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Obesity is a chronic, multifactorial disease in which accumulated excess body fat

has a negative impact on health. Obesity continues to rise among the general

population, resulting in an epidemic that shows no significant signs of decline. It is

directly involved in development of cardiometabolic diseases, ischemic coronary

heart disease peripheral arterial disease, heart failure, and arterial hypertension,

producing global morbidity and mortality. Mainly, abdominal obesity represents a

crucial factor for cardiovascular illness and also the most frequent component of

metabolic syndrome. Recent evidence showed that Tirzepatide (TZP), a new drug

including both Glucagon Like Peptide 1 (GLP-1) and Glucose-dependent

Insulinotropic Polypeptide (GIP) receptor agonism, is effective in subjects with

type 2 diabetes (T2D), lowering body weight, fat mass and glycated hemoglobin

(HbA1c) also in obese or overweight adults without T2D. This review discusses the

pathophysiological mechanisms and clinical aspects of TZP in treating obesity.
KEYWORDS

obesity, insulin-resistance, Tirzepatide, pathophysiology, GIP, GLP - 1, clinical trials,
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1 Introduction

Obesity is a progressing and chronic condition defined by Body Mass Index (BMI) over

30 Kg/m2 levels. It is also defined as “abnormal or excessive fat accumulation that presents a

health risk”“ (1). Rates of overweight (defined as a BMI over 25) and obesity continue to rise

among the general population: between 1975 and 2016, in children and adolescents

worldwide (age 5–19 years), the incidence of overweight or obesity increased by four

times, from 4% to 18%. According to the WHO European report, 59% of adults and

children, about 27% of girls and 29% of boys, are overweight or obese (2).
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A BMI between 30 and 35 is correlated with decreased longevity

by three years, and also BMI between 40 and 50 reduces lifespan by

ten years confronted to people with fit BMI. Each increment in BMI

of 5 kg/m2 greater than 22,5–25,0 kg/m2 corresponds to a rise in

overall mortality of 30% (3), in obese people the major death cause

in CVD, followed by T2D (4).

Obesity pathophysiology is multifactorial and involves social,

psychological and behavioral factors, genetic and metabolic

predisposition (5). Obesity occurs when energy intake is more

than whole body expenditure (6). In fact, the hypothalamus,

mesolimbic area and prefrontal cortex, three areas involved in

executive functioning, are directly involved in controlling energy

balance. Cerebral pathways correlated with appetite, satiety and

energy expenditure are constantly activated (7, 8). Lastly,

dysregulation of microRNAs (miRNAs) has been linked with

obesity and inflammation. MicroRNAs (miRNAs) are small, RNA

molecules non-coding, which regulate post-transcriptional gene

expression and play an essential role in physiologic and

pathologic processes. In fact, how dysregulation in miRNA

production and its role in obesity phenotypes is an object of

several studies (9).

Obesity is directly related to the development of

cardiometabolic disease (arterial hypertension, coronaric

syndrome or heart failure (10) and in particular abdominal

obesity is the most frequent component of metabolic syndrome

along with T2D, dyslipidemia and hypertension (11–13).

It’s also associated, in addition, with obstructive sleep apnea

(OSAS), non-alcoholic fatty liver disease (NAFLD)/metabolic-

associated fatty liver disease (MAFLD), osteoarthritis, gastro-

esophageal reflux disease, malignancies (gastrointestinal, liver,

breast, and endometrial cancer), and mental health issues,

especially in young people. Insulin resistance has a critical role in

the development and progression of NAFLD/MAFLD (14–16). In

this sense, insulin resistance is a crucial factor shared by Obesity,

T2D, and NAFLD/MAFLD.

Adipose tissue contributes to endothelial dysfunction (17) due

to secretion of adipokines, paracrine hormones which have a crucial

role in the regulation of vascular tone. In obesity patients, pro-

inflammatory and vasoactive adipokines such as angiotensinogen,

angiotensin II, aldosterone, and resisting, along with increased

plasma renin activity and cytokines are hypersecreted (18–28).

Notably, some peptides termed incretins, able to stimulate b-
cells to release insulin, were discovered by Barre J.L. Campo in the

early 1930s. The most commonly known incretins include

glucagon-like peptide-1 (GLP-1) and glucose-dependent

insulinotropic polypeptide (GIP), formerly called Gastric

inhibitory peptide (29, 30). The gut (31) releases these factors due

to food intake and plays an essential role in appetite regulation and

body weight (32), decreasing hunger and nutrient intake (32, 33),

and gastric emptying and gastrointestinal motility (29, 34). In light

of these effects, GLP-1 receptor agonists (GLP-1RA) can be used not

only in the treatment of T2D but also to promoteWeight Loss (WL)

(33). Subsequently, dual GLP-1 receptor (GLP1-R) and GIP-

receptor (GIP-R) agonism is able to reduce BW by more than

20% (35, 36). TZP is a new pharmacological approach which

includes dual agonism, approved in May 2022 by the United
Frontiers in Endocrinology 02
States Food and Drug Administration (FDA) for the treatment of

T2D and in November 2023 for the treatment of obesity (37).

Acting in weight loss, it also improves quality of life and reduces

obesity-related complications. Innovative pharmacological

therapies and surgical approaches are valid alternatives to

promote fat loss (38) to reverse the adverse effects triggered by

weight gain.

In view of this, a widespread search of SCOPUS, PubMed, and

CENTRAL was performed using the following string” (obesity or

insulin resistance) AND (tirzepatide or Dual GIP and GLP-1

Receptor Agonist). Hand-searching for principal generalists,

human nutrition and basic research journals was also done.

This review aimed to analyze the knowledge available on the

pathophysiological mechanisms and clinical aspects of TZP in

treating obesity.
1.1 The first twincretin,
Tirzepatide (LY3298176)

The chemical formula of TZP is C225H348N48O68, a linear

synthetic peptide composed of 39 aminoacids and with a molecular

weight of about 48 KDa, which arises from the “fusion” of

aminoacid sequences structurally similar to glucagon, human

GIP, GLP-1, exendin-4. Nineteen amino acids show similarity to

those of GIP. The peptide sequence contains an Aib residue at

position 2, which occupies the DPP-4 binding site, conferring DPP-

4 resistance. Furthermore, it presents, at position 20, a C20 fatty

acid chain attached via a linker to the lysine residue, which enables

the molecule to bind circulating albumin with high affinity, thus

increasing the half-life up to 5 days (39), allowing a single weekly

subcutaneous administration. In receptor binding studies, it has

been shown to have a GLP-1R and GLP-1 binding affinity,

respectively, about five times lower than that of native and similar

to endogenous GIP (40). Indeed, from a molecular perspective, its

strength is comparable to native GIP but weaker than native GLP-1

(approximately 13-fold) (41). Available data suggests that

hyperglycemia may cause the downregulation of GIP-R, thus

reducing its response (42). However, lots of data suggest that the

administration of molecules able to restore a condition of

euglycemia can revert this resistance (20). Simultaneously, GIPR

signaling blocks emesis and attenuates other adverse side effects

of GLP-1R activation (43). Thus, TZP was introduced for the

first time, to enhance the effectiveness of incretins and reduce

side effects.
1.2 The physiology of incretins

GIP (the one which provides the most of incretin effect in

humans (7)) and GLP-1, are peptide hormones secreted

respectively, L cells of the bowel and K cells of duodenum after

assumption of carbohydrates, triglycerides, proteins or amino acids

(44, 45). GLP-1R is expressed in b-cells, in a minor population of

a-cells, but also in lungs, kidneys, liver, gastric mucosa, heart, brain

(in regions involved in the regulation of food intake and/or satiety)
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and immune cells (3–6). GIP, secreted by K cells of the duodenum

and the proximal part of the small intestine, is the principal incretin

hormone in humans, providing most of the incretin effect (7). GIP-

R are distributed in the pancreas but also in the heart, the pituitary,

the adrenal cortex, some areas of the central nervous system (CNS)

and both brown and white adipose tissues where it promotes fat

deposition (8). For this reason, this hormone has been assumed to

promote obesity (38). Although, the function of GIP in weight

management needs to be clarified. Data in the literature support the

hypothesis that GIP promotes fat deposition, and in vitro

experiments on GIP-R-deficient show a resistance to obesity (14).

However, in a transgenic mouse model, persistently high GIP levels

resulted in improvement of b-cell function, promote insulin

sensitivity and gene transcription, glucose tolerance, and

reduction in weight gain (15).
1.3 In vitro Tirzepatide’s effects

In vivo and in vitro preclinical studies have demonstrated that co-

administration of GIP and GLP1 promotes insulin sensitivity, leading

to better blood glucose level control, more sustained reduction in

food intake and consequently better WL compared to the infusion of

a single agent (35, 41, 46), also exerts an additive effect onmetabolism

of cyclic adenosine monophosphate (cAMP), thus increasing its

levels and consequently, potentiating insulin secretion glucose-

dependent. Studies conducted on rat b-cells (47) and cell lines

expressing recombinant GLP-1R and GIP-R in vitro and human

islets (41) demonstrated that the adenylate cyclase was influenced by

signals arising from the stimulation of both receptors, mainly

deriving from GIP (Figure 1). Regarding pharmacodynamics, TZP

appears as a biased GLP-1R-GIPR co-agonist, because of its positive

effects on cAMP generation over b-arrestin recruitment, which is

conversely stimulated by GLP-1R. This results in a lower ability to

promote receptor internalization compared with endogenous GLP-1,

so it allows to have an increased GLP-1R expression on the cell

surface, which translates in more robust insulinotropic properties,

possibly explaining the enhanced insulin secretion (in both diabetic

and not diabetic human islets), induced by TZP (19) by

approximately 25% more than the one induced by only one of the

two agents. It also improves insulin sensitivity and reduces glucagon

secretion. Beyond the synergistic effects on insulin secretion and

synthesis, the double agonist therapy seems to strongly promote

survival and differentiation of b-cell (48) (Figure 1).
1.4 In vivo Tirzepatide’s effects

The above results are confirmed also in in-vivo studies. Co-

agonism showed, on murine models, the capability to improve

insulin secretion and sensitivity in a weight-dependent and

weight-independent manner, probably through its action on

nutrient metabolism (49, 50), preventing their accumulation and

thus making these organs actively involved in metabolism with an

improvement in insulin sensitivity and WL, yielding long-lasting

effects. In obese mice, co-agonism is demonstrated to enhance
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b-cell proliferation (predominantly GLP-1), improve b-cell
function (by reducing its apoptosis) and survival, and also through

the reduction of glucotoxicity (49, 51, 52). The gain in insulin

sensitivity could be related to the increased glucose internalization

in muscle and WAT promoted by TZP, results seen in obese

IR mice.
1.5 Other possible pleiotropic effects
of Tirzepatide

Pleiotropic effects of GIP receptor stimulation in other tissues,

mediated by mechanisms other than typical protein G-coupled

receptor pathways, might bring additional benefits. Acting on

insulin and glucagon levels, incretins, and thus TZP, may have

indirect effects also on the liver and muscle (4, 6). In various models,

GIP seems to stimulate LPL activity (53), modulating triglycerides

(TG) release and favor its clearance (53) and deposition in white

adipose tissue (WAT); also increase WAT perfusion (54–56). TZP

decreases serum alanine aminotransferase and atherogenic

biomarkers (chylomicrons, small dense LDL-cholesterol levels,

apoB, apoC-III) (57). Relating to the presence of incretin

receptors on endothelial cells, TZP can also reduce blood pressure

(BP) (58). In addition to enhancing lipid metabolism, the

combination GIP-GLP1 may improve weight parameters by

acting on receptors located in the central nervous system (CNS).

In high-fat-fed mice, the combined metabolic effect of incretins

hesitates in more reduction of food intake and consequently more

weight reduction (59). The reduction in food intake may be related

to the activity of GIP, able to cross the blood barrier, on its receptors

sited in the arcuate (ARC) nucleus and other hypothalamic centers.

In CNS, GIP-R is expressed on the surface of cells both alone and in

association with GLP1-R (60), acting on the same cells (facilitating

GLP-1 internalization to specific neuronal populations (61)) or, as

documented in other studies, on different cells (62). Interestingly, in

some cells of the ARC nucleus, it is also possible to find

neuropeptide receptors (molecules with a role in the regulation of

calorie intake) together with GIP-R, probably implicated in the

regulation of food intake. Moreover, GIP seems to attenuate GLP-

1R-agonism mediated adverse effects thus making more tolerant

this therapy and favoring WL. Together, this evidence suggests that

GIP may drive WL directly, inhibiting caloric intake, indirectly

exploiting the anorectic action of GLP-1, or by reducing GLP-1RA

adverse effects (59, 60, 63). Also, it seems that there could be

another mechanism involved in the reduction of food intake,

probably related to the stimulation of POMC gene expression

mediated by co-agonism (62). Co-treatment with GLP-1R and

GIP-R agonists also results in food intake reduction and BW

reduction than either agonist alone in obese mice with T2D and

rats (64–66). Beyond the reduction in energy intake, co-agonism

seems to be able to affect food choice, favoring the consumption of

healthy nutrients, how documented in experiments on mice and

rats (67). Moreover, in mice, the administration of TZP showed to

inhibit gastro-enteric delay (52).

Experimental data on animal models have suggested that GIP

suppresses peripheral arterial remodeling, thus showing an anti-
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atherosclerotic activity, by acting on receptors in the heart and

vessels (19, 20). GIP appears also to reduce radical oxidative stress

species (48), but also it is known the implication of GIP in the

inflammatory pathways. Data suggest that activation of GIP-R

decreases inflammation in adipose tissue and cytokines levels

(such as IL-6) and promotes the rise of serum adiponectin levels,

a cytokine with anti-inflammatory effects and beneficial effects on

diabetic nephropathy, which can explain potential beneficial effects

on kidneys (even if GIP-R are not present) (47). It also induces

nitric oxide–mediated vasodilation and thus may have implications

for CV disease (37, 68) and kidneys.

On the other hand, in kidneys, the activation of GLP1-R”

without receptors, sited in the proximal tubule and pre-

glomerular portion, increases cAMP levels, which then triggers

PKA activity, inhibiting oxidative renal injury and thus delaying the

development of diabetic nephropathy. The action on kidneys

appears to be directly through the effects also on renin-secreting

cells of the juxta-glomerular apparatus, whose stimulation may lead

to increased natriuresis and reduce hyperfiltration, and indirectly by

the reduction of angiotensin II levels, the increase in nitric oxide

with consequently endothelial vasodilation and the improvement of

risk factors of kidney disease (hyperglycemia, hypertension, obesity)

(20). In this sense, the role of TZP may also be suggested (Figure 2).
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2 Data of efficacy

2.1 Clinical trials: the SURPASS program

The central clinical trial program designed to demonstrate the

therapeutic effectiveness (in terms of GC and BW reduction),

tolerability and safety of TZP in diabetic patients was the

SURPASS program. It encompasses trials SURPASS from 1 to 6

(Figure 3A), SURPASS-J (mono and combo) and SURPASS-AP,

performed respectively on Japanese and Asian-Pacific population

(Figure 3B), and SURPASS CVOT.

All these trials amount standard features: TZP is surveyed at

three decisive doses (5, 10, and 15 mg per week); the treatment is

started at the dose of 2.5 mg and increased every four weeks. Some

SURPASS trials use active comparators like GLP-1RA, or basal

insulin preparations, while others compare TZP to placebo.

In the most of the studies the primary endpoint is a change in

HbA1c from baseline, except for the SURPASS J combo, where the

primary endpoint is the number of patients with more than one

critical adverse event (69, 70).

The SURPASS-1 trial studied the efficacy and safety of the three

doses of TZP versus placebo in diabetic drug-naïve patients not

adequately controlled with a lifestyle mediation (diet and exercise).
FIGURE 1

Tirzepatide’s pathway signaling. TZP binds its receptor, leading to the activation of adenylyl cyclase-cAMP-protein kinase A (PKA) pathway and thus
stimulating glucose metabolism (glycolysis and Krebs Cycle). The increase of intracellular ATP levels hesitates in the closure of plasma membrane K+
channels, thus triggering b-cell depolarization. Due to depolarization, voltage-gated Ca2+ channels become open, favoring the entrance of Ca2+
into the cell, which concomitantly stimulates the releasing of calcium from the endoplasmic reticulum. This leads to the release of insulin into the
bloodstream. Additionally, PKA stimulates insulin gene transcription, leading to insulin synthesis. as, in vivo-subunit; ADP, adenosine diphosphate;
ATP, adenosine triphosphate; b/g, G protein b/gamma subunits; cAMP, cyclic adenosine monophosphate; GIP-R/GLP-1R, gastric inhibitory
polypeptide receptor/glucagon-like peptide 1 receptor; PKA, adenylyl cyclase-cAMP-protein kinase A.
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All the three doses of TZP confirmed an important decrease in

HbA1c and BW. It demonstrated to have a safety profile similar to

GLP-1RA not increasing the risk of hypoglycemia (19, 48).

In the SURPASS-2 study, TZP at the dose of 5, 10, and 15 mg

were compared to the GLP-1RA semaglutide (1 mg once weekly) in

patients not well controlled in therapy only with metformin (44,

71). In summary, TZP was greater to semaglutide in reducing

HbA1c (31, 44, 71).

The SURPASS-3 study was started to study the efficacy and

safety of TZP versus basal insulin degludec in diabetic patients

inadequately controlled by metformin with or without an SGLT2-i

for 52 weeks (72–74). A sub-study of this trial focused on GC

through the use of continuous glucose monitoring (CGM) and the

proportion of time within a tight predefined “time in range” (TIR)

from 71 to 140 mg/dL at the end of the study was considerably more

significant in the group of participants receiving either 10 or 15 mg

TZP competed to the group taking insulin degludec (72, 73, 75).

In the 52-week SURPASS-4 trial TZP was tested versus insulin

glargine in diabetic adults and a high CV risk below not sufficient

GC at baseline and in therapy with one to three oral glucose-

lowering drugs (metformin, sulfonylurea, SGLT2-i). In summary,

TZP attained more pronounced HbA1c reductions at the end of the

study competed to insulin glargine, with also a lower incidence of

hypoglycemia. TZP treatment was not associated with increased CV

risk (72, 76).

The SURPASS-5 study evaluated the efficacy and safety of an

injectable mixture therapy: TZP and insulin glargine. Diabetic

patients in therapy with metformin and insulin glargine as

baseline therapy and not adequately controlled received either

TZP or placebo during the 40-week study span (72, 77). Patients

with T2D who received the additional therapy with TZP reached

statistically significant improvements in GC after 40 weeks (72).

In the SURPASS-6 trial, TZP was compared to insulin Lispro

three times daily in diabetic patients previously treated with a dose
Frontiers in Endocrinology 05
of insulin glargine, with or without metformin. Weekly TZP

compared with prandial insulin, administered in addition to

insulin glargine, proved reductions in HbA1c and BW, not

increased the risk of hypoglycemia (78, 79).

The SURPASS-J-mono study was a phase 3 clinical trial

performed in Japan. It comprised adults with T2D who had

discontinued an oral glucose-lowering medication or were

treatment-naïve. TZP was superior to dulaglutide in GC and

reduction of BW and the safety report of TZP was coherent with

that of dulaglutide (80).

The SURPASS-J-combo trial embraced diabetic adults with

HbA1c 7% to 11% and BMI ≥ 23 kg/m2, stable weight and

uncontrolled with therapy of metformin, thiazolidinedione,

sulfonylureas, meglitinide, alpha-glucosidase inhibitor or SGLT2-i

(81). TZP was well tolerated as an add-on to oral glucose-lowering

drugs monotherapy in Japanese diabetic participants and showed

development in GC and BW, irrespective of undercurrent glucose-

lowering drugs (82).

In SURPASS-AP trial insulin-naive diabetic patients not

adequately controlled on therapy with metformin (with or

without a sulphonylurea) in Australia, India, China and South

Korea, were randomized to TZP 5 mg, 10 mg or 15 mg or insulin

glargine. TZP was generally well tolerated and confirmed greater

diminution in HbA1c compared to insulin glargine in an Asia-

Pacific patients, in particular in Chinese population with T2D (83).

The SURPASS-CVOT trial, where dulaglutide at the dose of 1.5

mg/week or at the highest tolerated dose, is the comparator, has a

distinctive design from the other trials: the primary endpoint is the

time to the first manifestation of any major adverse CV event

(MACE), defined as myocardial infarction, stroke or CV death. The

study is fully recruited and ongoing (84).

HbA1c was reduced in SURPASS 1–5, using from 5 to 15 mg of

TZP per week, by between 1.69 to 2.58%, and a new plateau of

HbA1c and fasting serum glucose (FSG) was reached with
FIGURE 2

Tirzepatide’s effects on various organs.
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approximately 24–30 weeks of treatment. FSG was reduced in

SURPASS 1–5 between 43 and 63 mg/dL, and BW was reduced

by between 5.4 to 11.7 kg in SURPASS 1–5. Extraordinarily, a

plateau wasn’t achieved in trials with a duration shorter than 52

weeks; to reach a new steady state about BW it may take more than

a year after initiating TZP treatment (85).

Furthermore, TZP was significantly more efficacious than titrated

basal insulins degludec and glargine (75). In these trials, higher doses

of TZP were at least as successful as basal insulin in monitoring FSG.
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However, the substantially better efficacy (concerning HbA1c

and BW reductions) compared to semaglutide at the standard dose

used in most type 2 T2D trials was the most remarkable finding (85,

86). From this treatment difference we can deduce that GIP-R

agonism contributes considerably to the global efficacy of TZP.

The relative reductions in HbA1c and BW observed with TZP in

all its final doses were comparable among the SURPASS trials. The

reduction in HbA1c is independent of age (85), duration of T2D

(87), or baseline HbA1c, with meaningful reductions in all of the
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from baseline in 

BW  
Proportion of 
participants 

with HbA1c <7% 
Mean change 

from baseline in 
FSG 

Proportion of 
participants 
achieving an 
HbA1c ≤6.5% 
and <5.7% 

Change from 
baseline in 7-
point SMBG 

profiles 
Proportion of 
participants 

achieving WL 
(5%, 10%, and 

15% of BW) 

Mean change 
from baseline in 

BW 
Achievement of 

HbA1c level 
target <7% 

Proportion of 
participants 
with HbA1c 
<6.5% and 

<5.7%  
Proportion of 
participants 

achieving WL 
(5%, 10%, and 

15% of BW) 
Mean change 

from baseline in 
FSG 

Change from 
baseline in 7-
point SMBG 
profiles, BMI, 

WC and serum 
lipids 

Achievement of 
HbA1c level 
target <7%, 
≤6.5% and 

<5.7% 
Mean change 

from baseline in 
FSG 

Mean change 
from baseline in 

BW 
Attainment of 
WL of at least 
5%, 10%, and 

15% of BW 

Demonstrating 
statistical 

superiority of 
individual TZP 
doses (5 mg, 
10 mg and/or 

15 mg) in 
change in 

HbA1c and BW 
Achievement of 

HbA1c level 
target level 
target <7%, 

≤6.5% 
Attainment of 
WL of at least 

5% 
Mean change 

from baseline in 
FSG 

Change from 
baseline in 7-
point SMBG 
profiles, BMI, 

WC and serum 
lipids 

 
 

Numbers of 
patients 

Randomized: 
478 

Completed trial: 
428 

Randomized: 
1879  

Randomized: 
1444 

Completed trial: 
1325 

Randomized: 
2002 

Completed trial: 
1801 

Randomized: 
475 

Completed trial:  
451 

Randomized: 
1428 

Completed trial:  
1304 

Population Mean duration 
T2D: 4.7 years 
Mean HbA1c: 

7.94%  
Mean age: 54.1 

years  
Mean BW: 

85.9kg 
Mean FSG: 

153.6 mg/dL 

Mean duration 
T2D: 8.6 years 
Mean HbA1c: 

8.28%  
Mean age: 56.6 

years  
Mean BW: 93.7 

kg 
Mean FSG: 

172.9 mg/dL 

Mean duration 
T2D: 8.4 years 
Mean HbA1c: 

8.17%  
Mean age: 57.4 

years  
Mean BW: 

94.3kg 
Mean FSG: 

169.3 mg/dL 

Mean duration 
T2D: 10.5 

years 
Mean HbA1c: 

8.52% 
Mean age: 63.6 

years  
Mean BW: 

90.3kg 
Mean FSG: 

171.2 mg/dL 

Mean duration 
T2D 13.3 years 

Mean HbA1c: 
8.31% 

Mean age: 60.7 
years  

Mean BW: 
95.1kg 

Mean FSG: 
162.4 mg/dL 

Mean duration 
T2D: 13.8 

years 
Mean HbA1c: 

8.8% 
Mean age: 58.8 

years  
Mean BW: 

90.5kg 
Mean FSG: 

157.35 mg/dL 
Results HbA1c (Mean 

change from 
baseline) TZP 

vs placebo:      
-1.94% vs        

-0.04% 
BW (Mean 

change from 
baseline) TZP 

vs placebo:      
-8.1 Kg vs        

-0.7 Kg 
FSG (Mean 
change from 

baseline) TZP 
vs placebo:      

-46.2 mg/dL vs   
-12.9 mg/dL  

HbA1c (Mean 
change from 

baseline) TZP 
vs sema:        
-2.18% vs       

-1.86% 
BW (Mean 

change from 
baseline) TZP 

vs sema:        
-9.3 Kg vs       

-5.7 Kg 
FSG mean TZP 
vs sema: 112.6 
mg/dL vs 124.4 

mg/dL 

HbA1c (Mean 
change from 

baseline) TZP 
vs degludec:     

-2.16% vs       
-1.34% 

BW (Mean 
change from 

baseline) TZP 
vs degludec:     
-10.3 Kg vs      

+2.3 Kg 
FSG (Mean 
change from 

baseline) TZP 
vs degludec:     
-54 mg/dL vs    
-55.7 mg/dL 

HbA1c (Mean 
change from 

baseline) TZP 
vs glargine:      
-2.41% vs        

-1.44% 
BW (Mean 

change from 
baseline) TZP 
vs glargine:      
-9.4 Kg vs        
+1.9 Kg 

FSG (Mean 
change from 

baseline) TZP 
vs glargine:      

-54.8 mg/dL vs    
-51.4 mg/dL 

HbA1c (Mean 
change from 

baseline) TZP 
vs placebo:      
-2.28% vs        

-0.86% 
BW (Mean 

change from 
baseline) TZP 

vs placebo:      
-7.2 Kg vs        
+1.6 Kg 

FSG (Mean 
change from 

baseline) TZP 
vs placebo:      

-61.6 mg/dL vs   
-39.2 mg/dL 

HbA1c (Mean 
change from 

baseline) TZP 
vs Lispro:        
-2.11% vs       

-1.13% 
BW (Mean 

change from 
baseline) TZP 

vs Lispro:        
-9 Kg vs         
+3.2 Kg 

 

 SURPASS-J-MONO SURPASS-J-COMBO SURPASS-AP 
Study design Multicentre 

Randomized 
Double-blind  

Parallel-group 
Placebo-controlled 

Phase 3 Trial 
52 weeks 

Multicentre 
Randomized 
Open-label 

Parallel-group 
Active-controlled 

 Phase 3 trial 
52 weeks 

Multicentre 
Randomized 
Open- label 

Parallel-group 
Active-controlled 

Phase 3 trial 
40 weeks 

Period 7 May 2019 
- 

31 Mar 2021 

30 Mar 2019 
- 

4 Feb 2020 

31 Dec 2019 
- 

24 Nov 2021 

Comparator Dulaglutide Different dose of TZP Insulin Glargine 
Primary Endpoint Mean change from baseline 

in HbA1c 
Safety and Tolerability 

assessed as incidence of 
TEAEs 

Mean change from baseline 
in HbA1c 

Secondary Endpoints Mean change from baseline 
in FSG 

Percentange of participants 
with HbA1c <7%  

Change from baseline in 7-
point SMBG profiles 

Mean change from baseline 
in BW 

Attainment of WL of at least 
5% 

Mean change from baseline 
in fasting insulin 

Mean change from baseline 
in fasting C-peptide 

Change of HOMA2B-insulin 
e in HOMA-2S Insulin 
Rate of Hypoglycemia 

Mean change from baseline 
in HbA1c  

Mean change from baseline 
in BW 

Mean change from baseline 
in FSG 

Proportion of participants 
achieving an HbA1c < 7%, 

≤6.5% and <5.7% 
Change from baseline in 7-

point SMBG profiles 
Mean change from baseline 

in fasting insulin 
Mean change from baseline 

in fasting C-peptide 
Change of HOMA2 

Proportion of participants 
achieving of WL of at least 
5%, 10%, and 15% of BW 

Non-inferiority and 
superiority of all TZP doses 

in HbA1c reduction 
Proportion of participants 

with HbA1c <7% 
Mean change from baseline 

in BW  
 

Numbers of patients Randomized: 636 
Completed trial: 615 

Randomized: 443 
Completed trial: 398 

Randomized: 917 
Completed trial: 815 

Population Mean age: 56.6 years  
Mean BW: 85.9kg 

Mean HbA1c :8.56%  
Mean age: 57 years  

Mean duration T2D: 7.65 
years 

Mean HbA1c: 8.71%  
Mean age: 54.1 years  

Mean BW: 76.6kg 
Mean FSG: 177.4 mg/dL 

Results HbA1c (Mean change from 
baseline) TZP vs 

dulaglutide: -2.4 % vs -1.3% 
BW (Mean change from 

baseline) TZP vs 
dulaglutide: -8.3 Kg vs        

-0.5 Kg 
FSG (Mean change from 

baseline) TZP vs 
dulaglutide:                

63.3 mg/dL vs -31.9 mg/dL  

SAEs TZP 5 mg vs 10 vs 
10mg: 0 vs 1 vs 1 

HbA1c (Mean change from 
baseline) TZP 5mg vs TZP 

10mg vs TZP 15mg: -2.57% 
vs -2.98% vs -3.02% 

FSG (Mean change from 
baseline) TZP 5mg vs TZP 

10mg vs TZP 15mg:         
-58.6 mg/dL vs -71.2 mg/dL 

vs -74.4 mg/dL 

HbA1c (Mean change from 
baseline) TZP vs glargine:   

-2.39% vs -0.95% 
BW (Mean change from 

baseline) TZP vs glargine:   
-6.4 Kg vs +1.5 Kg 

FSG (Mean change from 
baseline) TZP vs glargine:     
-63 mg/dL vs -46 mg/dL 

BW (Mean change from 
baseline) TZP 5 mg vs TZP 

10 vs TZP 10 mg:           
-3.8 Kg vs -7.5 Kg vs         

-10.2 Kg 

A B

adjusted for the
FSG level

FIGURE 3

(A) The SURPASS Program (SURPASS1–6). TZP, Tirzepatide; FSG, Fasting serum glucose; BW, Body Weight; HbA1c, Glycated Hemoglobin; T2D, Type
2 Diabetes; SMBG, self-monitored blood glucose; WC, waist circumference; HOMA2-IR, homeostasis model assessment–insulin resistance. (B) The
SURPASS Program (J-mono, J-combo e AP) TZP, Tirzepatide; FSG, Fasting serum glucose; BW, Body Weight; HbA1c, Glycated Hemoglobin; T2D,
Type 2 Diabetes; SMBG, self-monitored blood glucose; WC, waist circumference; HOMA2B-Insulin, homeostasis model assessment B–insulin;
HOMA2S-Insulin, homeostasis model assessment S–insulin; TEAEs, treatment-emergent adverse events; SAEs, serious Adverse Event(s).
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subgroups, even if the reduction is more significant in patients with

higher HbA1c at the baseline.

Concerning BW, a higher baseline BMI predicts absolute weight

reduction. However, a substantial body WL is detected even in

patients with a BMI <27 kg/m2. So, there is no significant difference

about sex between females and males in patients treated with TZP.

Another remarkable finding from the SURPASS trials is that there

is a significant relationship between WL and the decrease in HbA1c,

demonstrating that more significant WL attainable with TZP, has a

considerable impact on GC and, accordingly, on the HbA1c (Figure 4).

Approximately 38% of patients cared for TZP reached an

HbA1c <5.7%, a nondiabetic value. This subgroup was

characterized by a shorter duration of T2D, slightly younger age,

lower baseline FSG and HbA1c, and more significant BW reduction.

There wasn’t a difference in the baseline BMI value in patients who

didn’t reach an HbA1c <5.7%. Thus, there is a higher likelihood of

response in patients with less advanced T2D; there is a substantial

inter-individual variability in treatment effects (85).

2.1.1 Effects on lipid structure and on the liver
The SURPASS-2, where TZP (with metformin) was compared

to semaglutide (74, 88), showed adjunctive effects, such as lowering

the concentrations of LDL and triglycerides and elevating the

concentration of HDL.

The main suppliers to the progression of MAFLD are hepatic

steatosis and insulin resistance.

Due to the above-mentioned effects of TZD on glycemic, hepatic

metabolism, and inflammation, treatment with dual-agonism may

reduce or reverse liver damage (lobular inflammation, hepatic

steatosis, liver cell damage, and fibrosis) and metabolic dysfunction

(35, 41).

GLP-1RA has multiple hepatic effects on MAFLD, involving an

adaptation of portal and plasma glucagon and insulin

concentrations, hepatic insulin sensitivity and improving

hepatocyte mitochondrial function (89) liver enzymes and hepatic

fat accumulation (90) and reducing adipose tissue lipotoxicity as

well as promoting improvement of steatohepatitis in patients with
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MAFLD and stimulating WL as well as weight-independent

mechanisms (91) (92). The reduction in BW and the improved

GC are important factors in reducing NAFLD parameters, reducing

hepatic steatosis and fibrosis (93) and improving hepatic necro-

inflammation (94, 95). Various mechanisms have been theorized to

describe how dual agonism, as GLP-1 RA, could directly reduce

triglycerides’ hepatocyte storage, lipogenesis and improving hepatic

glucose metabolism (96) and promoting lipolysis and fatty acid

oxidation (97). So, it can reduce macrophage infiltration of adipose

tissue, inhibit inflammatory pathways in adipocytes and ameliorate

insulin sensitivity (98). Compared with GLP1-RA, TZP had more

potent hypoglycemic and weight-loss effects (99, 100).

There is a randomized controlled phase 2 study with the

objective to explore the use of TZP as a treatment for

MAFLD, providing strong evidence [NCT04166773]. However,

cornerstones of management are, if needed, promoting a healthy

lifestyle and WL. Adherence remains an important challenge, but

it may not be sufficient for critical disease activity or advanced

fibrosis (101).
2.2 SURMOUNT study program

TZP treatment induced a significant BW reduction in diabetic

patients who were obese or overweight. Based on these findings, the

SURMOUNT trials program was designed to study TZP’s efficacy

and safety in the treatment and management of obesity. It is a

clinical trial program that includes randomized controlled studies

with a duration of at least 72 weeks. In SURMOUNT-2,

SURMOUNT-3 and SURMOUNT-4 were used TZP doses of 10

and 15 mg and all three doses, including the 5-mg dose, were used

in SURMOUNT-1. The primary endpoint for all studies is the per

cent change from randomization in BW (Figure 5). Another study,

not yet published, is SURMOUNT-OSA, a clinical trial of 52-weeks

that examined the efficacy and safety of TZP versus placebo in obese

participants and an established OSA diagnosis for treatment of

moderate and severe OSA (102).
FIGURE 4

Tirzepatide’s effects on body weight and in HbA1c (SURPASS 2).
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The SURMOUNT-1 study was a clinical trial of 72 weeks

performed in 2539 obese patients without T2D that were

randomized in four arms with placebo or TZP at the dose of

5mg,10 mg or 15 mg (72). TZP treatment was correlated with

reduced systolic blood pressure (SBP), waist circumference, plasma

lipid concentrations and fasting insulin (103).

The SURMOUNT-2 study is a clinical study that enrolled 938

diabetic patients, receiving 10 mg or 15 mg of TZP or placebo. In

this 72-week trial TZP 10 mg and 15 mg determinate a clinically

meaningful reduction in BW, with a safety profile comparable to

GLP1-RA- based therapies (104).

The SURMOUNT-3 study, after an organized intensive lifestyle

intervention of 12-week, is a randomized 72-week clinical trial

where patients receive placebo or TZP at the maximally tolerated

dose. When administered following an initial 12-week intensive

lifestyle intervention, TZP increased the WL (105).

In the end, SURMOUNT-4 is a trial that studies BW

preservation in participants with obesity or overweight. The main

purpose is to learn more about how TZP maintains WL. The study

has two phases: a lead-in phase in which all participants take TZP

and a treatment phase in which participants, after randomization,

will either continue TZP or switch to placebo. The general mean

weight reduction for TZP and placebo from weeks 0 to 88 were

respectively 25.3% and 9.9% (106).
2.3 Tirzepatide and hypertension: the role
of insulin resistance and hyperinsulinemia

Clinical studies showed that concomitant developments in

insulin sensitivity, b-cell, and a-cell function underpin the effects

of TZP on GC.

Furthermore, clinically meaningful blood pressure reductions

were observed in participants receiving TZP. The mean changes in

SBP of -2.8 to -12.6 mm Hg and mean reductions in diastolic blood

pressure (DBP) of -0.8 to -4.5 mm Hg were reported (107).

The factors behind obesity-induced hypertension are numerous,

and often, they are effective concurrently. They include changes in the

production of constricting and relaxing factors endothelium-derived,

interruption of molecular signaling, increased oxidative stress, renal

injury, insulin resistance, hyperinsulinemia, sleep apnea syndrome,

that make hemodynamic alterations (108, 109). Also, adipose tissue

provides to determine endothelial dysfunction by secreting

adipokines (109–111).

Insulin resistance and hyperinsulinemia are often present in

obese individuals and play a significant role in the genesis of

hypertension (112, 113). Some studies have evidenced that

hyperinsulinemia may activate the renin-angiotensin system,

increase sympathetic nervous system activity and renal sodium

retention and, if sustained, all these elements could increase blood

pressure (112, 114). Insulin can activate transporters such as the

Sodium-proton exchanger type 3 (NHE3) in the proximal tubule

and the epithelial sodium channel (ENaC) in the distal nephron and

in the connecting tubule, another vital contributor to sodium

reabsorption (112, 115). In addition, insulin regulates w-no-lysine

(WNK) kinases, which, through the stimulation of sodium
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reabsorption in the distal nephron, are responsible for familial

hypertension (112, 116).

In the SURPASS-1 trial, TZP 10 mg resulted in a mean decrease

in SBP of 5.2 mmHg, which is more significant than that with a

placebo. Likewise, in the SURPASS-3 trial, all three doses of TZP

caused a significant decrease in mean SBP from baseline (from 4.9

to 6.6 mmHg).

We can use SURMOUNT 3 as a reference within the

surmount program to confirm the effectiveness of TZP in

improving tension values.

In this trial, from randomization to week 72, TZP determinates

more significant improvements versus placebo in both SBP (TZP

−5.1 mmHg, placebo, 4.1 mmHg (Figure 6A) and DBP (TZP −3.2

mmHg, placebo 2.3 mmHg) (105) (Figure 6B).
2.4 Other clinical trials of
Tirzepatide’s efficacy

Recently, in addition to the clinical trials mentioned above,

which have given impressive results, a trial based on SURPASS-2

study’s general protocol was recently stated, including physiological

outcomes. It’s a multicenter, double-blind, randomized, phase 1

study, edited by Heise et al. to estimate insulin sensitivity in patients

treated with placebo, TZP or semaglutide after 28 weeks of

treatment, achieving a hyperinsulinemic, euglycemic clamp

experiment, followed by a hyperglycemic clamp (216 mg/dL) to

estimate insulin secretory responses. On the second day, glycemia,

glucagon and insulin responses were documented afterwards a

mixed meal test with a concurrent valuation of ratings of hunger,

satiety and prospective food consumption; on the occasion of an ad

libitum meal, energy intake was measured.

The clinical outcomes imitated the same findings of SURPASS-

2 in terms of HbA1c reduction and WL. With TZP treatment,

insulin sensitivity rises by 65.7%, measured by the glucose infusion

rate indispensable to maintain euglycemia, and the rise was 20.5%

greater with TZP than with semaglutide 37.5% with semaglutide 1

mg). Some of this effect is likely due to the change in WL (6.9 kg

with semaglutide versus 11.2 kg with TZP).

There may be weight-independent and weight-dependent factors

associated with TZP treatment that improve insulin sensitivity and a

more substantial improvement in insulin sensitivity with TZP

compared to semaglutide per unit WL.

There was also a significant reduction in fasting and post-meal

glycemia with both semaglutide and TZP compared with placebo,

with no difference at the baseline-subtracted plasma glucose

between TZP and semaglutide.

Meal-related insulin secretory responses were meaningfully

higher with semaglutide and placebo than TZP treatment. These

findings help to explain some aspects of TZP’s clinical efficacy, but

from this experiment, it’s impossible to discriminate whether the

different effects of TZP are the result of GIPR signaling (85, 117, 118).

In another Clinical Trial, Thomas et al. showed that TZP in

diabetic patients resulted in substantially greater GC and WL versus

dulaglutide. This is a post hoc exploratory biomarker study that

explored the results of TZP on insulin sensitivity and pancreatic b-
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cell function. The results are that b-cell function was improved, and

fasting glucagon levels were reduced in patients treated with TZP,

better than dulaglutide, improving several markers of pancreatic b-
cell function, as exposed by dose-dependently decreasing proinsulin

levels, proinsulin/insulin ratios and proinsulin/C-peptide ratios and
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increasing HOMA2-B indices. These data may be suggestive of

developments in pancreatic b-cell function because increased

circulating proinsulin/insulin ratios and proinsulin/C-peptide are

important markers of initial and increasing pancreatic b-cell
secretory dysfunction.
Comparator Placebo Placebo Placebo Placebo 
Primary Endpoint(s) Percentage change in 

BW 
Participants achieving of 

WL of at least 5% 

Percentage change in 
BW 

Participants achieving of 
WL of at least 5% 

Percentage change in 
BW 

Participants achieving of 
WL of at least 5% 

Percentage change in 
BW from randomization 
(week 36) to week 88 

Secondary Endpoints WL of 10% or more, 
15% or more, and 20% 

or more 
Change from baseline 
in BW from baseline to 

week 20 
Change from baseline 

in WC, SBP, DBP, 
fasting insulin, lipid 
levels and SF-36 

physical function score 
Percentage change in 

total body-fat mass 
from baseline 

 

WL of 10% or more, 
15% or more, and 20% 

or more 
Mean change from 
baseline in HbA1c 

Participants achieving 
an HbA1c < 7%, ≤6.5% 

and <5.7% 
Change from baseline 
in FSG, WC and lipid 

levels  
Change from baseline 
in fasting insulin, WL > 
25% or more, BMI, BW 

 

WL of 10% or more, 
15% or more, and 20% 

or more 
Participants maintaining 

≥80% of lead-in WL 
Change from baseline in 

WC 
Change from baseline 

in BW, BMI, SBP, DBP, 
FSG and lipid levels  
Change in SF-36v2 

Physical Functioning 
domain score 

Change in IWQOL-
Lite-CT Physical 

Function composite 
score 

Proportion of 
participants at week 88 

maintaining at least 80% 
of the WL during the 36-
week open-label period 
and time during the 52-

week double-blind 
treatment period to first 

occurrence of 
participants returning to 

greater than 95% 
baseline BW for those 
who lost at least 5% 
during the open-label 

lead-in period. 
Change in BW and WC 
during the double-blind 

period 
Proportion of 

participants achieving 
WL thresholds of at least 

5%, at least 10%, at 
least 15% and at least 
20% since enrollment 

Proportion of 
participants achieving at 

least 25% WL since 
enrollment 

Numbers of patients Randomized: 2539 Randomized: 938 
Completed trial: 859 

Randomized: 579 
Completed trial: 479 

Enrolled: 783 
Randomized: 670 

Completed trial: 575 
Population Mean duration Obesity: 

14.4 years 
Mean age: 44.9 years  

Mean BW: 104.8kg 
Mean BMI: 38 kg/m2 

Mean WC: 114.1 cm 

Mean duration Obesity: 
17.7 years 

Mean age: 54.2 years  
Mean BW: 100.7 kg 

Mean BMI: 36.1 kg/m2 

Mean WC: 114.9 cm 

Mean duration Obesity: 
15.1 years 

Mean age: 45.6 years  
Mean BW: 109.5 kg 

Mean BMI: 38.6 kg/m2 

Mean WC: 116.1 cm 

Mean duration Obesity: 
15.5 years 

Mean age: 48 years  
Mean BW: 107.3 kg 

Mean BMI: 38.4 kg/m2 
Mean WC: 115.2 cm 

Results BW (Mean change from 
baseline) TZP vs 

placebo: -18.4 Kg vs      
-3.1 Kg 

WC (Mean change from 
baseline) TZP vs 

placebo: -16.7 cm vs      
-4 cm 

SBP (Mean change from 
baseline) TZP vs 

placebo: -7.2 mmHg vs    
-1 mmHg 

DBP (Mean change from 
baseline) TZP vs 

placebo: -4.8 mmHg vs    
-0.8 mmHg 

BW % (Mean change 
from baseline) TZP vs 
placebo: -13.75% vs      

-3.2% 
WC (Mean change from 

baseline) TZP vs 
placebo: -11.95 cm vs     

-3.3 cm 
HbA1c (Mean change 
from baseline) TZP vs 

placebo: -2.07% vs       
-0.51%  

BMI (Mean change from 
baseline) TZP vs 

placebo: -5.05 kg/m2 vs    
-1.2 kg/m2 

BW % (Mean change 
from randomization) TZP 
vs placebo: -18.4 % vs     

+2.5% 
BMI (Mean change from 
randomization) TZP vs 
placebo: -7.7 kg/m2 vs     

+1.2 kg/m2 
WC (Mean change from 
randomization) TZP vs 
placebo: -14.6 cm vs      

+0.2 cm 
SBP (Mean change from 
randomization) TZP vs 
placebo: -5.1 mmHg vs    

+4.1 mmHg 
DBP (Mean change from 
randomization) TZP vs 

BW % (Mean change 
from randomization) TZP 

vs placebo: -6.7 % vs      
+14.8% 

WC (Mean change from 
randomization) TZP vs 

placebo: -4.6 cm vs      
+8.3 cm 

BMI (Mean change from 
randomization) TZP vs 
placebo: -2.1 kg/m2 vs     

+4.3 kg/m2 
 
 

 SURMOUNT-1 SURMOUNT-2 SURMOUNT-3 SURMOUNT-4 

Study design Multicentre 
Randomized 
Double-blind  

Placebo-controlled 
Phase 3 Trial 

72 weeks 

Multicentre 
Randomized 
Double-blind  

Parallel-group trial 
Placebo-controlled 

Phase 3 Trial 
72 weeks 

Multicentre 
Randomized 
Double-blind 

Placebo-controlled 
 Phase 3 trial 

72 weeks 

Multicentre 
Randomized 

Parallele-group 
Open-label in 36 weeks 

Double-blind and 
placebo-controlled in 52 

weeks 
Phase 3 trial 

88 weeks 
Period December 2019 

- 
April 2022 

29 Mar 2021 
- 

10 Apr 2023 

20 Mar 2021 
- 

12 May 2023 

29 Mar 2021 
- 

18 May 2023 

placebo: -3.2 mmHg vs    
+2.3 mmHg 

FIGURE 5

The Surmount Program. TZP, Tirzepatide; BW, Body Weight; WL, Weight Loss; WC, waist circumference; SBP, Systolic Blood Pressure; DBP, Diastolic
Blood Pressure.
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HOMA2-IR indices of insulin resistance and fasting insulin

levels was reduced by TZP treatment. TZP’s IS effects were only

partially attributable to WL, recommending that dual agonism gives

distinct instruments of GC (119).
3 Conclusion

The troubling rise in the number of subjects affected by obesity

worldwide has necessitated new scientific developments to blunt

previous adverse effects of medication and facilitate administration,

addressing different problems with a single drug. TZP has shown

encouraging results in WL, high blood pressure, and HbA1c. Patient

compliance is encouraged since it has the vantage of a once-week

dosing. In this sense, TZP could represent a breakthrough due to its

magnitude of effects on WL, blood pressure, and glycemia. It also

opens a new scenario in obesity treatment with the promise of

finally being the silver bullet against obesity.
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Louvain (UCLouvain), Louvain-La-Neuve, Belgium Once-Weekly 2.4 Mg Semaglutide
for Weight Management in Obesity: A Game Changer? Endocrinology. (2022) 18:35.
doi: 10.17925/EE.2022.18.1.35

39. Wang L. Designing a dual GLP-1R/GIPR agonist from tirzepatide: comparing
residues between tirzepatide, GLP-1, and GIP. DDDT. (2022) 16:1547–59. doi: 10.2147/
DDDT.S358989

40. Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling
in beta cells – A review of receptor interactions and co-stimulation. Peptides. (2022)
151:170749. doi: 10.1016/j.peptides.2022.170749

41. Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, Bokvist KB, et al.
LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2
diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. (2018) 18:3–
14. doi: 10.1016/j.molmet.2018.09.009

42. Alam S, Hasan M, Neaz S, Hussain N, Hossain M, Rahman T. Diabetes mellitus:
insights from epidemiology, biochemistry, risk factors, diagnosis, complications and
comprehensive management. Diabetology. (2021) 2:36–50. doi: 10.3390/diabetology2020004

43. Borner T, Geisler CE, Fortin SM, Cosgrove R, Alsina-Fernandez J, Dogra M,
et al. GIP receptor agonism attenuates GLP-1 receptor agonist–induced nausea and
emesis in preclinical models. Diabetes. (2021) 70:2545–53. doi: 10.2337/db21–0459

44. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin
hormone action. Cell Metab. (2013) 17:819–37. doi: 10.1016/j.cmet.2013.04.008

45. Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins
(GIP and GLP -1) in metabolic and cardiovascular disease: A pathophysiological
update. Diabetes Obes Metab. (2021) 23:5–29. doi: 10.1111/dom.14496

46. Conlon JM, O’Harte FPM, Flatt PR. Dual-agonist incretin peptides from fish
with potential for obesity-related type 2 diabetes therapy – A review. Peptides. (2022)
147:170706. doi: 10.1016/j.peptides.2021.170706

47. Gallwitz B, Witt M, Fölsch UR, Creutzfeldt W, Schmidt WE. Binding specificity
and signal transduction of receptors for glucagon-like peptide-1(7–36)Amide and
gastric inhibitory polypeptide on RINm5F insulinoma cells. J Mol Endocrinol. (1993)
10:259–68. doi: 10.1677/jme.0.0100259

48. Lupi R, Del Guerra S, D’Aleo V, Boggi U, Filipponi F, Marchetti P. The direct
effects of GLP-1 and GIP, alone or in combination, on human pancreatic islets. Regul
Peptides. (2010) 165:129–32. doi: 10.1016/j.regpep.2010.04.009

49. Samms RJ, Christe ME, Collins KA, Pirro V, Droz BA, Holland AK, et al. GIPR
agonism mediates weight-independent insulin sensitization by tirzepatide in obese
mice. J Clin Invest. (2021) 131:e146353. doi: 10.1172/JCI146353

50. Samms RJ, Zhang G, He W, Ilkayeva O, Droz BA, Bauer SM, et al. Tirzepatide
induces a thermogenic-like amino acid signature in brown adipose tissue. Mol Metab.
(2022) 64:101550. doi: 10.1016/j.molmet.2022.101550

51. Razzaki TS, Weiner A, Shukla AP. Tirzepatide: does the evidence to date show
potential for the treatment of early stage type 2 diabetes? TCRM. (2022) 18:955–64.
doi: 10.2147/TCRM.S328056

52. Urva S, Coskun T, Loghin C, Cui X, Beebe E, O’Farrell L, et al. The novel dual
glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP -1)
receptor agonist tirzepatide transiently delays gastric emptying similarly to selective
LONG-ACTING GLP -1 receptor agonists. Diabetes Obes Metab. (2020) 22:1886–91.
doi: 10.1111/dom.14110

53. Pratley RE. GIP: an inconsequential incretin or not? Diabetes Care. (2010)
33:1691–2. doi: 10.2337/dc10–0704

54. Wasada T, McCorkle K, Harris V, Kawai K, Howard B, Unger RH. Effect of
gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs.
J Clin Invest. (1981) 68:1106–7. doi: 10.1172/JCI110335

55. Oben J, Morgan L, Fletcher J, Marks V. Effect of the entero-pancreatic hormones,
gastric inhibitory polypeptide and glucagon-like polypeptide-1(7–36) amide, on fatty
acid synthesis in explants of rat adipose tissue. J Endocrinol. (1991) 130:267–72.
doi: 10.1677/joe.0.1300267

56. Kim S-J, Nian C, Karunakaran S, Clee SM, Isales CM, McIntosh CHS. GIP-
overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and
improved glucose homeostasis. PloS One. (2012) 7:e40156. doi: 10.1371/
journal.pone.0040156
frontiersin.org

https://doi.org/10.1161/CIR.0000000000000973
https://doi.org/10.1111/dom.15467
https://doi.org/10.1210/endo.133.6.8243312
https://doi.org/10.1038/nm727
https://doi.org/10.1038/sj.ijo.0802626
https://doi.org/10.1186/1742&ndash;4933-5&ndash;4
https://doi.org/10.4061/2010/647147
https://doi.org/10.1172/jci.insight.140532
https://doi.org/10.3390/biomedicines10102586
https://doi.org/10.1155/2012/175245
https://doi.org/10.3109/08037051.2013.823767
https://doi.org/10.1080/AC.70.1.3064591
https://doi.org/10.1080/08037050310016484
https://doi.org/10.1038/sj.jhh.1001864
https://doi.org/10.1038/sj.jhh.1002161
https://doi.org/10.1097/01.hjh.0000160225.01845.26
https://doi.org/10.1080/08037050802431416
https://doi.org/10.2337/dc14&ndash;1984
https://doi.org/10.1152/ajplegacy.1930.91.2.649
https://doi.org/10.2174/157016307781115476
https://doi.org/10.1210/jc.2003&ndash;031403
https://doi.org/10.1210/jc.2003&ndash;031403
https://doi.org/10.1136/bmj.d7771
https://doi.org/10.1038/nrendo.2012.140
https://doi.org/10.1016/S0140&ndash;6736(18)32260&ndash;8
https://doi.org/10.1016/S0140&ndash;6736(21)01324&ndash;6
https://doi.org/10.1056/NEJMoa2107519
https://doi.org/10.17925/EE.2022.18.1.35
https://doi.org/10.2147/DDDT.S358989
https://doi.org/10.2147/DDDT.S358989
https://doi.org/10.1016/j.peptides.2022.170749
https://doi.org/10.1016/j.molmet.2018.09.009
https://doi.org/10.3390/diabetology2020004
https://doi.org/10.2337/db21&ndash;0459
https://doi.org/10.1016/j.cmet.2013.04.008
https://doi.org/10.1111/dom.14496
https://doi.org/10.1016/j.peptides.2021.170706
https://doi.org/10.1677/jme.0.0100259
https://doi.org/10.1016/j.regpep.2010.04.009
https://doi.org/10.1172/JCI146353
https://doi.org/10.1016/j.molmet.2022.101550
https://doi.org/10.2147/TCRM.S328056
https://doi.org/10.1111/dom.14110
https://doi.org/10.2337/dc10&ndash;0704
https://doi.org/10.1172/JCI110335
https://doi.org/10.1677/joe.0.1300267
https://doi.org/10.1371/journal.pone.0040156
https://doi.org/10.1371/journal.pone.0040156
https://doi.org/10.3389/fendo.2024.1402583
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Corrao et al. 10.3389/fendo.2024.1402583
57. Pirro V, Roth KD, Lin Y, Willency JA, Milligan PL, Wilson JM, et al. Effects of
tirzepatide, a dual GIP and GLP-1 RA, on lipid and metabolite profiles in subjects with
type 2 diabetes. J Clin Endocrinol Metab. (2022) 107:363–78. doi: 10.1210/clinem/
dgab722

58. Forzano I, Varzideh F, Avvisato R, Jankauskas SS, Mone P, Santulli G.
Tirzepatide: A systematic update. IJMS. (2022) 23:14631. doi: 10.3390/ijms232314631

59. Finan B, Ma T, Ottaway N, Müller TD, Habegger KM, Heppner KM, et al.
Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and
humans. Sci Transl Med. (2013) 5(209):209ra151. doi: 10.1126/scitranslmed.3007218

60. Adriaenssens AE, Biggs EK, Darwish T, Tadross J, Sukthankar T, Girish M, et al.
Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the
hypothalamus regulate food intake. Cell Metab. (2019) 30:987–996.e6. doi: 10.1016/
j.cmet.2019.07.013

61. Kohnke S, Lam B, Buller S, Zhao C, Nuzzaci D, Tadross J, et al. Nutritional
signals rapidly activate oligodendrocyte differentiation in the adult hypothalamic
median eminence. Neuroscience. (2019). doi: 10.1101/751198

62. NamKoong C, Kim MS, Jang B-T, Lee YH, Cho Y-M, Choi HJ. Central
administration of GLP-1 and GIP decreases feeding in mice. Biochem Biophys Res
Commun. (2017) 490:247–52. doi: 10.1016/j.bbrc.2017.06.031

63. Samms RJ, Coghlan MP, Sloop KW. How may GIP enhance the therapeutic
efficacy of GLP-1? Trends Endocrinol Metab. (2020) 31:410–21. doi: 10.1016/
j.tem.2020.02.006

64. Irwin N, McClean PL, Cassidy RS, O’Harte FPM, Green BD, Gault VA, et al.
Comparison of the anti-diabetic effects of GIP- and GLP-1-receptor activation in obese
diabetic (Ob/ob) mice: studies with DPP IV resistantN-acGIP and exendin(1–39)
Amide. Diabetes Metab Res Rev. (2007) 23:572–9. doi: 10.1002/dmrr.729

65. Gault VA, Kerr BD, Harriott P, Flatt PR. Administration of an acylated GLP-1
and GIP preparation provides added beneficial glucose-lowering and insulinotropic
actions over single incretins in mice with type 2 diabetes and obesity. Clin Sci. (2011)
121:107–17. doi: 10.1042/CS20110006

66. Pathak NM, Pathak V, Gault VA, McClean S, Irwin N, Flatt PR. Novel dual
incretin agonist peptide with antidiabetic and neuroprotective potential. Biochem
Pharmacol. (2018) 155:264–74. doi: 10.1016/j.bcp.2018.07.021

67. Geisler CE, Antonellis MP, Trumbauer W, Martin JA, Coskun T, Samms RJ,
et al. Tirzepatide suppresses palatable food intake by selectively reducing preference for
fat in rodents. Diabetes Obes Metab. (2023) 25:56–67. doi: 10.1111/dom.14843

68. Wilson JM, Lin Y, Luo MJ, Considine G, Cox AL, Bowsman LM, et al. The Dual
Glucose-dependent Insulinotropic Polypeptide and Glucagon-like Peptide-1 Receptor
Agonist Tirzepatide Improves Cardiovascular Risk Biomarkers in Patients with Type 2
Diabetes: A p OST HOC Analysis. Diabetes Obes Metab. (2022) 24:148–53. doi: 10.1111/
dom.14553

69. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF
diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021
and projections for 2045. Diabetes Res Clin Pract. (2022) 183:109119. doi: 10.1016/
j.diabres.2021.109119

70. Min T, Bain SC. The role of tirzepatide, dual GIP and GLP-1 receptor agonist, in
the management of type 2 diabetes: the SURPASS clinical trials. Diabetes Ther. (2021)
12:143–57. doi: 10.1007/s13300–020-00981–0
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