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Background: Metabolic abnormalities are closely tied to the development of

ovarian cancer (OC), yet the relationship between anthropometric indicators as

risk indicators for metabolic abnormalities and OC lacks consistency.

Method: The Mendelian randomization (MR) approach is a widely used

methodology for determining causal relationships. Our study employed

summary statistics from the genome-wide association studies (GWAS), and we

used inverse variance weighting (IVW) together with MR-Egger and weighted

median (WM) supplementary analyses to assess causal relationships between

exposure and outcome. Furthermore, additional sensitivity studies, such as

leave-one-out analyses and MR-PRESSO were used to assess the stability of

the associations.

Result: The IVW findings demonstrated a causal associations between 10

metabolic factors and an increased risk of OC. Including “Basal metabolic rate”

(OR= 1.24, P= 6.86×10-4); “Body fat percentage” (OR= 1.22, P= 8.20×10-3); “Hip

circumference” (OR= 1.20, P= 5.92×10-4); “Trunk fat mass” (OR= 1.15, P=

1.03×10-2); “Trunk fat percentage” (OR= 1.25, P= 8.55×10-4); “Waist

circumference” (OR= 1.23, P= 3.28×10-3); “Weight” (OR= 1.21, P= 9.82×10-4);

“Whole body fat mass” (OR= 1.21, P= 4.90×10-4); “Whole body fat-free mass”

(OR= 1.19, P= 4.11×10-3) and “Whole body water mass” (OR= 1.21, P= 1.85×10-3).

Conclusion: Several metabolic markers linked to altered fat accumulation and

distribution are significantly associated with an increased risk of OC.
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Introduction

Ovarian cancer (OC) is one of the leading causes of

gynecological cancer-related death among females globally,

ranking as the fifth most common reason for cancer-related

mortality, with a five-year survival rate of less than 29% (1, 2).

According to the most recent estimates from 2017, this condition

affects around 224,940 females globally (3). Experts predict a 55%

increase in OC prevalence and 67% increase in mortality rates by

2035 (4). Furthermore, more than 90% of the earliest malignant

ovarian tumors are epithelial in origin (5). As a result, early

detection of OC is critical in lowering the high fatality rate

among women.

Metabolic processes play an important role in various diseases (6–

10), and the investigation into the impact of metabolic and

anthropometric factors on OC is becoming a progressively appealing

research area (11–14). The bulk of OC is related to the development of

ascites (15). Malignant ascites forms a distinct tumor

microenvironment with several metabolic regulators, including

growth factors, chemokines, and cytokines, which promote the

invasion and resistance to medications in various types of cancers (3,

16–20). Furthermore, OC cells need adipocytes for energy, which

might affect lipid metabolism and serum levels (21, 22). Multiple

studies have indicated that overweight and obesity elevate the

likelihood of developing OC (23–25). For instance, a meta-analysis

and systematic review revealed that high body mass index (BMI) was

associated with an increased risk of OC (14). Additionally, a

prospective investigation found that for every 10-centimeter increase

in waist circumference, the pooled relative risk (RR) for OC was 1.06

(26). However, one study showed no evidence connecting waist

circumference with an increased chance of developing OC (27).

Anthropometric measurements, such as hip circumference and

waist-to-hip ratio, are considered risk factors for metabolic

disorders, however evidence on their relationship with OC is

inconsistent (27–30). Given the lack of reliable and consistent

evidence, more research is needed to determine the overall risk and

histological associations between numerousmetabolic factors andOC.

We used Mendelian randomization (MR) to evaluate the causal

relationship between numerous metabolic factors and OC. MR

methods successfully reduce reverse causation and residual

confounding by utilizing instrumental variables (IVs) that are closely
Abbreviations: OC, Ovarian cancer; MR, Mendelian randomization; GWAS,

Genome-wide association study; IVW, Inverse-variance weighted; WM,

Weighted median; BMI, Body mass index; RR, Relative risk; IVs, Instrumental

variables; LD, linkage disequilibrium; SNPs, Single nucleotide polymorphism;

ORs, Odds ratios; CIs, Confidence intervals; FDR, False discovery rate; BMR,

Basal metabolic rate; LEP-R, leptin receptor; EOC, Epithelial ovarian cancer; ER,

Estrogen receptor; STAT3,Signal Transducer and Activator of Transcription; c-

myc, Myc proto-oncogene protein; Bcl-XL, B-cell lymphoma-extra large; MCL-1,

Myeloid cell leukemia 1; FSH, follicle-stimulating hormone; HIF-1a, Hypoxia

Inducible factor-1 alpha; COL1A1, Collagen type I alpha 1 chain; LOX, Lysyl

oxidase; M2, Macrophage Type 2; CAAs, Cancer-associated adipocytes; IL-6,

Interleukin-6; PAI-1, Plasminogen activator inhibitor-1; IGF, insulin-like

growth factor.
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related to the exposure (31). Our goal is to improve understanding of

OC risk factors and develop new prevention strategies.
Methods

Study design

This study used IVs and MR analysis to emulate the

randomization procedure in a randomized controlled experiment.

It focused on several elements: 1) IVs were significantly associated

with exposures; 2) The causal link between exposures and outcomes

was assessed using inverse variance weighting (IVW), MR-Egger,

and weighted median estimate (WM); 3) Sensitivity analyses were

used to determine the robustness of the findings.
Data sources

This study used data solely from public databases. The research

involved a group of European people. As exposure indicators, a

complete collection of 23 anthropometric and metabolic parameters

was used. Supplementary Table 1 provides further information on

these 23 exposure variables. OC was identified as research outcome,

and the information of genome-wide association study (GWAS)

data is also given in Supplementary Table 1.
Selection of IVs

The selection criteria included P < 5×10-8, which identified IVs

with substantial relationships with the exposure variables. The

clump=TRUE option was used to eliminate linkage disequilibrium

(LD) and improved the accuracy of the IVs, as described in our

previous publications (32–35). The parameters of r2 = 0.001 and

kb=10000 represented the LD threshold and distance for clumping,

respectively. To summarize, r2 = 1 implied a perfect LD association

between two single nucleotide polymorphisms (SNPs), whereas r2 = 0

showed complete LD equilibrium, implying that the distribution of

these two SNPs is random. The parameter kb denotes the length of the

region evaluated for LD. In genetics, it is widely assumed that linked

genetic loci on a chromosome are frequently inherited together. As a

result, in our investigation, we utilize r2 = 0.001 and kb=10000 to

achievemore accurate results while taking into consideration probable

LD.We also calculated the F statistic: a high F statistic (greater than or

equal to 10) indicated a strong IV (36).
MR analysis

The IVW approach was the principal analytic technique

employed in this work. The WM technique is more resistant to

some invalid IVs. Hence, it is employed as a complement to the

IVW approach in this study (37). The MR-Egger method serves as

an additional strategy, employing the intercept term to investigate

potential pleiotropic effects (38).
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Sensitivity analysis

LDlink was used to assess the relationship between all exposure-

associated IVs and potential confounders (39, 40), and sensitivity

analysis was performed after excluding these SNPs with external

pleiotropy. The study used pleiotropy-corrected data from MR-

PRESSO to indicate any likely deviants in the analysis. The

Cochrane Q statistic was used to assess the heterogeneity present.

Furthermore, a detailed sensitivity analysis using a leave-one-out

technique was performed to check the reliability of the findings and

to assess the influence of each IV on the causal relationship. Given the

binary character of the outcome, the MR evaluation used odds ratios

(ORs), as well as 95% confidence intervals (CIs), to present causal

effect. To address the issue of multiple testing, the 5% false discovery

rate (FDR) was set. All MR assessments were carried out utilizing the

TwoSampleMR package in the R programming environment.
Results

The F-statistics of IVs

This research examined a total of 23 metabolic and

anthropometric variables. 10 traits played a causal influence in

OC. The F-statistic values for the associated IVs of these 10

variables were all more than 29, indicating good IVs

(Supplementary Table 2).
MR analysis results

Among the 23 metabolic and anthropometric variables, 10

indicated a causative association with OC (Figure 1). The IVW

results of the MR analysis for each of the 10 traits were listed below:

“Basal metabolic rate - OC” (OR: 1.24; 95% CI: 1.09,1.40), “Body fat

percentage - OC” (OR: 1.22; 95% CI: 1.05,1.42), “Hip circumference
Frontiers in Endocrinology 03
- OC” (OR: 1.20; 95% CI: 1.08,1.34), “Trunk fat mass - OC” (OR:

1.15; 95% CI: 1.03,1.28), “Trunk fat percentage - OC” (OR: 1.25;

95% CI: 1.09,1.42), “Waist circumference - OC” (OR: 1.23; 95% CI:

1.07,1.40), “Weight - OC” (OR: 1.21; 95% CI: 1.08,1.35), “Whole

body fat mass - OC” (OR: 1.21; 95% CI: 1.09,1.35), “Whole body fat-

free mass - OC” (OR: 1.19; 95% CI: 1.06,1.35), “Whole body water

mass - OC” (OR: 1.21; 95% CI: 1.07,1.37) (Figure 2). In conclusion,

all 10 metabolic factors were positively causally associated to OC

(Figure 3 and Supplementary Table 3). After excluding IVs that

were associated with potential confounders (e.g., smoking status

and alcohol consumption), the majority of our analyses remained

unchanged (Supplementary Table 4). Reverse MR analysis of OC as

the exposure and traits as outcomes revealed no evidence of reverse

causality (all P > 0.05) (see Supplementary Table 5).
Results of the sensitivity analysis

The Cochrane Q statistic was used to evaluate the existence of

heterogeneity (Supplementary Table 6), and the funnel plots

demonstrated that the distribution of IVs exhibited symmetry

(Figure 4). The MR-Egger test showed no significant horizontal

pleiotropy (all P >0.05), implying that the data are reliable (see

Supplementary Table 7). Supplementary Table 8 shows the 10 traits

remained associated with OC at suggestive evidence of significance

after correcting for outliers (all P <0.05). Supplementary Figure 1

depicts the findings of the leave-one-out analysis, which showed

that the majority of SNPs did not cross the null line after being

removed, indicating that the study had low potential bias.
Discussion

Obesity and an increased risk of OC have been extensively

studied (41, 42), but the impact of body measurement markers in

multiple body areas on OC risk should also be investigated. Our MR
FIGURE 1

The distribution of P-values for the associations between 23 metabolic factors related to anthropometric indicators and ovarian cancer in the MR
analysis. Two thresholds were used to assess significance. One represented the threshold adjusted for false discovery rate (threshold line 1), while
the other relied on a commonly used P-value (0.05). MR, Mendelian randomization.
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analysis demonstrated that, after FDR correction, 10 metabolic

parameters still had significant positive causal relationships with

OC out of the total of 23 metabolic and anthropometric factors

studied. These continuous variables are related to body fat

distribution, including whole body fat mass, basal metabolic rate

(BMR), whole body fat-free mass, and waist circumference.
Frontiers in Endocrinology 04
Research indicates that varying body fat distribution might

impact the progression of OC. A longitudinal research found that

women with higher fat mass had a significantly increased chance of

developing OC (43). An MR investigation found a connection

between BMR and higher OC risk (44). Body composition is a

better predictor of overall health status in OC patients than weight
FIGURE 3

Scatter plot indicating the causal associations between 10 metabolic factors and ovarian cancer. SNP, single nucleotide polymorphism; MR,
Mendelian randomization.
FIGURE 2

Causal effects of 10 metabolic factors on ovarian cancer in the MR analysis, showing odds ratios and corresponding 95% confidence intervals. MR,
Mendelian randomization; IVW, inverse-variance weighted; WM, weighted median; OR, odd ratio; 95%CI, 95% confidence intervals.
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or BMI (45). Another MR study discovered that the proportion of

trunk fat is a surrogate for abdominal adiposity, indicating a causal

positive relationship with OC (46). In a study of normal-weight

individuals (40-70 years old) in the UK Biobank cohort, researchers

found no correlation between waist circumference, trunk fat mass

index, trunk fat mass ratio, and waist-hip ratio with the risk of OC

in women (47). The complicated influence of numerous

anthropometric parameters on OC necessitates more exploration.

Our findings may provide additional causal insights into the effect

of fat distribution on OC.

The distribution of body fat in humansmight correlate with leptin

levels, which play a crucial role in lipid metabolism (48). Research

indicates that leptin plays a role in determining the resting metabolic

rate in lean individuals (49). A prospective study in Sweden analyzed

serum samples to examine leptin concentrations and their correlation

with weight history (50). The study revealed that elevated leptin levels

posed a risk for future weight gain in women aged 38 to 46 (50).

Additionally, a four-year longitudinal study carried out in America

identified that heightened plasma leptin levels in overweight males

could signify leptin resistance and eventual weight gain (51). A

longitudinal study involving African Americans revealed a distinct,

independent association between heightened hip circumference,

expanded waist circumference, and elevated serum leptin levels (52).

Moreover, a recent study in young adults aged 20 to 21 demonstrated a

positive correlation between serum leptin levels, waist circumference,

and body fat percentage in bothmen and women (53). Furthermore, a

study investigating the potential relationship between trunk fat levels

and breast gene expression revealed that increased trunk fat levelswere

correlated with higher levels of leptin (54). These findings suggest that

leptin may play a role in human fat distribution and endocrine

metabolism. Leptin is synthesized and released by adipocytes to

interact with its specific receptor, the leptin receptor (LEP-R),

located in white adipose tissue (55). LEP-R facilitates the diverse

effects of leptin and plays a vital role in regulating body weight.

Leptin resistance is typified by diminished satiety, increased nutrient

intake, and subsequent weight gain, ultimately contributing to the

development of obesity (56).

Adipose tissue levels in the blood increase sensitivity to leptin

expression, which might explain the link between obesity and the risk

of OC (57). More than half of patients with epithelial ovarian cancer

(EOC) in the Middle East demonstrated overexpression of leptin and
Frontiers in Endocrinology 05
its receptors, leading in a shorter overall survival (58). The

advancement of OC under the influence of leptin is associated with

the phosphorylation of STAT3 and the estrogen receptor (ER), as well

as the synthesis of ER-responsive genes, which impacts the overall

longevity of OC patients (59–61). Anomalously activated STAT3

promotes uncontrolled tumor cell growth and survival by a number

of ways, including increased production of oncogenes likeMyc proto-

oncogene protein (c-myc) and cyclin D, as well as anti-apoptotic

proteins like B-cell lymphoma-extra large (Bcl-XL) and Myeloid cell

leukemia 1 (MCL-1) (62, 63). Furthermore, leptin boosts the

circulating levels of follicle-stimulating hormone (FSH), which is

essential for OC cell activation and proliferation (64). Hence, it is

speculated that the 10 metabolic factors related to fat distribution

identified in this study may contribute to the pathogenesis of OC

through the overexpression of leptin and its receptor.

Hypoxia Inducible factor-1 alpha (HIF-1a), which can be induced
byhypoxia andmanyother factors (65), regulates gene transcription in

tumor cells and is corelated with the tolerance of chemotherapy (66–

68). HIF-1a can be activated by hypoxia in obesity-related adipose

tissue, and HIF-1a promotes the expression of collagen remodeling

genes such Collagen type I alpha 1 chain (COL1A1) and Lysyl oxidase

(LOX) in ovarian surface epithelial cells and activates Macrophage

Type 2 (M2) macrophages (69–72). Surface epithelial cell collagen

remodeling andM2macrophages are associatedwitha badoutcome in

OC patients (70). Adipocytes undergo phenotypic changes when they

come into contact with tumor cells, becoming cancer-associated

adipocytes (CAAs) and enduring delipidation at the leading edge of

tumor invasion, adopting a fibroblast-like phenotype (73). CAAs can

effectively halt the cell cycle, elevate the expression of genes linked to

cell cycle arrest, and reduce the expression of genes that facilitate cell

growth. Additionally, the transformation from regular adipocytes to

CAAs may involve cellular aging (74). This process involves an

increase in inflaming cytokine release (Interleukin-6 (IL-6) and

Plasminogen activator inhibitor-1 (PAI-1)) and may result in the

transformation of non-malignant stromal cell types (fibroblasts and

macrophages) intocancer-relatedfibroblasts andmacrophages (12, 41,

75, 76). Moreover, CAAs also secrete leptin, a hormone known to

influence the immune system, potentially facilitating tumormetastasis

and immune evasion (77). The role of a relationship between the

development of non-malignant stromal cells andmature adipocytes is

currently unknown and warrants more research.
FIGURE 4

Funnel plot of the IVs. IV, instrumental variable; SE, standard error; MR, Mendelian randomization
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Increased levels of androgens and estrogens, decreased

progesterone, and control over the insulin-like growth factor (IGF)

axis may be the molecular processes behind the link between fat

accumulation and the risk of OC (78). Furthermore, obesity and fat

redistribution, particularly in the central region, are known to enhance

cancer susceptibility (79–83).Nonetheless, themechanismsbehind the

relationship between body fat measurements and the risk of OC in

adults of normal weight are still not fully understood.

Our research has various advantages. Our study examines the

impact of many metabolic factors on OC by MR analysis, and the

identified causal relationships are clinically significant. Furthermore,

rigorous sensitivity studies confirmed the reliability and stability of our

conclusions. Finally, by including genetic variants, we decreased

confounding interference and so preserved the study’s validity.

Nonetheless, our study has limitations. To begin, the risk of

selection bias cannot be fully ruled out. Furthermore, While the

MR-Egger intercept test did not indicate the presence of horizontal

pleiotropy, it is important to note that the possibility of its existence

cannot be entirely ruled out. Moreover, because our study only

included Europeans, the applicability of our findings to other ethnic

groups may be restricted. Future research in diverse ethnic

populations, including Asians and Africans, is warranted. Finally,

the effect of metabolic factors on OC may not be a simple linear

relationship, which cannot be evaluated by our study.
Conclusion

We conducted a comprehensive investigation of the

relationships between metabolic indicators and OC risk. We

discovered that fat accumulation and distribution contribute to

metabolic alterations that have a deleterious impact on OC. The

results will also potentially accelerate the identification of indicators

and assessment methods, thus enhancing early intervention and

treatment strategies for OC. Additional comprehensive studies are

necessary to clarify the underlying mechanisms of our observations.
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