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Long Xie1*, Wen Gan2 and GuangRong Cai3
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Hunan Normal University), Hunan Normal University, Changsha, China, 2Department of Thoracic
Surgery, Yuebei People’s Hospital, Shaoguan, Guangdong, China, 3Trauma Department of
Orthopaedics, Yuebei People’s Hospital, Shaoguan, Guangdong, China
Background: Many studies suggest a strong correlation between gut microbiota

(GM) and diabetic neuropathy (DN). However, the precise causal relationship

between GM and DN has yet to be fully elucidated. Hence, a bi-directional

Mendelian randomization (MR) analysis was used to examine the association

between GM and DN.

Methods: Widely known genome-wide association study (GWAS) of GM was

collected from theMiBio Gen project. Summary-level datasets for DNwere taken

from the FinnGen project. Inverse variance weighted approach was used for

evaluating the causal relationship between GM and DN. Subsequently, pleiotropy

and heterogeneity tests were performed to verify the reliability of the data.

Furthermore, a bidirectional two-sample MR analysis was done to investigate the

directionality of the causal relationships. Gene Ontology analysis was conducted

to identify the associations that could indicate biological functions.

Results:We identified potential causal associations between GM and DN (p< 0.05

in all three MR methods). Among them, we found increased levels of

Christensenellaceae R-7 (Odds ratio, OR= 1.52; 95% confidence interval, CI =

1.03–2.23; p = 0.03), Ruminococcaceae UCG013 (OR =1.35; 95% CI = 1.00–1.85;

p = 0.04), and Eggerthella groups (OR = 1.27; 95% CI = 1.05–1.55; p = 0.01),

which may be associated with a higher risk of DN, while increased levels of

Peptococcaceae (OR = 0.69; 95% CI = 0.54–0.90; p< 0.01) and Eubacterium

coprostanoligenes groups (OR = 0.68; 95% CI = 0.49–0.93; p = 0.01) could be

associated with a lower risk. Gene Ontology pathway analysis revealed

enrichment of genes regulated by the associated single-nucleotide

polymorphisms (SNPs) in the apical plasma membrane, glycosyltransferase

activity, hexosyltransferase activity and membrane raft. Reverse MR analyses

indicated that DNwas associated with fivemicrobial taxa in all three MRmethods.
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Conclusion: The results of our study validate the possible causative relationship

between GM and DN. This discovery gives new perspectives into the mechanism

on how GM influences DN, and establishes a theoretical foundation for future

investigations into targeted preventive measures.
KEYWORDS

gut microbiota, diabetic neuropathy, Mendelian randomization, causal relationship,
bi-directional
1 Introduction

Diabetic neuropathy (DN) is a common and burdensome

complication of diabetes that is significant but often over-looked. It

can markedly impair psychological functions and quality of life (1).

Diabetic Peripheral Neuropathy (DPN) is the most frequently

observed type of DN that affects the feet and legs. It presents a

range of symptoms, including pain, numbness, and severe

discomfort. autonomic dysfunction, however, affects the autonomic

nervous system that regulates involuntary bodily functions. This

dysfunction contributes to various problems, such as cardiovascular

dysfunction characterized by blood pressure and heart rate changes,

gastrointestinal dysfunction leading to gastroparesis, and urogenital

dysfunction affecting bladder control and sexual function (2). DPN

alone contributes to more than $10 billion in annual healthcare

expenses, exceeding one-fourth of the total direct medical costs of

diabetes (3). Managing DN requires a comprehensive approach that

includes strict glycemic control to slow neuropathy progression, pain

management and treatment of autonomic symptoms to enhance

quality of life (4). Early diagnosis and thorough management are key

to prevent complications and improve patient outcomes. Due to the

limited treatment options for DN, it is crucial to investigate and

identify new therapeutic targets (5).

Gut microbiota (GM) generally refers to the bacteria residing in

the human gut. It plays an important role in regulating a wide array

of physiological functions in the host and providing protection

against pathogenic bacteria (6). GM is involved in processes such as

digestion, immune system modulation, also influencing mood and

behavior through the gut–brain axis (7, 8). The pathogenesis of

microbiota dysbiosis significantly contributes to the onset and

advancement of diabetes mellitus and its complications, such as

cardiovascular disease, nephropathy, and DN, by promoting

systemic inflammation and disrupting metabolic functions (9).

However, these observational studies did not show a causal

relationship between GM with DN, and it is still uncertain

whether reverse causality weakens this correlation.
ropathy; IVW, inverse

edian; WMo, weighted

ntology; SNPs, Single

nce interval.
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Mendelian randomization (MR) is a method in genetic

epidemiology that uses genetic variants as instrumental variables

(IVs) to assess the causal relationship between an exposure and

outcome (10). Genome-wide association studies (GWASs) offer

extensive datasets featuring many single nucleotide polymorphisms

(SNPs) and significant sample sizes. MR leverages Mendelian

inheritance laws using one or more genetic polymorphisms as the

exposure variable. This makes GWAS-based MR a compelling

method for determining causality (11, 12).

The two-sample MR technique offers increased statistical power

to identify the causal effects between exposure factors and outcomes

using published summary estimates from various large-scale

GWASs (13). Also, large-scale summary statistics enable the

analysis of the relationships between GM and DN by enhancing

the statistical power of two-sample MR analysis. Hence, a

bidirectional MR methodology was employed to investigate the

potential causal association between GM and DN by combining

data from the MiBioGen and FinnGen consortiums’ GWASs on

genetic variations. The adoption of a bidirectional MR strategy

enhanced the robustness of our findings against potential

confounding variables and reverse causation. Finally, we

conducted a gene ontology (GO) analysis using lead SNPs to

investigate the GM’s biological impact on DN. This GO analysis

offered deeper understanding of the physiological mechanisms

involved. Our research opens new avenues and provides fresh

insights for future DN studies.
2 Methods

2.1 Study design

To establish the potential causal relationships between GM and

DN, we employed a bi-directional MR analysis, which provides

stronger associations by minimizing the biases present in the

traditional epidemiologic observational studies. The flow chart of

the study design is shown in Figure 1. To perform the study, it is

necessary that three fundamental assumptions are satisfied: (1) A

strong correlation between IVs and exposure; (2) No correlation

between IVs and confounders; and (3) IVs can only affect the

outcomes through exposure (14). IVs that fulfill these three
frontiersin.org
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assumptions were included in this MR study. Our results were

reported according to the STROBE-MR guidelines (15).
2.2 Data source of exposure and outcome

This was a multi-ethnic large-scale GWAS that coordinated 16S

ribosomal RNA gene sequencing profiles and genotyping data from

18,340 participants of 24 cohorts from the USA, Canada, Israel,

South Korea, Germany, Denmark, Netherlands, Belgium, Sweden,

Finland, and UK to explore the association between the autosomal

human genetic variants and GM (16). A total of 211 bacterial traits

(classified into specific phylum, class, order, family, and genus) were

obtained, and the sample size was 14,306. Out of the 211 traits

selected, 15 bacterial traits did not have specific species names.

Hence, we excluded them and used the remaining 196 traits for

analysis. All the original studies were approved ethically and

participants’ consents were obtained. In this study, the GWASs

and associated datasets were shown in Table 1.
2.3 Instrumental variables

IVs were chosen from a GWAS dataset provided by the

international consortium MiBio Gen. These IVs are specifically
Frontiers in Endocrinology 03
associated with the makeup of the human GM. First, consistent with

prior MR studies, we identified significant SNPs for the respective GM

using a cut-off value of p< 1×10−5 (17). When conducting a reverseMR

analysis with DN as the exposure, we set the threshold at p< 5×10-8 for

selecting SNPs. Second, the clump program in PLINK software was

adopted to exclude the dependent IVs of R2< 0.001 (clumping window

size = 10,000 kb), which were obtained using the 1000 Genome Projects

reference panel in Europe (18). Third, an important step in MR is to

ensure that the effects of the SNPs on the exposure correspond to the

same allele as that on the outcome. To avoid distortion of strand

orientation or allele coding, we removed palindromic SNPs (such as,

with A/T or G/C alleles). To assess the presence of weak instrument

bias, the F-statistic for the IVs was computed using the formula F =
R2(N−1−K)
(1−R2)K , where R2 is the proportion of variance in the exposure

explained by the genetic variants, N is the sample size, and K is the

number of instruments (19). A weak instrument, indicated by an F-

value below 10, was excluded (20). Additionally, by searching for

pleiotropic SNPs of confounders in PhenoScanner V2 (21), we

eliminated certain IVs that were significantly associated with

potential confounders (p< 1×10−5). When the exposure was GM,

potential confounders included Parkinsons disease, type II diabetes

mellitus, elevated blood glucose level, type II diabetes adjusted for body

mass index (BMI), and self-reported diabetes. In reverse MR analysis

withDN as the exposure, no potential confounders were identified. The

remaining IVs were then used for subsequent MR analysis.
TABLE 1 The present study used genome-wide association studies (GWAS) and associated datasets to conduct our analysis.

Exposure or outcome Sample size Ancestry Links for data download PMID

Human gut microbiome 18,340 participants Mixed https://mibiogen.gcc.rug.nl 33462485

Diabetic neuropathy
1,415 cases,

162,201 controls
European

https://gwas.mrcieu.ac.uk/datasets/finn-
b-DM_NEUROPATHY/

–

FIGURE 1

The flowchart for the study of the association between gut microbiota and Diabetic neuropathy. LD, linkage disequilibrium; SNP, single
nucleotide polymorphism.
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2.4 Heterogeneity and pleiotropy analyses

We conducted a heterogeneity test utilizing Cochran’s Q

statistics. A p< 0.05 indicated significant heterogeneity (10).

Horizontal pleiotropy, which implies that IVs influence outcomes

through paths other than the causal effects, can potentially lead to

false-positive results (p< 0.05) (22). To evaluate the direct

relationship between the chosen IVs and outcome, horizontal

pleiotropy was tested using MR-Egger intercept test and MR-

PRESSO global tests. Significant outliers identified in the MR-

PRESSO analysis were excluded to reduce the influence of

horizontal pleiotropy (23). Furthermore, a leave-one-out analysis

was conducted to validate the robustness of the results (24).
2.5 Statistical analysis for MR

For the MR analysis, we employed five methods: the inverse-

variance weighted (IVW) test, weighted median estimator (WME),

MR-Egger regression, weighted mode (WMe) and simple mode

(SM). IVW was the primary method, complemented by the other

four methods (25). All the statistical analyses were conducted using

R programming, version 4.2.3 (R Foundation for Statistical

Computing, Vienna, Austria). For MR analyses, we utilized the

“Two sample MR” (version 0.5.7) and “MR_PRESSO” (version 1.0)

R packages (23).
2.6 Gene ontology enrichment analysis

To examine the function of IVs in mediating causality between

exposure factors and outcomes, we utilized IV SNPs derived from MR

analysis. By integrating these SNPs with the data from the eQTLGen

database, we analyzed the genes regulating gene expression from the

cis-expression quantitative trait loci (cis-eQTL) standpoint and nearest

gene method (26). Using the R package “ClusterProfiler”we conducted

a gene ontology (GO) enrichment analysis on these genes to investigate

the patterns of gene expression regulation (27).
3 Results

3.1 Selection of IVs

To analyze the effects of GM on DN, we selected 2–12 SNPs for

GM species as IVs. Some analyses were unsuccessful due to the

absence of SNPs following harmonization. The F statistics for IVs

indicated that the estimates were less likely to suffer from weak

instrumental bias (F > 10, Supplementary Table 1).
3.2 Potential causal associations between
the GM and DN

As seen in Figure 2, in both circular heatmaps, the data layers,

from inside to out, represent the odds ratios (OR) calculated using the
Frontiers in Endocrinology 04
IVW method, followed by −log10 (p values) for IVW, Weighted

Median (WMo), WMe, SM, and MR-Egger methods, respectively.

The outermost ring illustrates the agreement of effect direction as

determined by the five MR methodologies: IVW (p< 0.05), MR-

Egger, SM, WMe, and WMo. We identified three risk factors (genus

Christensenellaceae R-7group, Eggerthella, and Ruminococcaceae

UCG-013) and two protecting factors (family. Peptococcaceae and

Eubacterium coprostanoligenes group) related to DN after setting a

standard in which the IVW method demonstrated a significant

difference (p< 0.05), and the five methods indicated consistent

directions. Details and statistics are given in Figure 3. Specifically,

we observed elevated levels of Christensenellaceae R-7 (OR = 1.52;

95% confidence interval, CI = 1.03–2.23; p = 0.03), Ruminococcaceae

UCG-013 (OR = 1.35; 95% CI = 1.00–1.85; p = 0.04), and Eggerthella

groups (OR = 1.27; 95% CI = 1.05–1.55; p = 0.01), which may be

linked to an increased risk of DN. Conversely, higher levels of

Peptococcaceae (OR = 0.69; 95% CI = 0.54–0.90; p< 0.01) and

Eubacterium coprostanoligenes groups (OR = 0.68; 95% CI = 0.49–

0.93; p = 0.01) could indicate a reduced risk of DN (Supplementary

Table 2). The leave-one-out investigation revealed that removing any

of the SNPs did not affect the overall results, suggesting that this MR

analysis is extremely robust (Supplementary Figure 1).
3.3 Sensitivity analyses

The MR-Egger, WMe, SM, and WMo techniques showed

comparable causal estimates for size and direction. We discovered

no evidence of horizontal pleiotropy for GM in DN with p > 0.05

when utilizing the MR-Egger regression intercept method. MR-

PRESSO analysis indicated no outliers in the findings. In addition,

the findings of the Cochrane’s Q statistics indicated no substantial

heterogeneity (p > 0.05) (Supplementary Table 3). Scatter plots were

utilized to assess the MR models and show the intercept of the MR-

Egger slope (Supplementary Figure 2).
3.4 Reverse MR analysis

Among the 211 bacterial traits, five exhibited elevated levels that

could be associated with an increased risk of DN. Details and statistics

are given in Figure 4. These include the genus Anaerofilum (OR =

1.07; 95% CI = 1.00–1.13; p< 0.05),Dorea (OR = 1.05; 95% CI = 1.02–

1.08; p< 0.01), LachnospiraceaeUCG-010 (OR = 1.05; 95% CI = 1.01–

1.09; p = 0.02), Ruminococcus 2 (OR = 1.06; 95% CI = 1.01–1.10; p =

0.01), and the order. NB1n (OR = 1.08; 95% CI = 1.01–1.14; p = 0.02).

Forest plots were drawn using IVW,MR-Egger, andWMo (Figure 5).

Next, sensitivity analysis of the MR results between DN and the five

GMs (Supplementary Table 4) was performed, and the test showed

no heterogeneity or horizontal pleiotropy. Details of IVs for reverse

MR are listed in Table 2. The intercepts of the MR-Egger regression

demonstrated no evidence of horizontal pleiotropy, as shown by p

value > 0.05. The MR-PRESSO global test score of p > 0.05 indicated

that there is no evidence of horizontal pleiotropy (Supplementary

Table 5). Scatterplots (Supplementary Figure 3) and leave-one-out

plots (Supplementary Figure 4) revealed no outliers.
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FIGURE 3

Forest plots of the significant causal effect of gut microbiota on diabetic neuropathy were calculated using the inverse variance weighted method,
MR-Egger, and weighted median. The forest plots demonstrate that elevated levels of Christensenellaceae R-7, Ruminococcaceae UCG-013, and
Eggerthella groups were risk factors for of diabetic neuropathy. While higher levels of Peptococcaceae and Eubacterium coprostanoligenes groups
were protective factors. IVW, Inverse variance weighted.
FIGURE 2

Mendelian Randomization analyses illustrating the causal effect of the gut microbiome on diabetic neuropathy. In both circular heatmaps, the data
layers, from inside to out, represent the odds ratios calculated using the Inverse Variance Weighted (IVW) method, followed by −log10(p values) for
IVW, Weighted Median (WMo), Weighted Mode (WMe), Simple Median (SM), and MR-Egger methods, respectively. The outermost ring illustrates the
acceptance of effect direction as determined by the five MR methodologies: IVW (p< 0.05), MR-Egger, SM, WMe, and WMo. IVW, inverse variance
weighted; SM, simple mode; WMe, weighted median; WMo: weighted mode; MR, mendelian randomization.
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FIGURE 5

Forest plots of the significant causal effect of diabetic neuropathy on gut microbiota were calculated using the IVW method, MR-Egger, and
weighted median. The forest plots demonstrate that diabetic neuropathy was a risk factor for the Anaerofilum (OR = 1.07; 95% CI = 1.00–1.13; p<
0.05), Dorea (OR = 1.05; 95% CI = 1.02–1.08; p< 0.01), Lachnospiraceae UCG-010 (OR = 1.05; 95% CI = 1.01–1.09; p = 0.02), Ruminococcus 2
(OR = 1.06; 95% CI = 1.01–1.10; p = 0.01), and order NB1n (OR = 1.08; 95% CI = 1.01–1.14; p = 0.02).
FIGURE 4

Mendelian Randomization analyses illustrating the causal effect of the diabetic neuropathy on gut microbiome. In both circular heatmaps, the data
layers, from inside to out, represent the odds ratios calculated using the Inverse Variance Weighted (IVW) method, followed by −log10(p values) for
IVW, Weighted Median (WMo), Weighted Mode (WMe), Simple Median (SM), and MR-Egger methods, respectively. The outermost ring illustrates the
concordance of effect direction as determined by five MR methodologies: IVW (p< 0.05), MR-Egger, SM, WMe, and WMo. IVW, inverse variance
weighted; SM, simple mode; WMe, weighted median; WMo: weighted mode; MR, mendelian randomization.
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3.5 GO enrichment analysis

In the set of IVs from the forward MR analysis, a total of 13

genes were identified: ADCYAP1R1, MPDZ, DLG1, SLC9A1,

SLC2A5, CD226, B3GNT5, EXTL3, GBE1, TMTC1, NPY2R,

ADARB2, and GNPDA1, which exhibited cis-regulatory control

over gene expression. The GO enrichment analysis of these 13

genes yielded 12 significant results (p< 0.05), such as apical plasma

membrane, glycosyltransferase activity, hexosyltransferase activity,

and membrane raft (Figure 6).
4 Discussion

In recent times, there has been significant focus on the gut

microbiota in metabolic illnesses, specifically type 2 diabetes. This

topic has been extensively explored in scientific literature (28). In

addition, previous studies have used MR analysis to elucidate

potential causal relationship between various biomarkers from

different sources and the risk of various diseases (29–31). In this

study, we utilized GM data derived from a GWAS meta-analysis

conducted by the MiBioGen consortium and DN data from the R8

release of the FinnGen consortium. The causal effects of GM taxa
Frontiers in Endocrinology 07
(from phylum to genus level) on DN were investigated. We found

increased levels of Christensenellaceae R-7, Ruminococcaceae

UCG013 and Eggerthella groups, which may be associated with a

higher risk of DN, while increased levels of Peptococcaceae and

Eubacterium coprostanoligenes groups could be linked to a lower

risk. Additionally, we performed a reverse MR analysis to

demonstrate the causal relationships between DN and GM, and

found that the risk of DN may be potentially linked with elevated

levels of Anaerofilum, Dorea, Lachnospiraceae UCG-010,

Ruminococcus_2, and order NB1n. The GO enrichment analysis

showed a considerable enrichment of the genes involved in

glycosyltransferase and hexosyltransferase activities.

There is an increasing interest in studying the harmful effects of

the microbiome on various human diseases. Dysbiosis of GM may

disrupt normal gut microbial activity, leading to various

neurological defects (32). Similarly, previous studies in vivo have

shown that transplanting dysbiotic GM from individuals with distal

symmetric polyneuropathy, a prevalent neuropathy in people with

diabetes mellitus, to db/dbmice had accelerated the development of

peripheral neuropathy (33). Ruminococcus has been reclassified as

Blautia, a genus of anaerobic bacteria that play specific roles in

metabolic disorders, inflammatory diseases, and biotransformation

(34). Recent investigations have shown that Ruminococcus torques
FIGURE 6

The GO enrichment analysis of the 13 genes from a cis-eQTL perspective in the forward MR analysis (gut microbiota as exposure and diabetic
neuropathy as outcome).
TABLE 2 Instrumental variables used in MR analysis of the association between Diabetic neuropathy and gut microbiota.

Exposure SNP chr. pos. Beta SE p-value R2 F

Diabetic neuropathy

rs13212435 6 32454571 -0.273 0.034 1.21787E-15 2.33e-04 64.0

rs2476601 1 113834946 -0.274 0.036 5.60919E-14 2.06e-04 56.5

rs2736428 6 31876147 0.195 0.029 1.78115E-11 1.65e-04 45.2

rs73410776 6 32822178 0.525 0.04 4.55198E-40 6.39e-04 175.5

rs9273364 6 32658525 0.593 0.027 5.7148E-105 1.72e-03 473.4
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level was significantly elevated in the clinically diagnosed DPN

group, relative to the normal or disease controls (35). Similarly,

Ruminococcaceae_UCG013 may be a causative agent of DN in our

study. A prospective cohort analysis showed that Eggerthella is an

important risk factor for diabetic foot ulcers (36), whereas

peripheral neuropathy was identified as one of the most

prominent variables linked with diabetic foot ulcers (37).

implying that Eggerthella may be a potential risk factor for DN.

These results were consistent with our study. Previous studies have

confirmed that Peptococcaceae is a protective factor for diabetic

retinopathy (38). However, the role of Peptococcaceae in DN

has not been previously investigated. Besides, the reverse MR

analysis suggested that DN may have a causal association with

the elevated levels of Ruminococcus_2. There may be a two-way

causal relationship between different genera of GM and the same

disease. Therefore, further investigations are needed to clarify

the functional significance of specific genera of GM and

explore targeted therapies for gut bacterial flora. Previous

research has shown a potential genetic relationship between the

Christensenellaceae R-7 group and frailty, highlighting the

significance of GM in human physiology (39). Our research

confirms that Christensenellaceae R-7group has been associated

with an increased incidence of DN, offering a novel avenue to

explore the impact of GM.

There is less research on the effect of DN on GM. GM is

dynamic and mostly stable in healthy people, but it can be

influenced by many disorders (40). From the perspective of

metabolic and immune processes, the distribution of GM

significantly differed between the patients with and without

diabetes (41). In our study, increased levels of Anaerofilum,

Dorea, Lachnospiraceae UCG-010, Ruminococcus_2, and order

NB1n may potentially be associated with the risk of DN. Previous

studies have shown that delayed neurocognitive recovery was

enriched by Anaerofi lum compared to the non-delayed

neurocognitive recovery group (42). The study of the relationship

between Dorea and insomnia (43), Lachnospiraceae UCG-010 and

chronic kidney disease (44), Ruminococcus_2 and rheumatoid

arthritis (45), order NB1n and gastroduodenal ulcers (46)

highlight the potential for GM-focused treatments.

The precise processes through which gut bacteria influence the

likelihood of developing metabolic diseases are still unknown. Prior

research has shown specific factors contributing to the progression

of diabetic issues are elevated levels of reactive oxygen species,

chronic hyperglycemia, reduced antioxidant capacity (47) and

the anti-inflammatory effects of certain bacteria (such as,

Faecalibacterium in patients with DN) (48). Moreover, numerous

recent studies have recognized the gut–brain axis as a pivotal

mechanism for investigating the advancement of diseases.

However, there is a lack of research on the connection between

the microbiota and various types of pain that lack a clearly

identifiable localized cause, such as DN (49, 50). In our study, we

performed a GO analysis for the 13 genes to find potential

mechanisms of disease pathogenesis. The analysis showed an

increase in the apical plasma membrane, glycosyltransferase

activity, hexosyltransferase activity, and membrane raft.
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This research has several strengths. Causal inference between GM

and DN was determined using an MR analysis to exclude the

confounding variables and reverse causation. The genetic variations

of GMwere derived from the most extensive GWAS meta-analysis to

ensure that the robustness of the instruments used in theMR analysis.

Horizontal pleiotropy was identified and ruled out by the MR-

PRESSO and MR-Egger regression intercept term analyses. The

leave-one-out analysis confirmed the robustness of the results. A

two-sample MR test was used, utilizing non-overlapping exposure

and result summary-level data to prevent bias (51). Nevertheless, our

research has some drawbacks.We chose SNPs with p< 1 × 10−5 as IVs

due to the limited number of SNPs with p< 5 × 10−8. We conducted

multiple IV screening processes to ensure the reliability of IVs. This

included removing SNPs with an F-value< 10 to prevent bias from

weak IVs and scanning all SNPs in PhenoScanner V2 to eliminate

any confounding effects. This study examines the relationship

between GM and DN without studying the underlying mechanism.

This MR analysis can be affected by potential pleiotropy. Each

exposure in our study had a minimum of three IVs, which could

potentially reduce the impact of pleiotropy given that distinct IVs are

unlikely to exhibit the same correlation due to pleiotropy. The genetic

IVs showed a slight effect on the variances of certain microbial taxa,

possibly limiting the statistical power of the association findings.

The research participants were mostly of European descent,

with limited GM data collected from other ethnic groups, who were

less influenced by ethnic bias. Hence, this prevents the

generalizability of the findings to other groups. Therefore, future

research should examine the complex interactions and

communications between the host and gut bacteria to enhance

our understanding of the relation between GM and illness.
5 Conclusion

In conclusion, by carrying out a two-sample MR analysis using

publicly available GWAS summary-level data, we investigated the

causal influence of GM on DN neuropathy and found potential flora

for DN development. This work may be relevant for screening gut

microbial-derived metabolites and indicators for early diagnosis of DN,

which could serve as non-invasive diagnostic or therapeutic targets.
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