIGURE 6

The forest plots. (A) The forest plot of the causal relationship between T2DM and OS. (B) The forest plot of MVMR results. T2DM, type 2 diabetes
mellitus; OS, osteoporosis; MVMR, multivariable Mendelian randomization.
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a decrease in the number of osteoblasts and aggravation of OS (8).

Circulating amino acids are related to OS and the fracture risk

caused by it. After the MR analysis of 5,724 fracture cases, it was

found that valine was strongly related to hip fracture, and the

incidence rate increased by 0.79% when the blood valine content

increased by 1-SD (40). In recent years, the musculoskeletal system

has gradually been regarded as a whole, and the two are close in

space and affect each other in physiological function. Valine,

leucine, and isoleucine are essential for skeletal muscle

metabolism (41). In addition, tryptophan also plays a pivotal role.

With the increasing age and the progression of T2DM, the

intermediate metabolite of tryptophan, Kyn, can also cause

neurodegeneration, acrodynia, and OS (42). Inflammatory factors

play a role in the pathogenesis of OS. It is well known that T2DM

can cause inflammatory damage to the liver and pancreas and

subacute inflammation through RANKL (an effective NF-kB
stimulator), leading to b-cell failure. When denosumab inhibits

“RANKL”, subacute inflammation and insulin resistance can be

improved (43–45). However, this study did not find that

inflammatory factors mediate the causal relationship between

T2DM and OS, but this result still needs to be considered.

Because inflammatory factors are often produced under the

stimulation of pathological environment, which can cause

abnormal signaling of osteogenic pathway and further cause bone

damage, more studies are needed to explore the relationship

between inflammatory factors and osteogenic pathway factors to

clarify the pathogenic mechanism of inflammatory factors.

When we initially explored the causal relationship between

T2DM and OS, T2DM was a protective factor for OS. After

analyzing obesity-related indicators, T2DM was translated into a

risk factor, which was validated in the MRC-IEU database. We

believe that the reasons for this result are as follows. 1) According to

the basic experimental results, the damage caused by T2DM to the

human body includes not only sugar toxicity but also lipid toxicity.

In the previous study of our research group, it was found that the

damage caused by high fat was higher than that in the high-sugar

environment. In vitro, palmitic acid (PA) was used to simulate the

high-fat environment, and the concentration of PA below 0.2

mmol/L had no obvious effect on osteoblasts and even played a

promoting role. When the concentration was higher than 0.25

mmol/L, the osteoblast apoptosis would occur sharply, and the

expression of osteoblast protein was significantly reduced. In animal

experiments, we divided mice into a control group, a high-fat diet

group, and a high-fat diet combined with the T2DM modeling

group and found that bone mineral density increased in the high-fat

diet group, but bone fragility also increased. The high-fat diet

combined with the T2DM modeling group showed obvious bone

destruction, decreased bone density, and serious OS, so we believe

that this is the reason for the different results before excluding

obesity-related traits. We then compared the two databases. The

FinnGen database had a sample size of 212,778, which is much

smaller than that of the MRC-IEU database (n = 463,010). Although

we chose a database with a large sample size and a long recent

release time whenever possible, it is easy to lead to bias compared to

the MRC-IEU database due to insufficient sample size. 2) In the
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process of data analysis, we could not obtain the original data of OS

(FinnGen database), and it is not clear whether the original data

were stratified for different obesity degrees and ages, so the role of

obesity-related indicators should be clarified.

The advantages of this paper are as follows. 1) Based on the

previous basic research and sufficient MR analysis, the effects of

obesity, various metabolic substances, and inflammatory substances

are considered. 2) Based on the inclusion of an extensive sample

database, the F-value of the IVs selected is far greater than 10, and

complementary sensitivity analysis methods are adopted to improve

the robustness of MR results. 3) The MRC-IEU database is used as

the verification set of OS to improve statistical efficiency and

accuracy. However, this study still has limitations. 1) There are

many factors affecting diabetes, and the manifestations are different

in different disease periods. The different traits of T2DM are

currently lacking, so the results cannot be accurately discussed. 2)

The patients in the OS databases were from a European population,

and the original text could not be found, so the correction factors in

the articles could not be analyzed to ensure that the baseline data of

the population were similar, which limited the promotion of the

results in different races, genders, and ages. 3) Diabetes is a common

but complex disease, and the combination of blood sugar and blood

lipid at different stages of onset will have different effects on OS; OS

includes bone density, trabecular separation, bone fragility, cortical

bone thickness, and other indicators and requires strict

stratification to better promote MR analysis to produce more

accurate results. We look forward to publishing a database of

different blood glucose levels, lipid levels, and obesity

stratification in the future, which may yield different results.

In conclusion, our research confirms a robust causal relationship

between T2DM and OS and uncovers the role of obesity as a mediator

in this relationship. These findings significantly contribute to

understanding the T2DM-OS risk connection, providing a solid

foundation for future studies in this field. We eagerly anticipate the

publication of larger sample sizes and more diverse ethnic data,

enabling us to conduct even more precise analyses of T2DM and OS.
Conclusion

This study found that T2DM is a negative factor for OS, there is

a robust causal relationship between them, and obesity-related traits

play an essential role. Our study showed that the causal relationship

between T2DM and OS was not directly related to glucose

metabolism, lipid metabolism, fatty acid metabolism, amino acid

metabolism, and inflammatory factors. Our study reveals the

genetic pathogenesis of OS and provides new ideas for treating

patients with OS combined with metabolic disorders in the future.
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