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Background: Vitamin D binding protein (DBP) might increase substantially after

ovarian stimulation and hence could be associated with IVF/ICSI outcomes

because it determines the fraction of free bioavailable 25(OH) vitamin D. In this

study, we aim to determine whether DBP is associated with E2 level after ovarian

stimulation and IVF/ICSI outcomes.

Design: Post-hoc analysis of a prospective observational cohort.

Setting: Single-center study.

Participants: 2569 women receiving embryo transfer.

Intervention: None.

Main outcome measures: The main outcomes were oocyte and embryo quality

as well as pregnancy outcomes.

Results: DBP concentration correlates with E2 on hCG day (=day of inducing

ovulation with hCG; correlation coefficient r = 0.118, P<0.001) and E2 x-fold

change to baseline level (r = 0.108, P<0.001). DBP is also positively correlated

with total 25(OH)D (r = 0.689, R2 = 0.475, P<0.001) and inversely with free 25

(OH)D (r=-0.424, R2=0.179, P<0.001), meaning that E2-stimulated DBP synthesis

results in a decrease of free 25(OH)D during ovarian stimulation. However, such

alteration does not affect IVF/ICSI outcomes when considering confounding

factors, such as the number and quality of oocytes nor embryo quality as well as

pregnancy outcomes.
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Conclusion: DBP concentration correlates with the degree of E2 increase after

ovarian stimulation. DBP is also positively correlated with total 25(OH)D and

inversely with free 25(OH)D, suggesting that the proportion of free 25(OH)D

decreases during ovarian stimulation caused by E2-stimulated DBP synthesis.

However, such alteration does not affect clinical IVF/ICSI outcomes.
KEYWORDS

vitamin D binding protein, 25(OH)D, oocyte quality, embryo quality, pregnancy
outcomes
Introduction

Vitamin D is a fat-soluble steroid (1). After its synthesis,

vitamin D is transformed to 25-hydroxyvitamin D (25(OH)D) by

25-hydroxylase in the liver. Over 99% of 25(OH)D is bound to

either vitamin D-binding protein (DBP) (about 85%) or albumin

(about 15%), leaving less than 1% free, which can pass through the

lipophilic cell membrane and interact directly or after further

hydroxylation with the nuclear vitamin D receptor (2, 3).

DBP stores and transports vitamin D and regulates the amounts

of circulating free and total levels of vitamin D metabolites (4, 5). It

is a protein with 458 amino acids, synthesized in the liver, where it is

regulated by estrogen, glucocorticoids, and inflammatory cytokines

but not by vitamin D itself (6). An interesting study published in the

New England Journal of Medicine showed that total 25(OH)D

concentrations were consistently lower in black Americans

compared to white Americans. However, they had similar

concentrations of estimated free, bioavailable 25(OH)D, due to

different levels of DBP (7). This study demonstrated the importance

of DBP when analyzing vitamin D levels, as DBP concentration and

variants alter the proportion of 25(OH)D metabolites. A previous

study in mice lacking DBP showed very low levels of total 25(OH)D

but the animals did not show signs of vitamin D deficiency (8).

Thus, DBP serves as a reservoir for vitamin D metabolites, reducing

the risk of vitamin D deficiency when intake or epidermal

production is limited (4). Recent clinical studies tried to further

understand the impacts of DBP in different clinical settings.

Findings and hence clinical implications were, however,

controversial. For example, high circulating DBP concentrations

were found to be associated with better mobility and reduced

mortality after hip fracture surgery (9). On the other hand,

colorectal cancer mortality did not differ according to DBP

variants in two US cancer cohorts (10). In another study,

mortality risks were similar across DBP quintiles in aging men,

whereas 25(OH)D deficiency was associated with a 2-fold increased

mortality (11).

There are also studies focusing on DBP and reproductive health.

These studies showed that DBP concentrations are lower in women

with polycystic ovary syndrome (PCOS) compared to controls

(median [interquartile range]: 443.40 [314.4] vs 482.4 [156.8] mg/
02
ml, P=0.02) (12, 13) and that urinary DBP is associated with ovarian

reserve (normal control 81.86 ± 23.92 and diminished ovarian

reserve 52.84 ± 21.37 ng/ml, P< 0.05) and it was significantly

greater in patients with endometriosis than in those without

(111.96 ± 74.59 versus 69.90 ± 43.76 ng/mg Cr, P = 0.001) (14,

15). DBP has been shown to increase by 40–50% during pregnancy

due to a physiological increase in estrogen (E2) (16). Interestingly,

Hou et al. state their results that DBP is highly expressed in the

placenta and the decidua in women with spontaneous miscarriages,

potentially causing a less efficient transport of vitamin D to the fetus

(17). Further studies showed that DBP is related to pregnancy

complications such as pre-eclampsia (up-regulated with fold

changes 3.38 in early-onset preeclampsia) (18, 19), gestational

diabetes (lower DBP concentrations were associated with higher

glucose levels and a greater likelihood of developing GDM at 26–28

weeks gestation (odds ratio [OR] (95% CI) = 0.98 (0.97,0.99),

P = 0.015)) (20), preterm birth (DBP is reduced, P=0.04) (21, 22),

fetal growth restriction (DBP was significantly reduced (control

versus FGR, P< 0.05) and strongly associated with idiopathic fetal

growth restriction (P< 0.01)) (23) as well as reduced

birthweight (24).

Given these findings and the fact that E2, which stimulates DBP

synthesis in the liver, rises substantially after ovarian stimulation in

women undergoing in-vitro fertilization/intracytoplasmic sperm

injection (IVF/ICSI), DBP might also increase substantially and

hence could be associated with IVF/ICSI outcomes. However, there

is no published study focusing on the serum concentration of DBP

and its impact on IVF outcomes in animals or humans so far.

The purpose of our current study is to analyze the impact of

ovarian stimulation in women undergoing IVF/ICSI on DBP and its

potential consequences for clinical IVF/ICSI outcomes.
Materials and methods

Study design

This is a post-hoc analysis of our previous cohort data (25), which

were collected from January 2017 to December 2018. The initial

study was registered at Clinical.trial.gov, the number is:
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NCT03503006 (on clinicaltrials.gov) https://clinicaltrials.gov/study/

NCT03503006?locStr=Changsha,%20Hunan,%20China&country=

China&state=Hunan&city=Changsha&cond=ivf&rank=2.

The study was approved by the Ethics Committee of the

Reproductive and Genetic Hospital of CITIC-Xiangya (approval

number: LL-SC-2018–014) and written consent was obtained from

all participating patients.
Participants

A total of 2569 infertile patients were enrolled in this study. The

inclusion and exclusion criteria were clearly described in the

previous study (25, 26), which were as follows:

Inclusion criteria:
Fron
[1] age between 18 and 40 years old

[2] first IVF/ICSI cycle

[3] received fresh embryo transfer.
The exclusion criteria were:
[1] uterine malformations (uterine septum ≥0.6 cm (identified

by hysteroscopy or four-dimensional color Doppler

ultrasound), single- or double-horned uterus)

[2] endometriosis

[3] Asherman syndrome (intrauterine adhesion)

[4] untreated hydrosalpinx

[5] uterine myoma (multiple, submucous, or intramural

myoma >3 cm)

[6] oocyte donation cycles

[7] pre-implantation genetic test for aneuploidy (PGT-A)

[8] Cushing syndrome

[9] adult-onset adrenogenital syndrome (AGS)

[10] any hypothalamic or pituitary disease leading to infertility.
These in-and-exclusion criteria were chosen to study a

population where clearly defined reasons for infertility such as

uterine malformations or adenoma of the hypophysis that are

independent of the vitamin D system do not play a role.

All participants received an agonist protocol for ovarian

stimulation as described in our previous studies (25, 26). Total

and free vitamin D were measured after ovarian stimulation, one

day before embryo transfer according to the manufacturer’s

instructions (25).
Measuring albumin, total and free
vitamin D

All serum samples were collected one day before embryo

transfer in women and were kept frozen at −80°C until

measurement. Total and free 25(OH)D were measured using

ELISA (DIAsource ImmunoAssays, Belgium) as detailed
tiers in Endocrinology 03
described in our previous work (25, 27, 28). Initially, we chose

the necessary number of strips for the experiment, resealing any

unused strips in the bag with a desiccant and storing them at 2 – 8°

C. Subsequently, the strips were secured in the holding frame, and

90 μl of sample diluent was pipetted into all the wells. Following

that, 10 μl of each reconstituted calibrator, control, or sample was

pipetted in duplicate into the appropriate wells, employing a new

pipette tip for each sample. The assay plate underwent a 90-minute

incubation at 37°C, with shaking at 650 rpm, and was then

subjected to three washes with 350 μl wash buffer. In the next

step, 100 μl of working Biot-Vit D solution was added to all wells

and incubated for 30 minutes at 37°C, with shaking at 650 rpm. The

plate was washed three times with 350 μl wash buffer. Subsequently,

100 μl of Streptavidin-HRP reagent was introduced into all wells,

followed by a 20-minute incubation at 37°C, with shaking at 650

rpm. Another three washes with 350 μl wash buffer were performed.

Next, 100 μl of the chromogenic solution was added to all wells and

incubated for 15 minutes at room temperature (18–25°C), in a

stationary position and shielded from light. Finally, 100 μl of the

stop reagent was added to all wells, and absorbances at 450 nm were

read within 5 minutes (using a reference filter at 630nm or 650nm),

with results calculated according to the guidelines in Section XI.

Albumin was measured by colorimetry according to the

manufacturer’s instructions (Albumin Gen 2(ALB2), Roche

Diagnostics GmbH, Mannheim, Germany).
Vitamin D binding protein calculation

Free vitamin D can be detected either directly or indirectly using

the following formula (2, 29):

Free 25 (OH)D =
Total 25 (OH)D

1 + Kalb� albumin + KDBP � DBP

Kalb is the affinity constant between 25(OH)D and albumin,

which equals 6� 105 M−1. KDBP is the affinity constant between 25

(OH)D and DBP, which equals 7� 108M−1 according to Bickle’s.

study (29).

In our study, we measured free vitamin D directly and

transformed the formula to calculate DBP level. This was possible

since albumin level was also measured directly. The transformed

formula was as follows:

DBP =
Total 25(OH)D
Free 25(OH)D − 1 − Kalb� albumin

KDBP
Statistical analysis

Statistical Package for Social Sciences for Windows, version 29.0

(SPSS Inc, Chicago, IL, USA) was used to perform data analyses.

The homogeneity of variance and normality of data were estimated

using the Levene and Kolmogorov-Smirnov tests, respectively.

Values were expressed as medians (interquartile ranges), means

(± standard deviation), or frequency (%). A comparison of

quantitative variables between groups was performed using the
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Kruskal-Wallis test or ANOVA according to the data’s normality.

Qualitative variables were compared with the Chi-square test or

Fisher’s exact test. Pearson and Spearman correlation analysis was

performed for the correlation analysis according to the data

category. To adjust for potential confounders, we performed

multivariate linear regression analyses. These confounding factors

were determined by comparing the baseline characteristics. Figures

were created in GraphPad Prism 8 (GraphPad Software, San Diego,

USA). Data were considered statistically significant with a two-

sided P< 0.05.
Results

A total of 2569 participants fulfilling all in- and exclusion

criteria were analyzed. The DBP concentration distribution is

shown in Figure 1. Baseline clinical and laboratory parameters

were shown according to DBP quartiles (Table 1). Age, menstrual

cycle length, anti-Müllerian hormone (AMH), antral follicle count

(AFC), albumin as well as free and total 25(OH)D were significantly

different in the DBP quartiles.

Ovarian stimulation in women undergoing IVF causes a

supraphysiological elevation of E2, sometimes increasing several

hundred-fold (see the E2 level in Table 2 compared to Table 1).

Both the x-fold-change of E2 after ovarian hyperstimulation as well as

peak-E2 after ovarian hyperstimulation correlated highly significantly

with DBP concentrations after ovarian hyperstimulation on the day

before embryo transfer (Figure 2). Total 25(OH)D was positively

correlated with DBP, whereas free 25(OH)D was inversely correlated

with DBP (Figure 3). This means that the increased DBP

concentration resulted in a decreased fraction of patients being

sufficiently supplied with free vitamin D during embryo

transfer (Figure 1).

In Table 2, early ovarian hyperstimulation outcome parameters

are shown in quartiles of DBP. Luteinizing hormone (LH), E2, the

number of oocytes obtained and the number of Metaphase II (MII)

oocytes, and the number of day three good quality embryos

increased from DBP quartile 1 to DBP quartile 4, whereas
Frontiers in Endocrinology 04
endometrial thickness before embryo transfer decreased from

DBP quartile 1 to DBP quartile 4. This fits with the overall

correlation analysis of IVF outcomes and DBP concentrations

shown in Table 3. Only the number of oocytes, the number of

MII oocytes, and the number of day three good quality embryos

were significantly correlated with DBP concentrations one day

before embryo transfer. Other IVF outcome parameters such as

live birth rate or miscarriage rate were not related in this univariate

analysis with DBP. To further investigate the correlation of the

significantly associated parameters from Table 3, we investigated

the influence of confounding factors associated with DBP quartiles

such as age, menstrual cycle length, AMH, AFC, and albumin. This

analysis revealed that there was no independent association between

DBP measured one day before embryo transfer and early IVF

outcomes (Table 4). Only the number of day three good-quality

embryos showed a strong trend toward an association with DBP (p

= 0.055).
Discussion

Vitamin D binding protein concentration correlates very well

with the degree of E2 increase after ovarian stimulation for oocyte

retrieval. DBP is also positively correlated with total 25(OH)D and

inversely with free 25(OH)D, suggesting that the proportion of

free, bioavailable 25(OH)D decreases during ovarian stimulation

caused by E2-stimulated DBP synthesis. However, such alteration

does not affect IVF/ICSI outcomes, such as oocyte and embryo

quality as well as pregnancy outcomes, most likely because they

are transient.

A previous study illustrated that DBP increases as estrogen

increases, for example during pregnancy and under hormone

replacement therapies (6). This increase in DBP is associated with

an increase in total 25(OH)D and a decrease in free 25(OH)D (33,

34), which explains our results that the DBP level is positively

related to total 25(OH)D and negatively related with free 25(OH)D

during ovarian stimulation, through E2 elevation. In Table 1 of our

study, age is slightly different among DBP groups. We further made
FIGURE 1

Distribution of DBP and 25(OH)D level. Top: The distribution of DBP (n = 2549), mean = 5.494 nmol/L, 25% percentile = 4.259nmol/L, 75%
percentile = 6.356 nmol/L. According to the current guideline, total 25(OH)D sufficiency is determined as at least 30 ng/mL (75 nmol/L) while
insufficiency and deficiency are defined as 20-<30 ng/mL (50–75nmol/L), and below 20 ng/mL (50nmol/L) respectively (30, 31). Zeng et al.
determined corresponding cut-off values for free 25(OH)D, where free 25(OH)D sufficiency was defined as over 8.499 pg/mL, while insufficiency
and deficiency are defined as 5.666–8.499 pg/mL and below 5.666 pg/mL respectively (32).
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linear regression analysis and it turns out that age is positively

related to vitamin D binding protein (Adjusted b:0.043, 95% CI:

0.02–0.039, P=0.029). However, the IVF/ICSI outcomes are not

significant even if we adjusted all the confounders.

The association of E2 with DBP increase was highly significant,

but overall, the effect of E2 was moderate, this indicates that besides

E2, a lot of other factors contribute to the regulation of hepatic DBP

synthesis after hyperstimulation. As of today, there are a limited

number of studies analyzing DBP and infertility and/or the impact of

DBP on assisted reproductive technology (ART) outcomes. Franasiak

et al. analyzed DBP and 25(OH)D forms in infertile women and

showed that the DBP level was lower in infertile patients compared to

fertile controls (35). A small study including 20 women suggested

that DBP level in follicular fluid was reduced in women who didn’t

become pregnant after ART, and those fromwhom fewer oocytes and

fertilized eggs were obtained (36). However, considering the small

number of participants in all the above-mentioned studies in ART

populations, findings need independent confirmation in larger

studies. Besides this study, there is no published report focusing on
Frontiers in Endocrinology 05
the serum concentration of DBP and its impact on IVF outcomes in

animals nor humans. Thus, we analyzed DBP and IVF-related

outcomes for the first time in an adequately powered study and

found a strong correlation between the increase in E2 after

stimulation for oocyte retrieval and DBP at the time of embryo

transfer as well as a positive correlation between DBP and total 25

(OH)D but a negative correlation between DBP and free 25(OH)D.

However, this –most likely transient – decrease in free vitamin D had

no impact on any embryo or pregnancy outcomes such as

biochemical pregnancy rate and live birth rate in our relatively

large study. This fits very well with our very recent study showing

that neither free nor total vitamin D affected the risk of gestational

diabetes in the same cohort (37). We assume that the observed

changes in the proportion of adequate levels of free vitamin D in our

study are transient because, after the E2-induced increased synthesis

of DBP and a presumably stable further supply with 25(OH)D during

ovarian stimulation, newly synthesized DBP binds free 25(OH)D and

hence decrease its concentration further. This is a transient effect

because when E2 levels reach a stable level with a further stable 25
TABLE 1 Demographic data of participants according to quartiles of vitamin D binding protein (DBP).

Q1 (n=642) Q2 (n=642) Q3 (n=642) Q4 (n=643) P value

Age (y) 29.00 (27.00,31.00) 29.00 (27.00,31.00) 29.00 (27.00,31.25) 29.00 (27.00,32.00) 0.041

Menstrual cycle (d) 30.00 (28.50, 34.00) 30.00 (29.00, 35.00) 30.50 (29.00, 37.50) 30.50 (29.00, 37.50) <0.001

Infertility type (%)

Primary 55.61 (357/642) 54.36 (349/642) 51.87 (333/642) 50.86 (327/643) 0.294

Secondary 44.39 (285/642) 45.64 (293/642) 48.13 (309/642) 49.14 (316/643)

BMI (kg/m2) 21.23 (19.72, 23.05) 21.44 (19.77, 23.11) 21.36 (19.72, 23.11) 21.30 (19.49, 22.94) 0.451

Waist-to-hip ratio 0.81 (0.78, 0.85) 0.81 (0.78, 0.85) 0.82 (0.78, 0.85) 0.81 (0.78, 0.85) 0.842

Infertility duration (y) 3.00 (2.00, 4.00) 3.00 (2.00, 5.00) 3.00 (2.00, 5.00) 3.00 (2.00, 5.00) 0.203

AMH (ng/ml) 5.25 (3.37, 8.24) 5.60 (3.52, 8.90) 5.93 (3.82, 10.07) 6.24 (3.90, 10.05) <0.001

AFC 21.00 (15.00, 30.00) 23.00 (16.00, 30.00) 25.00 (17.00, 30.00) 25.00 (17.00, 30.00) <0.001

Basal FSH (mIU/ml) 5.70 (4.91, 6.62) 5.59 (4.74, 6.60) 5.60 (4.72, 6.50) 5.59 (4.78, 6.40) 0.141

Basal LH (mIU/ml) 3.58 (2.64, 4.90) 3.58 (2.59, 4.85) 3.65 (2.69,5.36) 3.57 (2.55, 4.90) 0.267

Basal E2 (pg/ml) 33.00 (27.00, 42.00) 34.00 (27.00, 43.25) 34.00 (27.00, 44.00) 33.00 (26.00, 43.00) 0.603

Basal PRL (ng/ml) 14.76 (11.02, 19.80) 14.86 (11.00, 19.59) 14.70 (11.04, 19.72) 14.88 (11.07, 20.86) 0.917

Basal P (ng/ml) 0.24 (0.17, 0.33) 0.24 (0.18, 0.33) 0.23 (0.17, 0.31) 0.24 (0.18, 0.33) 0.623

Basal T (ng/ml) 0.28 (0.22, 0.36) 0.28 (0.23, 0.35) 0.28 (0.23, 0.38) 0.28 (0.22, 0.35) 0.154

Total 25(OH)D (ng/ml) 15.98 (13.94, 18.22) 18.51 (16.21, 20.50) 20.72 (18.41, 23.28) 24.09 (21.03, 26.96) <0.001

Free 25(OH)D (pg/ml) 5.18 (4.55, 5.83) 4.91 (4.29, 5.35) 4.68 (4.14, 5.18) 4.16 (3.65, 4.71) <0.001

Albumin (g/L) 49.50 (48.00, 51.10) 49.20 (47.30, 50.90) 49.10 (47.30, 50.80) 48.80 (47.20, 50.50) <0.001

DBP (x 10-6) (g/L) 3.83 (3.43, 4.12) 4.79 (4.57, 4.99) 5.73 (5.47, 6.01) 7.34 (6.75, 8.30) <0.001
fro
BMI, body mass index; AMH, anti-Müllerian hormone; AFC, antral follicle count; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, estradiol; PRL, prolactin; P, progesterone; T,
testosterone; DBP, vitamin D binding protein.
Data are given as medians (interquartile ranges) or numbers (percentages).
Q1: DBP=1.55 x 10-6-4.35 x 10-6 (mmol/L).
Q2: DBP=4.36 x 10-6-5.22 x 10-6 (mmol/L).
Q3: DBP=5.23 x 10-6-6.35 x 10-6 (mmol/L).
Q4: DBP≥6.36 x 10-6 (mmol/L).
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(OH)D supply, a new equilibrium will be established (see formula

describing the relationship between free25(OH)D and DBP in the

method section). This concept fits the observation that we did not see

any effect on embryo and pregnancy outcomes.
Frontiers in Endocrinology 06
On the other hand, it is well known that structural alterations of

DBP are linked to alterations in clinical outcomes. There are several

alleles of DBP such as Gc1f, Gc1s (rs7041 locus), and Gc2 (rs4588

locus), which differ in their binding affinity to vitamin D
TABLE 2 Ovarian hyperstimulation results in participants according to quartiles of vitamin D binding protein (DBP).

Q1 (n=642) Q2 (n=642) Q3 (n=642) Q4 (n=643) P value

E2 on hCG day/[pg/ml] 3295.50
(2237.25, 4301.75)

3640.50
(2653.75, 4622.50)

3602.50
(2656.75, 4586.50)

3890.00
(2859.00, 4811.00)

<0.001

P on hCG day/[ng/ml] 0.59 (0.45, 0.79) 0.59 (0.43, 0.79) 0.58 (0.42, 0.79) 0.59 (0.43, 0.82) 0.505

LH on hCG day/[mIU/ml] 1.48 (1.14, 1.93) 1.57 (1.19, 1.97) 1.57 (1.24, 2.01) 1.60 (1.21, 2.06) 0.019

No. of oocytes retrieved 11.00 (8.00, 15.00) 12.00 (9.00, 16.00) 12.00 (9.00, 15.00) 12.00 (9.00, 15.00) 0.002

No. of MII oocytes 10.00 (7.00, 13.00) 11.00 (8.00, 14.00) 10.00 (8.00, 14.00) 11.00 (8.00, 14.00) 0.001

No. of 2PN zygotes 6.00 (4.00, 9.00) 7.00 (5.00, 9.00) 7.00 (4.00, 9.00) 9.00 (4.00, 9.00) 0.166

Fertilization methods (%)

IVF 69.16 (444/642) 70.56 (453/642) 71.50 (459/642) 67.34 (433/643)

ICSI 16.36 (105/642) 15.73 (101/642) 15.73 (101/642) 16.80 (108/643) 0.738

IVF+ICSI 14.49 (93/642) 13.71 (88/642) 12.77 (82/642) 15.86 (102/643)

Fertilization rate (%) 66.67 (54.55, 81.82) 66.67 (50.00, 80.00) 66.67 (50.00, 80.00) 66.67 (50.00, 81.25) 0.229

The number of day 3 good
quality embryo

3.94 ± 3.28 3.88 ± 3.28 4.35 ± 3.38 4.35 ± 3.46 0.013

Day 3 good quality embryo rate (%) 69.94 (2532/3619) 66.58 (2488/3737) 71.42 (2791/3908) 72.03 (2794/3879) <0.001

Blastocyst formation rate (%) 34.52 (651/1886) 33.31 (784/2354) 36.77 (832/2263) 34.19 (719/2103) 0.088

EM before embryo transfer(mm) 13.50 (12.00, 14.70) 13.50 (12.20, 15.00) 13.15 (11.80, 14.50) 13.10 (11.70, 14.50) 0.002

Mean number of transferred embryos 1.91 ± 0.29 1.90 ± 0.30 1.89 ± 0.32 1.91 ± 0.29 0.591

Good-quality embryo transfer rate (%) 79.04 (969/1226) 80.59 (984/1221) 81.93 (993/1212) 81.31 (996/1225) 0.301

Mild to severe OHSS rate (%) 3.74 (24/642) 5.14 (33/642) 4.83 (31/642) 6.69 (43/643) 0.116
fro
LH, luteinizing hormone; E2, estradiol; Gn, gonadotropin; EM, endometrium; hCG, human chorionic gonadotropin; MII, metaphase II (reflects oocytes quality, only MII oocytes can be
fertilized); 2PN, pronucleus; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection.
Good quality embryo is defined as D3 embryo ≥7C-II and blastocyst ≥4BB while fair embryo is defined as D3 embryo <7C-II and blastocyst <4BB; OHSS: ovarian hyperstimulation syndrome.
Data are given as medians (interquartile ranges), means ± standard deviation or number (percentage).
Q1: DBP=1.55 x 10-6-4.35 x 10-6 (mmol/L).
Q2: DBP=4.36 x 10-6-5.22 x 10-6 (mmol/L).
Q3: DBP=5.23 x 10-6-6.35 x 10-6 (mmol/L).
Q4: DBP≥6.36 x 10-6 (mmol/L).
FIGURE 2

Correlation between DBP and estrogen. Left: correlation between E2 on hCG day and DBP concentration after log10 transformation. Right:
correlation between E2 x-fold change (baseline E2 level divided by E2 on hCG day) and DBP concentration after log10 transformation.
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metabolites and have been variably associated with several clinical

conditions (4). Schwartz et al. reported that different DBP

haplotypes are associated with variations of total 25(OH)D, free

25(OH)D, and DBP levels. The lowest total and free levels of 25

(OH)D were seen in the Gc 2/2 haplotype, which also tends to have

the lowest DBP levels (38). Other studies have also found lower total

25(OH)D levels in subjects with the Gc2 allele (39, 40). Wang’s

study illustrated that Gc rs16847024 and Gc rs3733359 were

associated with an increased risk for gestational diabetes,

compared to other DBP variants (41). In the CHARGE study

with 1581 children and their parents, the DBP rs4588 variant was

associated with the development of autism spectrum disorder (42).
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We used a formula to calculate vitamin D binding protein

instead of direct ELISA methods to determine vitamin D binding

protein concentrations in our study. The biological property and the

concentration of vitamin D binding protein are described by a

formula (see method section). This formula has been used in many

well-recognized studies from independent groups worldwide to

calculate free vitamin D (12, 16, 43–48). Thus, this formula is

also a valid tool to calculate vitamin D binding protein. The quality

of the results depends on the quality of the methods employed to

determine free and total vitamin D as well as albumin. We used in

our study methods that have been certified for clinical use. The

calculation method for vitamin D binding property is based on its

biological activity (binding vitamin D which is expressed by the

formula). This might overcome some disadvantages of using direct

ELISAs to measure vitamin D protein concentrations such as Cross-

reactivity: ELISA kits may exhibit cross-reactivity with other

proteins or molecules that share structural similarities with DBP.

This can lead to inaccurate results if not properly controlled (49).

Limited specificity: ELISA assays may not always be highly specific

for DBP, as they can sometimes detect other proteins with similar

epitopes. This can lead to false-positive or false-negative results (50).

Variability in antibodies: The quality and specificity of antibodies

used in ELISA can vary between batches and suppliers. This can

introduce variability in the results and might make it challenging to

compare data from different studies (51). Limited dynamic range:

ELISA assays may have a limited dynamic range, which means they

may not accurately measure DBP concentrations across a wide range

of concentrations. Dilution or concentration of samples may be

necessary, which can introduce errors (52). Taken together direct

measurement of DBP has also disadvantages and calculating vitamin

D binding protein concentrations is a valid method to determine

vitamin D binding protein concentrations if suitable methods are

used for the analysis of free and total vitamin D as well as albumin.

Head-to-head comparisons of both methods would be of interest.

Although our sample size is relatively large, making our findings

robust, there are still some limitations in our study. Firstly, it is a

single-center study, which means that we cannot fully exclude

center-related confounding. Next, we did not consider genetic

variants of DBP in our population. Finally, DBP levels in our

study were calculated instead of measured directly, see above. As

discussed the equations describing the relationship between free
FIGURE 3

Correlation between 25(OH)D and its binding protein. Left: correlation between total 25(OH)D and DBP concentration. Right: correlation between
free 25(OH)D and DBP concentration.
TABLE 3 Correlation analysis between IVF outcomes and vitamin D
binding protein (DBP).

DBP

rho P value

Number of oocytes retrieved 0.054 0.006

Number of MII oocytes 0.055 0.006

Number of 2PN zygotes 0.032 0.101

Fertilization rate -0.023 0.252

Number of D3 good-quality embryo 0.058 0.003

OHSS rate 0.001 0.975

Biochemical pregnancy 0.020 0.322

Clinical pregnancy 0.013 0.517

Ectopic pregnancy 0.007 0.721

Miscarriage 0.002 0.919

Ongoing pregnancy 0.017 0.381

Live birth 0.011 0.561

Gestational age 0.004 0.862

Birthweight -0.005 0.835
Spearman correlation analysis between IVF outcomes and DBP concentrations on the day
before embryo transfer.
Colored fields indicate significant correlations.
MII, metaphase II (reflects oocytes quality, only MII oocyte can be fertilized); 2PN,
pronucleus; OHSS, ovarian hyperstimulation syndrome.
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vitamin D, total vitamin D, albumin, and DBP, have been well-

established for decades and are suitable to calculate the

concentrations of components of the equation (53, 54).

In the current study, we demonstrated that DBP concentration

correlates very well with the degree of E2 increase after ovarian

stimulation. DBP is also positively correlated with total 25(OH)D

and inversely with free 25(OH)D. Assuming a constant oral intake

of vitamin D during ovarian hyperstimulation the fraction of free

vitamin D must decrease after hyperstimulation due to the increase

of vitamin D binding protein. An inverse relationship – in contrast

to total vitamin D, see above - is clearly to be expected and was

indeed seen in our study resulting in a – most likely transient -

decrease in the proportion of free 25(OH)D during ovarian

stimulation caused by E2-stimulated DBP synthesis. However,

such alterations do not affect clinical IVF/ICSI outcomes.
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TABLE 4 Multivariate linear regression analysis.

Number of oocytes retrieved Number of MII oocytes Number of D3 good-quality embryos

OR P value 95% CI of OR OR P value 95% CI of OR OR P value 95% CI of OR

Constant <0.001 11.542 18.872 <0.001 9.160 16.017 <0.001 2.200 7.530

Age -0.109 <0.001 -0.195 -0.093 -0.071 <0.001 -0.134 -0.039 -0.044 0.030 -0.078 -0.004

Menstrual cycle -0.134 <0.001 -0.040 -0.021 -0.106 <0.001 -0.031 -0.013 -0.065 0.003 -0.018 -0.004

Albumin -0.004 0.826 -0.070 0.056 -0.009 0.634 -0.073 0.044 -0.009 0.649 -0.056 0.035

DBP 0.030 0.119 -0.022 0.189 0.027 0.158 -0.028 0.170 0.038 0.055 -0.002 0.152

AMH 0.167 <0.001 0.042 0.085 0.156 <0.001 0.035 0.075 0.088 0.003 0.008 0.039

AFC 0.080 0.003 0.025 0.125 0.072 0.009 0.015 0.109 0.075 0.007 0.014 0.086
fron
Multivariate linear regression analysis of IVF outcomes being correlated with DBP in the univariate analysis (see Table 3). We selected significantly different baseline parameters among different
DBP quartiles (see Table 1) as confounding factors. Free 25(OH)D and total 25(OH) were eluded due to collinearity to DBP. We thus hence finally included age, AFC, AMH and DBP in the final
multivariate linear regression analysis.
AMH, anti-Müllerian hormone; AFC, antral follicle count; DBP, vitamin D binding protein.
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