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Background: Previous studies have demonstrated that there is a correlation

between trihalomethanes and disease progression, such as allergic diseases. As

we know, only few studies focused on the relationship between trihalomethanes

and metabolic diseases, such as diabetes mellitus.

Objective: The aim of this study was to further explore the associations between

blood trihalomethane concentrations and diabetes mellitus in older adults in

the US.

Methods: Data were collected from the National Health and Nutrition

Examination Study (NHANES) database in the survey cycle during 2013 to 2018,

including 2,511 older adults in the US whose blood trihalomethane

concentrations were measured, involving chloroform (TCM) and brominated

trihalomethanes (Br-THMs). Br-THMs include bromodichloromethane (BDCM),

dibromochloromethane (DBCM), and bromoform (TBM). Meanwhile, the

concentration of total trihalomethanes (TTHMs) was also measured later. A

multivariate logistic regression and restricted cubic spline were used to

examine the relationship between blood THMs and diabetes mellitus.

Meanwhile, we performed a subgroup analysis, which aims to explore the

stability of this relationship in different subgroups. In order to further consider

the impact of various disinfection by-products on diabetes, we also used

weighted quantile sum (WQS). To explore the correlation in trihalomethanes,

we plot a correlation heatmap.

Results: Adjusting for potential confounders, we found that there was a

significant negative association between chloroform and diabetes mellitus

[Model 1 (adjusted for covariates including age, sex, and race, OR = 0.71; 95%

CI: 0.50–1.02; p = 0.068; p for trend = 0.094); Model 2 (adjusted for all

covariates, OR = 0.68; 95% CI: 0.48–0.96; p = 0.029; p for trend = 0.061)].
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In the bromodichloromethane, we reached a conclusion that is similar to TCM

[Model 1 (adjusted for covariates including age, sex, and race, OR = 0.54; 95% CI:

0.35–0.82; p = 0.005; p for trend = 0.002); Model 2 (adjusted for all covariates,

OR = 0.54; 95% CI: 0.35–0.82; p = 0.003; p for trend = 0.002)]. Meanwhile, the

restricted cubic spline curve also further confirms this result (p overall = 0.0027;

p overall< 0.001). Based on the analysis in the subgroups, we found that the value

p for interaction in the majority of subgroups is higher than 0.1. Trihalomethanes

and diabetes were inversely associated, and in the WQS, chloroform and

bromodichloromethane were found to be the major contributors to this

relationship. In the correlation analysis, we found that most trihalomethanes

have a weak correlation, except for TBM and TCM with a strong correlation.

Conclusion: Our results in this study showed that blood chloroform,

bromodichloromethane concentrations, and diabetes mellitus in older adults

in the US are negatively correlated, suggesting that chloroform and

bromodichloromethane can be protective factors for diabetes.
KEYWORDS

trihalomethanes, diabetes mellitus, disinfection by-products, NHANES, older adults in

the US
1 Introduction

Diabetes mellitus is a systemic disease, whose clinical

manifestations usually include polydipsia, polyuria, overeating,

and weight loss. Although the etiology of diabetes mellitus is

quite complicated, some studies indicated that it can be attributed

to lack of insulin secretion or insulin resistance or both (1). Long-

term hyperglycemia can lead to damage to the function of our

systemic organs, particularly the eyes, kidneys, nerves, heart, and

blood vessels (2–7). Some studies showed that the population of

patients with diabetes in recent years is increasing gradually (8). As

the global population ages, the prevalence of diabetes is evidently

increasing in older adults (9). It is expected that the economic

burden of diabetes will increase in the next few decades. Therefore,

it is necessary to focus on the causative and protective factors of

diabetes in the older adult population.

Chlorine disinfection of public water supplies remains one of

the main means to control the microbial contamination around the

world. When disinfectants (such as hypochlorous acid and calcium

hypochlorite) react with substances in the water, more than

hundreds of water disinfection by-products (DBPs) are produced

(10). Humans are exposed to DBPs when people use water for some

daily activities (e.g., swimming, drinking, and bathing). Therefore,

residual contaminants formed during water disinfection may have

adverse health effects (11). Trihalomethanes are one of the most

common DBPs and the humans are most easily exposed to this

DBP. Several studies have linked trihalomethanes to some allergic

diseases, such as asthma (12, 13). In addition, on the relationship
02
between THMs and diabetes mellitus, some scholars have different

opinions. On the one hand, in diabetic rats with diet and alloxan-

induced diabetes, the chloroform fraction of plants (such as

Anthocleista vogelii Planch root bark) has antidiabetic effects (14).

On the other hand, it has been shown that brominated

trihalomethanes (Br-THMs) are a risk factor for diabetes,

contributing to related diabetic events through leptin and liver

damage (15, 16). The barriers to scholars’ views give us enough

motivation to further explore the relationship between

trihalomethanes in human blood and diabetes mellitus. The

determination of trihalomethane concentrations requires

consideration of several factors, and other exposure pathways

may have been overlooked in previous determinations of THMs

in tap water. Blood trihalomethane concentrations represent a more

integrated measurement of multiple exposure routes and sources

(17). Steady-state blood concentrations generally depend on the

frequency of exposure events. The time spent swimming in a

chlorinated swimming pool is generally positively correlated with

blood trihalomethane concentrations. Showering, washing dishes

by hand, and ingestion of hot beverages made with tap water are

associated with higher blood THMs (18). In addition, there are no

research evaluating the relationship between blood trihalomethanes

and diabetes mellitus in older adults. The immune system of older

adults may be more fragile than the rest of the population.

Therefore, to further explore the association of trihalomethanes

with diabetes mellitus, we used the National Health and Nutrition

Examination Study (NHANES) database and selected older adults

as our study group.
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2 Methods

2.1 Study population

In this cross-sectional study, data were collected from the 2013–2018

survey cycle in the NHANES database (N = 29,400). Participants aged no

more than 60 years were excluded (N = 23,508). Meanwhile, there are no

missing data for people with diabetes (N = 5,892). Subsequently, we

removed the data withmissing or zeroweights (N = 280). In addition, we

excluded missing data for trihalomethanes [including chloroform,

bromodichloromethane, dibromochloromethane, bromoform, total

trihalomethanes (TTHMs), and Br-THMs; N = 3101]. Finally, 2,511

participants were eligible for this study (Figure 1). Based on a population

cross-sectional survey, the NHANES collects information on the health

and nutrition of households in America. Each participant in the

interview and evaluation provided informed consent. The National

Health Statistics Research Ethics Review Board approved this biennial

data collection. Likewise, the Centers for Disease Control and

Prevention’s (CDC’s) Institutional Review Board also approved the

protocol for the study.
2.2 Blood THM measurement

According to previous studies, the procedure for the

determination of trihalomethanes is blood sampling by

venipuncture, storing, determination, quality assurance (QA), and

quality control (QC) (19, 20). Trihalomethanes are highly volatile

and need to be stored in the room at 4°C. There are three methods

for determining the concentration of trihalomethanes in blood,

namely, solid-phase microextraction, gas chromatography, and

mass spectrometry (21–23). BDCM, DBCM, and TBM were
Frontiers in Endocrinology 03
summed as Br-THMs, and TCM, BDCM, TBM, and DBCM were

summed as TTHMs (13). In our research, values below the limit of

detection (LOD) have been replaced by LOD/ √ 2.
2.3 Determination of diabetes mellitus

According to the latest update of the diagnostic criteria for

diabetes mellitus and the CDC’s undiagnosed diabetes definition

(24), diabetes was defined as fasting plasma glucose (FPG) >7.0

mmol/L or 2 h postprandial >11.1 mmol/L in the oral glucose

tolerance test (OGTT), or random blood glucose ≥11.1 mmol/L,

HbA1C ≥ 6.5%, or self-reported. The diabetes population in this

study was identified based on the above conditions’ diagnosis.
2.4 Definition of covariates

Factors that we considered may influence the relationship between

blood trihalomethane concentrations and diabetes mellitus in

diabetes as covariates. Information regarding patients’ age, sex, race,

hyperlipidemia, marriage, poverty-to-income ratio (PIR), education,

smoke status, body mass index, alcohol user status, and hypertension

was collected. Ethnic groups include Mexican-Americans, non-

Hispanic whites, non-Hispanic blacks, and other races. Marital

information includes married/living with partner, widowed/divorced/

separated, and never married. Educational level is categorized as below

senior high school, senior high school, and above senior high school.

BMI was calculated as weight/(height)2 kg/m2. The conditions for

smokers include never smoked, used to smoke, and currently smoking.

Alcohol user status was categorized as never drank, used to drink, low

to moderate drinking (defined as ≤2 cups per day for women and ≤3
FIGURE 1

Flowchart of participant screening based on the NHANES database for the relationship between blood trihalomethane concentrations and diabetes
mellitus from 2013 to 2018.
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cups per day or ≤4 days of drinking per month for men), and heavy

drinking (defined as ≥3 cups per day for women or ≥4 cups per day or

≥5 days of drinking per month for men). We defined hypertension as a

systolic blood pressure (SBP) ≥130 mm Hg or diastolic blood pressure

(DBP) ≥80 mmHg or the presence of antihypertensive drug treatment

or self-reported (Whelton et al., 2018). The PIR is divided into three

levels, namely, PIR ≤ 1 (low income), PIR 1–3 (middle income), and

PIR > 3 (high income). Participants were considered to have diabetes

mellitus when they had a fasting glucose level >7 mmol/L, or a random

glucose >11 mmol/L, or a glycated hemoglobin >6.5%, or 2 h

postprandial >11.1 mmol/L in OGTT, or self-reported (24). The

definition of hyperlipemia was triglyceride (TG) > 200 mg/dL, total

cholesterol (TC) > 200 mg/dL, low-density lipoprotein (LDL) > 130

mg/dL, high-density lipoprotein (HDL)< 40 mg/dL (men)/50 mg/dL

(women), or taking hypolipidemic drugs. Among the covariates, we

found no statistically significant differences between diabetic and non-

diabetic populations in age, marital, and smoking status (p > 0.05).
2.5 Statistical analysis

NHANES adopted a complex multi-stage probability sampling

design; thus, appropriate weighting was used in our study. In our

study, we described continuous variables (e.g., age) as mean ±

standard deviation and categorical variables as percentages. In order

to compare the differences among the groups, we used weighted

ANOVA and chi-square test. Meanwhile, the multivariate logistic

regression was conducted to explore the relationship between blood

trihalomethane concentrations and diabetes mellitus. The older

adults were assigned to quartile for TTHMs, whereas five groups

were created for TCM (<75th, 75–87.5th, and ≥87.5th), BDCM

(≤50th, 50–75th, and >75th), DBCM (≤25th, 25–75th, and >75th),

TBM (≤25th, 25–75th, and >75th), and Br-THMs (<75th,

75–87.5th, and ≥87.5th). In order to reduce the influence of

confounding factors on our result, we conducted model

adjustments, Model 1: adjusted for age, race, and sex, and Model

2: adjusted for all covariates (age +sex +race + smoke+ alcohol

user status + hypertension + marriage+ education + BMI +

hyperlipidemia+ PIR). Subsequently, restricted cubic splines were

used to further evaluate the blood concentration–response

relationship between blood trihalomethane concentrations and

diabetes mellitus, and the blood trihalomethane concentration–

response curves were plotted clearly and show the relationship

between blood trihalomethane concentrations and diabetes

mellitus. To explore the contribution of trihalomethanes in

reducing the incidence of diabetes, we used WQS. Finally, we also

conducted a stratified analysis. Subgroups include race, sex, smoke,

alcohol user status, marriage, education, PIR, hypertension,

hyperlipidemia, and body mass index. The purpose was

to explore the stability of the association between blood

trihalomethane concentrations and diabetes mellitus in different

subgroups. To explore multicollinearity in trihalomethanes, we plot

a correlation heatmap. R-Version 4.21 is used to complete all our

data analysis.
Frontiers in Endocrinology 04
3 Results

3.1 Baseline information and
correlation analysis

The study had a total of 29,400 participants and ultimately

included 2,511 members. The average age of most members is 69

years old (Table 1). In our study, the proportion of men and women

was approximately identical. Over half of the participants had been

educated in senior high school education or even obtained

advanced degrees. Approximately 26.0% of participants had a

high school diploma, and 15.7% of participants did not receive a

high school education. Whether participants had diabetes or not,

non-Hispanic whites make up most of our research group (75.7% of

participants), most participants are low to moderate drinkers

(67.5% of participants), most participants have hyperlipidemia

(84.5% of participants), and most people suffer from hypertension

(76.5% of participants). In addition, half of the participants had

never smoked and more than half of those with diabetes had a body

mass index above 30 kg/m2. We also found that the concentrations

of TCM and BDCM in the blood of most participants were Q1,

while others were Q2. In the correlation analysis (Figure 2), TBM

and TCM have the strongest correlation (correlation coefficient:

0.79). The correlation coefficients between most trihalomethanes

are less than 0.2.
3.2 Association between blood
trihalomethane concentrations and
diabetes mellitus

We conducted multivariate logistic regression analysis (Table 2).

The results on blood levels of chloroform and diabetes mellitus are

shown in model 1 (adjusted for covariates including age, sex, and race,

OR = 0.71; 95% CI: 0.50–1.02; p = 0.068; p for trend = 0.094) and

model 2 (adjusted for all covariates, OR = 0.68; 95% CI: 0.48–0.96; p =

0.029; p for trend = 0.061). For bromodichloromethane, the results are

shown in model 1 (adjusted for covariates including age, OR = 0.54;

95%CI: 0.35–0.82; p = 0.005; p for trend = 0.002) andmodel 2(adjusted

for all covariates, OR = 0.54; 95% CI: 0.35–0.82; p = 0.003; p for trend =

0.002). In the study of bromoform, dibromochloromethane, TTHMs,

and Br-THMs, we did not find a statistically significant correlation

with diabetes mellitus (p > 0.05). Meanwhile, we plotted restricted

cubic spline curves to further evaluate the blood concentration–

response relationship between blood trihalomethane concentrations

and diabetes mellitus (Figure 3). Apart from the non-linear

relationship in BDCM (p for nonlinear = 0.0047), we found a linear

relationship in blood concentrations of all trihalomethanes. Moreover,

blood chloroform, bromodichloromethane concentrations, and

diabetes mellitus events in older adults in the US are negatively

correlated (p overall = 0.0027; p overall< 0.01). Most members have

lower concentrations of chloroform and bromodichloromethane in

their blood than other types of trihalomethanes. Based on the results

that we have obtained, we speculated that the protective effects of
frontiersin.org
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TABLE 1 Baseline information, weighted, NHANES 2013–2018.

Characteristic Trihalomethane

Overall Non-diabetic Diabetes p

N 2,511 1,630 881

Age (years) 69.88 ± 6.72 69.91 ± 6.77 69.84 ± 6.59 0.819

GFR (mL/1.73 m2) 102.02 ± 28.59 101.81 ± 29.15 102.4 ± 27.20 0.616

Gender, n (%) 0.003

Male 1,260 (45.9) 782 (43.1) 478 (52.6)

Female 1,251 (54.1) 848 (56.9) 403 (47.4)

Race, n (%) <0.001

Mexican American 328 (4.6) 170 (3.5) 158 (7.4)

Other races 556 (11.2) 345 (10.1) 221 (14.1)

Non-Hispanic white 1,116 (75.8) 792 (78.8) 324 (68.3)

Non-Hispanic blacks 501 (8.4) 323 (7.6) 178 (10.2)

Marriage, n (%) 0.296

Married/living with partner 1,448 (62.5) 925 (63.0) 523 (61.3)

Widowed/divorced/separated 900 (32.6) 602 (32.8) 298 (32.3)

Never married 163 (4.9) 103 (4.3) 60 (6.4)

Education, n (%) <0.001

<High school 667 (15.7) 397 (14.3) 270 (19.3)

High school 609 (26.0) 388 (25.3) 221 (27.6)

>High school 1,235 (58.3) 845 (60.4) 390 (53.1)

Alcohol user status, n (%) 0.01

Never 401 (12.3) 243 (10.2) 158 (17.5)

Former 419 (14.0) 252 (13.2) 167 (16.0)

Low to moderate 1,511 (67.5) 1,017 (70.2) 494 (61.1)

Heavy 180 (6.1) 118 (6.4) 62 (5.4)

Smoke, n (%) 0.456

Never 1,301 (51.8) 849 (51.9) 452 (51.6)

Former 892 (38.6) 567 (38.2) 325 (39.5)

Currently 318 (9.6) 214 (9.9) 104 (8.9)

BMI, kg/m2, n (%) <0.001

≤25 kg/m2 616 (22.5) 475 (26.7) 141 (12.3)

25–30 kg/m2 942 (37.8) 637 (40.0) 305 (32.6)

≥30 kg/m2 953 (39.7) 518 (33.4) 435 (55.1)

Hypertension, n (%) <0.001

Yes 1,998 (76.5) 1,247 (73.3) 751 (84.3)

No 513 (23.5) 383 (26.7) 130 (15.7)

Hyperlipidemia, n (%) <0.001

Yes 2,102 (84.5) 1,323 (82.4) 779 (89.5)

No 409 (15.5) 307 (17.6) 102 (10.5)

(Continued)
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chloroform and bromodichloromethane on diabetes may be realized at

low concentrations.
3.3 Trihalomethane exposure and diabetes
mellitus in the WQS model

We used the WQS model to examine the relationship between

the combined effects of these four tri-halomethanes and the

incidence of diabetes. In terms of co-exposures, the WQS model

found that trihalomethanes are inversely associated with diabetes

(Model: OR = 0.51; 95% CI: 0.37–0.7; p< 0.001), with the top weight

contributions from BDCM (79.2%) and TCM (12.2%). Positive

WQS regression analysis showed no association between

trihalomethanes and diabetes (Model: OR = 0.7; 95% CI: 0.43–

1.13; p = 0.144), as shown in Table 2 and Figure 4.
Frontiers in Endocrinology 06
3.4 Subgroup analysis

Our purpose was to explore the stability of the association

between blood trihalomethane concentrations and diabetes mellitus

in different subgroups (Tables 3, 4). In the results, we found that the

p for interaction in most subgroups is higher than 0.1, indicating

that the negative association between blood trihalomethane

concentrations (chloroform and bromodichloromethane) and

diabetes mellitus is robust. This means that these factors do not

influence our results, such as gender, race, and education.
4 Discussion

This cross-sectional analysis of older adults in the US showed

that blood BDCM and TCM concentrations were associated with
TABLE 1 Continued

Characteristic Trihalomethane

Overall Non-diabetic Diabetes p

Chloroform, n (%) 0.035

Q1 (<0.016 ng/mL) 1,867 (74.2) 1,185 (73.0) 682 (77.2)

Q2 (0.016 to 0.024 ng/mL) 312 (12.9) 214 (13.1) 98 (12.3)

Q3 (≥0.024 ng/mL) 332 (12.9) 231 (13.9) 101 (10.5)

Bromodichloromethane, n (%) <0.001

Q1 (≤0.004 ng/mL) 1,462 (57.4) 903 (55.3) 559 (62.8)

Q2 (0.004 to 0.0042 ng/mL) 685 (27.4) 460 (27.6) 225 (26.7)

Q3 (>0.0042 ng/mL) 364 (15.2) 267 (17.1) 97 (10.5)

Dibromochloromethane, n (%) 0.084

Q1 (≤0.0035 ng/mL) 695 (28.5) 471 (29.0) 224 (27.1)

Q2 (0.0035 to 0.0040 ng/mL) 1,511 (61.7) 955 (60.7) 556 (64.1)

Q3 (>0.0040 ng/mL) 305 (9.8) 204 (10.2) 101 (8.9)

Bromoform, n (%) 0.04

Q1 (≤0.0057 ng/mL) 743 (29.8) 510 (30.9) 233 (27.2)

Q2 (0.0057 to 0.0060 ng/mL) 1,591 (64.2) 1,008 (63.3) 583 (66.4)

Q3 (>0.0060 ng/mL) 177 (5.9) 112 (5.8) 65 (6.4)

Total trihalomethane, n (%) 0.001

Q1 (<0.02 ng/mL) 332 (13.3) 215 (13.3) 117 (13.4)

Q2 (0.02 to 0.028 ng/mL) 1,338 (53.7) 829 (52.4) 509 (56.8)

Q3 (≥0.028 ng/mL) 841 (33.0) 586 (34.3) 255 (29.8)

Brominated trihalomethane, n (%) 0.01

Q1 (<0.014 ng/mL) 627 (25.5) 422 (26.0) 205 (24.3)

Q2 (0.014 to 0.018 ng/mL) 1,558 (62.0) 978 (60.8) 580 (64.9)

Q3 (≥0.018 ng/mL) 326 (12.5) 230 (13.2) 96 (10.8)
BMI, body mass index; GFR, glomerular filtration rate.
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FIGURE 2

Exploring the correlation between trihalomethanes. ***means P<0.001.
TABLE 2 Results of multiple logistic regression analysis of the association between trihalomethane and diabetes mellitus in older adults, weighted.

Chloroform Model 1 p-value Model 2 p-value

OR (95% CI) OR (95% CI)

Q1 Ref Ref Ref Ref

Q2 0.92 (0.62,1.36) 0.658 0.99 (0.66,1.50) 0.965

Q3 0.71 (0.50,1.02) 0.068 0.68 (0.48,0.96) 0.029

p for trend 0.094 0.061

Dibromochloromethane OR (95% CI) p-value OR (95% CI) p value

Q1 Ref Ref Ref Ref

Q2 1.11 (0.88,1.39) 0.361 1.11 (0.89,1.39) 0.34

Q3 0.84 (0.54,1.29) 0.407 0.84 (0.55,1.28) 0.404

p for trend 0.137 0.77

Bromodichloromethane OR (95% CI) p-value OR (95% CI) p-value

Q1 Ref Ref Ref Ref

Q2 0.87 (0.67,1.14) 0.305 0.89 (0.69,1.15) 0.374

Q3 0.54 (0.35,0.82) 0.005 0.54 (0.36,0.81) 0.003

p for trend 0.002 0.002

Bromoform OR (95% CI) p-value OR (95% CI) p-value

(Continued)
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diabetes mellitus. Furthermore, we believe that this relationship is

negatively correlated, indicating that BDCM and TCM may play a

protective role in diabetes mellitus development. These associations,

however, were not observed in other trihalomethanes (DBCM,

TTHMs, TBM, and Br-THMs). Most members had lower

concentrations of chloroform and bromodichloromethane in their

blood than other types of trihalomethanes. We speculate that the

protective effects of chloroform and bromodichloromethane on

diabetes may be realized at low concentrations.

Previous population studies have shown that all trihalomethanes,

with the exception of TBMs, have protective effects in the diabetic

population (18), which seems to contradict our conclusions. In fact, our

study does not deny this conclusion. It is well known that the

pathogenesis of diabetes mellitus is associated with abnormalities in

immune system and metabolism. Metabolic abnormalities, such as

insulin resistance, are critical in the development of diabetes mellitus.

The immune system and metabolic function are often two-way linked.

On the one hand, inflammation can promote metabolic abnormalities

such as obesity and diabetes. On the other hand, the metabolic factors,

in turn, may regulate immune cell function (25). Our study was
Frontiers in Endocrinology 08
conducted in older adults in the US of the diabetic population. We

considered that older adults might be a representative group with

immunometabolism disorders. Older adults usually have a low level of

immune system and tend to show chronic low-grade inflammation,

which is related to the pathogenesis of many age-related diseases

(atherosclerosis, Alzheimer’s disease, osteoporosis, and diabetes) (26).

In addition, it has been reported that trihalomethanes also play a role in

the development of asthma and other diseases (27). It is well known

that the pathogenicity of trihalomethanes is inevitable. Therefore, we

consider that studying lower concentrations of trihalomethanes is more

meaningful in exploring their role for diabetes mellitus. Compared with

the younger group with good body management and love of sports, the

living habits of older adults are usually reducing physical activity (PA)

and exercise, which means less exposure. In 2006, the standard for

DBPs in water has been revised by the United States Environmental

Protection Agency (28). Compared to Rieder’s study of NHANES from

the 1999–2006 survey cycle, the information for the 2013–2018 survey

cycle was collected according to the new standards. The World Health

Organization’s guidelines on drinking water also require limiting the

concentration of trihalomethanes in daily water (WHO G, (29)).
TABLE 2 Continued

Chloroform Model 1 p-value Model 2 p-value

OR (95% CI) OR (95% CI)

Bromoform OR (95% CI) p-value OR (95% CI) p-value

Q1 Ref Ref Ref Ref

Q2 1.17 (0.92,1.48) 0.193 1.15 (0.91,1.46) 0.228

Q3 1.16 (0.60,2.24) 0.648 1.12 (0.59,2.11) 0.731

p for trend 0.335 0.403

Total trihalomethane OR (95% CI) p-value OR (95% CI) p-value

Q1 Ref Ref Ref Ref

Q2 1.05 (0.71,1.55) 0.796 1.05 (0.72,1.53) 0.803

Q3 0.85 (0.55,1.33) 0.473 0.83 (0.54,1.27) 0.39

p for trend 0.302 0.211

Brominated
trihalomethane

OR (95% CI) p-value OR (95% CI) p-value

Q1 Ref Ref Ref Ref

Q2 1.11 (0.83,1.49) 0.464 1.09 (0.81,1.47) 0.575

Q3 0.83 (0.51,1.35) 0.442 0.81 (0.50,1.32) 0.388

p for trend 0.302 0.562

WQS (Negative) 0.51 (0.37,0.7) <0.001

WQS (Positive) 0.7 (0.43,1.13) 0.144
OR, odds ratio; 95% CI, 95% confidence interval. WQS, weighted quantile sum.
Model 1: Adjusted for covariates (age, race, and sex).
Model 2: Adjust for all confounding factors (age, sex, race, hyperlipidemia, marriage, poverty-to-income ratio, education, smoke status, body mass index, alcohol user status, and hypertension).
Chloroform: Q1 (<0.016 ng/mL), Q2 (0.016 to 0.024 ng/mL), Q3 (≥0.024 ng/mL).
Bromodichloromethane: Q1 (≤0.004 ng/mL), Q2 (0.004 to 0.0042 ng/mL), Q3 (>0.0042 ng/mL).
Dibromochloromethane: Q1 (≤0.0035 ng/mL), Q2 (0.0035 to 0.0040 ng/mL), Q3 (>0.0040 ng/mL).
Bromoform: Q1 (≤0.0057 ng/mL), Q2 (0.0057 to 0.0060 ng/mL), Q3 (>0.0060 ng/mL).
Total trihalomethane: Q1 (<0.02 ng/mL), Q2 (0.02 to 0.028 ng/mL), Q3 (≥0.028 ng/mL).
Brominated trihalomethane: Q1 (<0.014 ng/mL), Q2 (0.014 to 0.018 ng/mL), Q3 (≥0.018 ng/mL).
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Unfortunately, we have not explored the specific THM concentration

that can exhibit antidiabetic activity without causing other diseases,

which is the direction of our next research.

According to previous studies, the chloroform fraction of plants

(such as A. vogelii Planch root bark) can exhibit antidiabetic activity

in rats with diet- and alloxan-induced obesity–diabetes (14), which

may be related to the extracted components of chloroform fraction,

including quebrachitol (QCT), loganin, sweroside, oleoside

11methyl ester, and ferulic acid (30). QCT can act as a b-
glucosidase inhibitor and thus resist diabetes (31). Sweroside

can the regulation of phosphoenolpyruvate carboxykinase

gene expression and then mimic insulin to resist diabetes (32).

Loganin, oleoside 11-methyl, and ferulic acid ameliorates

hyperglycemia by reducing oxidative stress levels (33–35). Most

components are associated with oxidative stress levels. This is

robust evidence that chloroform may be a protective factor for

diabetes. Unfortunately, no extracts of BDCM have been reported

for their antidiabetic effects in animal models of diabetes. Our

research can be supplementary to the antidiabetic effects of
Frontiers in Endocrinology 09
chloroform and it can also stimulate the development of animal

models to validate the antidiabetic effects of BDCM.

In addition, some studies have concluded that Br-THMs are a risk

factor for diabetes (15, 16). We believe that their study may have some

limitations that lead to the opposite conclusion from ours. Firstly, the

study is not in a larger sample size population to validate the accuracy

of conclusion. Secondly, based on multivariate logistic regression

models for T2DM, we found that none of their trihalomethane-

related data was statistically significant (p > 0.05). However, we also

agree with another view that exposure of Br-THM can modulate leptin

and insulin sensitivity; thus, we do not completely reject the

conclusions of these two studies. Further experiments are still needed

to demonstrate the complex mechanisms.

Finally, our study inevitably has some limitations. First, we cannot

avoid the shortcomings of reverse causality in cross-sectional studies.

Second, we may also be affected by non-measured or uncontrolled

covariates. Third, because the intake of trihalomethanes causes various

systemic diseases, we were not able to provide a definite concentration

as an indicator of anti-diabetes. Fourth, we do not consider the impact
A B

C D

E F

FIGURE 3

Association of diabetes mellitus with the TCM (A), BDCM (B), DBCM (C), TBM (D), TTHMs (E), and Br-THMs (F) performed by restricted cubic
spline analysis.
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FIGURE 4

The WQS model weights of trihalomethanes on the prevalence of diabetes mellitus in the negative direction.
TABLE 3 Chloroform subgroup analysis.

Character Q1 Q2 p Q3 p p for trend p for interaction

Sex 0.449

Male Ref 1.188 (0.574,2.462) 0.635 0.694 (0.415,1.163) 0.161 0.347

Female Ref 0.712 (0.393,1.288) 0.254 0.739 (0.457,1.193) 0.210 0.165

Race 0.941

Mexican American Ref 0.592 (0.177,1.982) 0.373 1.020 (0.393,2.646) 0.966 0.689

Other races Ref 1.043 (0.597,1.821) 0.879 0.776 (0.484,1.244) 0.283 0.321

Non-Hispanic white Ref 0.916 (0.546,1.539) 0.735 0.684 (0.430,1.087) 0.105 0.16

Non-Hispanic blacks Ref 0.742 (0.392,1.405) 0.348 0.648 (0.335,1.252) 0.189 0.152

Marriage 0.078

Married/living with partner Ref 1.216 (0.709,2.085) 0.469 0.648 (0.401,1.048) 0.076 0.224

Widowed/
divorced/separated

Ref 0.442 (0.224,0.871) 0.020 0.650 (0.366,1.154) 0.138 0.048

Never married Ref 1.353 (0.285,6.422) 0.695 1.923 (0.479,7.725) 0.345 0.322

Education 0.372

<High school Ref 0.615 (0.315,1.199) 0.149 0.634 (0.324,1.241) 0.178 0.119

High school Ref 1.470 (0.620,3.485) 0.373 1.109 (0.614,2.003) 0.727 0.477

>High school Ref 0.756 (0.373,1.532) 0.429 0.603 (0.332,1.093) 0.094 0.068

Smoke 0.058

Never Ref 0.620 (0.408,0.943) 0.026 0.560 (0.331,0.948) 0.032 0.016

(Continued)
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TABLE 3 Continued

Character Q1 Q2 p Q3 p p for trend p for interaction

Former Ref 1.116 (0.633,1.967) 0.698 1.008 (0.543,1.874) 0.978 0.873

Now Ref 2.602 (0.908,7.453) 0.074 0.816 (0.282,2.359) 0.700 0.778

Alcohol user status 0.172

Never Ref 0.794 (0.390,1.616) 0.516 0.455 (0.179,1.158) 0.096 0.081

Former Ref 1.009 (0.541,1.880) 0.978 0.501 (0.210,1.199) 0.116 0.166

Low to moderate Ref 0.852 (0.532,1.365) 0.497 0.720 (0.460,1.127) 0.147 0.124

Heavy Ref 2.707
(0.629,11.655)

0.173 2.777
(0.836, 9.226)

0.092 0.032

BMI 0.229

≤25 kg/m2 Ref 0.787 (0.281,2.203) 0.641 0.937 (0.423,2.076) 0.871 0.676

25–30 kg/m2 Ref 0.619 (0.322,1.192) 0.147 0.586 (0.370,0.928) 0.024 0.011

≥30 kg/m2 Ref 1.502 (0.806,2.799) 0.194 0.823 (0.474,1.432) 0.483 0.919

Hyperlipidemia 0.218

Yes Ref 0.634 (0.190,2.114) 0.449 1.533 (0.540,4.352) 0.412 0.533

No Ref 0.884 (0.594,1.315) 0.534 0.627 (0.427,0.919) 0.018 0.02

PIR 0.744

Low income Ref 1.447 (0.662,3.161) 0.345 1.032 (0.475,2.244) 0.934 0.713

Middle income Ref 0.854 (0.589,1.240) 0.399 0.716 (0.416,1.234) 0.223 0.182

High income Ref 0.868 (0.430,1.751) 0.686 0.563 (0.295,1.076) 0.081 0.106

Hypertension Ref 0.956

Yes Ref 0.783 (0.315,1.946) 0.591 0.693 (0.307,1.568) 0.370 0.361

No Ref 0.889 (0.603,1.312) 0.546 0.696 (0.476,1.018) 0.061 0.075
F
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Subgroup analyses were performed on the following covariates: age, sex, race, hyperlipidemia, marriage, poverty-to-income ratio, education, smoke status, body mass index, alcohol user status,
and hypertension.
TABLE 4 Bromodichloromethane subgroup analysis.

Character Q1 Q2 p Q3 p p for trend p for interaction

Sex 0.823

Male Ref 0.802
(0.524,1.230)

0.304 0.567
(0.310,1.036)

0.065 0.041

Female Ref 0.901
(0.641,1.268)

0.542 0.483
(0.256,0.910)

0.025 0.022

Race 0.789

Mexican American Ref 0.692
(0.346,1.385)

0.279 0.389
(0.173,0.872)

0.025 0.026

Other races Ref 0.999
(0.612,1.632)

0.998 0.772
(0.452,1.320)

0.335 0.413

Non-Hispanic white Ref 0.837
(0.578,1.212)

0.338 0.508
(0.289,0.891)

0.019 0.014

Non-Hispanic blacks Ref 1.088
(0.728,1.628)

0.670 0.589
(0.271,1.281)

0.175 0.239

(Continued)
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TABLE 4 Continued

Character Q1 Q2 p Q3 p p for trend p for interaction

Marriage 0.61

Married/living with partner Ref 0.797
(0.558,1.139)

0.207 0.613
(0.314,1.197)

0.147 0.097

Widowed/
divorced/separated

Ref 0.993
(0.633,1.557)

0.975 0.502
(0.262,0.961)

0.038 0.073

Never married Ref 0.772
(0.309,1.928)

0.569 0.211
(0.054,0.826)

0.027 0.061

Education 0.745

<High school Ref 1.118
(0.627,1.993)

0.700 0.781
(0.396,1.543)

0.468 0.844

High school Ref 0.746
(0.443,1.254)

0.261 0.429
(0.216,0.852)

0.017 0.012

>High school Ref 0.813
(0.571,1.157)

0.243 0.574
(0.274,1.199)

0.136 0.1

Smoke 0.313

Never Ref 0.957
(0.679,1.347)

0.795 0.413
(0.250,0.683)

<0.001 0.003

Former Ref 0.726
(0.441,1.195)

0.202 0.698
(0.383,1.274)

0.235 0.115

Now Ref 0.776
(0.310,1.943)

0.578 0.698
(0.321,1.518)

0.354 0.318

Alcohol user status 0.276

Never Ref 0.766
(0.458,1.281)

0.301 0.454
(0.151,1.358)

0.153 0.153

Former Ref 0.656
(0.316,1.362)

0.247 0.287
(0.154,0.535)

<0.001 0.007

Low to moderate Ref 0.784
(0.562,1.092)

0.146 0.570
(0.374,0.867)

0.010 0.006

Heavy Ref 1.931
(0.663,5.622)

0.217 1.554
(0.480,5.037)

0.448 0.305

BMI 0.278

≤25 kg/m2 Ref 1.363
(0.803,2.311)

0.244 0.539
(0.230,1.266)

0.152 0.546

25–30 kg/m2 Ref 0.717
(0.471,1.092)

0.118 0.417
(0.204,0.854)

0.018 0.01

≥30 kg/m2 Ref 0.893
(0.626,1.275)

0.526 0.701
(0.395,1.246)

0.220 0.156

Hyperlipidemia 0.55

Yes Ref 0.697
(0.349,1.391)

0.297 0.363
(0.130,1.010)

0.052 0.05

No Ref 0.893
(0.674,1.183)

0.421 0.568
(0.395,0.817)

0.003 0.002

PIR 0.402

Low income Ref 1.112
(0.659,1.878)

0.683 0.804
(0.353,1.829)

0.594 0.727

Middle income Ref 0.782
(0.487,1.257)

0.303 0.363
(0.218,0.604)

<0.001 <0.001

(Continued)
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of living habits on data measurement. For example, some people love

swimming while others do not. Finally, although NHANESmeasured a

large amount of data on trihalomethanes, we did not explore the

accuracy of our conclusions in the context of co-exposure to other

DBPs, and the steady-state exposures of different DBPs may be

inconsistent; thus, it is not possible to control for co-exposure under

the same variable. Meanwhile, for older adults, it is still worth

considering whether it is necessary to increase water-use activities to

increase the concentration of trihalomethanes in the blood. These

activities (such as swimming and sauna) are strongly related to blood

THM concentrations in the older adults, which means that they may

also experience other diseases. Investigating the antidiabetic effects of

trihalomethanes at specified levels in the context of not causing other

diseases is a new research direction, which is indicated by our study.
5 Conclusions

Our study demonstrated a negative correlation between blood

concentrations of chloroform and bromodichloromethane and the

incidence of diabetes in older adults in the US, which indicates that

they may reduce the incidence of diabetes. Compared to other

trihalomethanes, chloroform and bromodichloromethane

concentrations in older adults in the US are lower. This greatly

reduces the potential for other diseases. The pathogenicity of

trihalomethanes is not negligible, and our study provides a new

reference for standards for chlorinating water for disinfection, but

the necessity of increased water use activities in older adults in the

US is worth considering. Investigating the antidiabetic effects of

specific levels of trihalomethanes without causing other diseases is a

new direction for research.
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TABLE 4 Continued

Character Q1 Q2 p Q3 p p for trend p for interaction

High income Ref 0.837
(0.534,1.310)

0.427 0.689
(0.361,1.316)

0.252 0.217

Hypertension Ref 0.683

Yes Ref 1.030
(0.500,2.123)

0.934 0.784
(0.300,2.050)

0.612 0.72

No Ref 0.821
(0.584,1.154)

0.248 0.487
(0.309,0.767)

0.003 <0.001
Subgroup analyses were performed on the following covariates: age, sex, race, hyperlipidemia, marriage, poverty-to-income ratio, education, smoke status, body mass index, alcohol user status,
and hypertension.
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