
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Anna-Maria Andersson,
Department of Growth and Reproduction,
Rigshospitalet, Denmark

REVIEWED BY

Chad Deisenroth,
United States Environmental Protection
Agency (EPA), United States
Ella Atlas,
Health Canada, Canada

*CORRESPONDENCE

Miriam N. Jacobs

Miriam.Jacobs@ukhsa.gov.uk

RECEIVED 14 March 2024
ACCEPTED 10 June 2024

PUBLISHED 08 July 2024

CITATION

Ozcagli E, Kubickova B and Jacobs MN
(2024) Addressing chemically-induced
obesogenic metabolic disruption:
selection of chemicals for in vitro human
PPARa, PPARg transactivation, and
adipogenesis test methods.
Front. Endocrinol. 15:1401120.
doi: 10.3389/fendo.2024.1401120

COPYRIGHT

© 2024 Ozcagli, Kubickova and Jacobs. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 08 July 2024

DOI 10.3389/fendo.2024.1401120
Addressing chemically-induced
obesogenic metabolic
disruption: selection of
chemicals for in vitro human
PPARa, PPARg transactivation,
and adipogenesis test methods
Eren Ozcagli , Barbara Kubickova and Miriam N. Jacobs *

Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security
Agency (UKHSA), Harwell Science and Innovation Campus, Chilton, Oxfordshire, United Kingdom
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity

epidemic, it is likely that chemical exposure may also contribute. A substantial body

of literature implicates a variety of suspected environmental chemicals in metabolic

disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic

disruption is not yet considered in regulatory testing paradigms or regulations, but

this is an internationally recognised human health regulatory development need. An

early step in the development of relevant regulatory test methods is to derive

appropriate minimum chemical selection lists for the target endpoint and its key

mechanisms, such that the test method can be suitably optimised and validated.

Independently collated and reviewed reference and proficiency chemicals relevant

for the regulatory chemical universe that they are intended to serve, assist regulatory

test method development and validation, particularly in relation to the OECD Test

Guidelines Programme. To address obesogenic mechanisms and modes of action

for chemical hazard assessment, key initiating mechanisms include molecular-level

Peroxisome Proliferator-Activated Receptor (PPAR) a and g agonism and the tissue/

organ-level key event of perturbation of the adipogenesis process that may lead to

excess white adipose tissue. Here we present a critical literature review, analysis and

evaluation of chemicals suitable for the development, optimisation and validation of

human PPARa and PPARg agonism and human white adipose tissue adipogenesis

test methods. The chemical lists have been derived with consideration of essential

criteria needed for understanding the strengths and limitations of the test methods.

With a weight of evidence approach, this has been combined with practical and

applied aspects required for the integration and combination of relevant candidate

test methods into test batteries, as part of an Integrated Approach to Testing and

Assessment for metabolic disruption. The proposed proficiency and reference

chemical list includes a long list of negatives and positives (20 chemicals for

PPARa, 21 for PPARg, and 11 for adipogenesis) from which a (pre-)validation

proficiency chemicals list has been derived.
KEYWORDS

adipogenesis, obesogen, peroxisome proliferator-activated receptor, metabolic
disruption, integrated testing strategy, test guideline, validation
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1 Introduction

The global incidence of obesity and metabolic disorders is

growing dramatically (1, 2). Noncommunicable diseases,

including metabolic syndrome, are estimated to account for 74%

of all deaths globally (3). The increasing incidence of obesity, type 2

diabetes, insulin resistance and hypertension are commonly

considered to be a consequence of lifestyle, particularly high

dietary intakes of sugar, processed food, and trans-unsaturated

fatty acids, large portion sizes, and decreased physical activity (4).

An association with socioeconomic status, age, sex and ethnicity is

often reported, but environmental and industrial contaminants are

also considered to play a role in altering metabolism in humans and

contributing to the epidemic of non-communicable diseases

including metabolic syndrome. Metabolic disruption, in the

context of energy metabolism, is a complex process involving

multiple tissues, organs, and relevant molecular targets. This

disruption can manifest in various forms, including dysregulated

glucose metabolism, impaired lipid metabolism, altered hormonal

signalling, and dysfunctional mitochondrial function (5).

Indeed, the roles of chemical and environmental factors are

increasingly acknowledged (1, 2, 6, 7), in addition to the established

nutrition and lifestyle causative factors (8). These factors, especially

exposure to environmental chemicals, contribute to the complexity

of metabolic disorders and highlight the need for a comprehensive

understanding of their underlying mechanisms in order to develop

regulatory relevant test methods to adequately assess the hazards of

MDCs. At the molecular level, metabolic disruption may involve

abnormal activity or expression of enzymes, receptors, transporters,

and signalling molecules, all of which can be perturbed by

chemical exposure.

The economic impact of chemically-induced metabolic

disruption for the three groups of chemicals for which the weight

of evidence of causing metabolic disruption in humans is strongest

(p,p’-dichlorodiphenyldichloroethylene (p,p’-DDE), phthalates,

bisphenol A (BPA)) is estimated to exceed €18 billion (with

moderate probability) in Europe (6, 9). Developing appropriate

human-relevant test methods to adequately assess these putative

chemical hazards is needed for front-end public health protection,

to reduce the contribution that chemical hazards may make towards

metabolic disruption. This will also support greener more

sustainable chemistry development, reducing potentially

regrettable chemical substitutions.

To address the need for elucidating and identifying metabolic

disruption chemicals, the European Commission has dedicated

funding to the development and (pre-)validation of test methods

and Integrated Approaches to Testing and Assessment (IATA) under

the Horizon 2020 Research and Innovation framework, to three

projects of the EURION cluster: EDCMET (10), GOLIATH (7), and

OBERON (11). To this end, the EU-funded Horizon 2020 GOLIATH

project (7) (https://beatinggoliath.eu/; https://cordis.europa.eu/

project/id/825489) aims to address the lack of methods for testing

EDCs that disrupt metabolism and metabolic functions. These

chemicals collectively referred to as “metabolism disrupting

compounds” (MDCs) are natural and anthropogenic chemicals that

can promote metabolic changes that can ultimately contribute to the
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development of obesity, diabetes, and/or fatty liver in humans. The

project has focused on the main cellular targets of metabolic

disruption: Peroxisome proliferator activated receptor (PPAR) test

methods, hepatocytes, pancreatic endocrine cells, myocytes and

adipocytes-and using a mechanistic and mode of action or adverse

outcome pathway (AOP) type framework, has generated key

information on MDC-related modes of action (7). The project

committed to take forward between three to five test methods

towards pre-validation, depending upon the test method

optimisation and test method readiness to enter the OECD Test

Guideline Programme. To support in vitro test method development

and validation, careful and relevant chemical selection needs to be

conducted for each endpoint, and with clear understanding of the test

methods, including their potential limitations.

Here we report on the selection of recommended reference

chemicals in relation to human white adipose tissue adipogenesis,

PPARa and PPARg agonism, to support the (pre-)validation of

these test methods within the GOLIATH project. Related chemical

selection reviews previously published from the same project

include the chemical selection for steatosis (12) and CYP

induction chemical selection augmentation (13).

There are several types of fat tissue in the human body, each

with its own characteristics and functions. The two main types of fat

are white adipose tissue (WAT) and brown adipose tissue (BAT),

also there is a transitional type known as beige or brite adipose

tissue. Brown fat cells have a significant number of mitochondria,

which play a central role in energy production, compared to white

fat cells (14). Activation of brown fat may contribute to increased

energy expenditure, which may play a role in preventing or

managing obesity. Brown fat has the ability to burn calories to

produce heat, and individuals with higher amounts of active brown

fat may have an increased capability to resist weight gain. This is

important in the context of preventing obesity-related metabolic

diseases (15). However, the focus of this chemical selection review is

specific to the mechanistic understanding in relation to an increase

in WAT in particular via the well understood Molecular Initiating

Events (MIEs) of PPARg activation, but also the role PPARa. PPAR
agonists are known to help alleviate the underlying metabolic

dysregulation observed in metabolic syndrome and insulin

resistance by targeting different aspects of metabolism. They

improve lipid profile, enhance insulin sensitivity, reduce

inflammation, and promote metabolic homeostasis (16). Although

relevant to metabolic disruption, chemical selection regarding BAT

will be conducted separately, and is not part of the scope of

this paper.

Nutritionally, the PPARs evolved as a fatty acid-activated

nuclear receptors, where long chain fatty acids are the key

molecular targets, to effect regulation of signal transduction

processes and gene regulation, which in turn dictate their roles in

health and disease (17–19). Fatty acids are important players in the

development of the pathology of cardiovascular and endocrine

diseases, thus understanding of the roles of fatty acids is useful for

identifying chemical characteristics that contribute to the potential

to interact with the PPARs. PPARa activation results in biological

mechanisms leading to fatty acid oxidation in the liver cells as a

response e.g., to extended fasting and/or energy deprivation. PPARg
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activation, on the other hand, stimulates storage of fatty acids,

including in the adipose tissues (20). This has essentially been the

basis for the development of pharmaceuticals such as the

thiazolidinediones for PPARg, and fibrates for PPARa (21, 22), to

lower triglyceride or glucose levels.

In the literature, a number of chemicals have been implicated in

relation to obesity, including bisphenols, pesticides, phthalates,

metals, and perfluorinated compounds. Here we present a more

thorough analysis of chemicals that may (or may not) be implicated

in the mode of action of adipogenesis. From the MIE(s) of PPARa
and PPARg activation, the later key event (KE) of WAT

adipogenesis stimulation, with the intention that it can be a basis

for developing and optimizing human adipogenesis-relevant in

vitro test methods that can be integrated together as a test

method battery, as part of an IATA for metabolic disruption.
1.1 PPARs

The PPARs are a well understood family of orphan nuclear

receptors within a family of transcription factors involved in gene

regulation of key physiological processes, with fundamental roles in

regulating energy balance. Three closely related receptors: PPARa,
b/d, and g, are variously expressed in the liver, kidney, heart,

hematopoietic and adipose tissue. With a central role in

hepatogenesis, PPARa is expressed primarily in liver, but also

kidney, heart and muscle. PPARd is ubiquitous and has a

fundamental role in embryo development, it allows normal cells

to better cope with adverse nutrient and energy situations, it has a

therapeutic role in burning fat, although if over-expressed it can

promote inflammation and tumorigenesis (23). Selective ligands for

PPARd are lacking (24), and PPARd is not the focus of this chemical

selection objective.

A number of prevalent metabolic disorders such as obesity,

atherosclerosis and type 2 diabetes mellitus are associated with a

shift in this balance, so PPARa and PPARg in particular, are of

interest pharmacologically (25). Model agonists include xenobiotics

that elicit increases in the number and size of peroxisomes when

administered to rodents, and also can induce hepatocellular

carcinoma development via a non-genotoxic mechanism (26).

PPARg has a central regulatory role in adipogenesis, lipogenesis

and lipid storage in the liver and adipose tissue, and adipokine

production and is pivotal for whole body insulin sensitivity

primarily in the muscle (25, 27). It is found in adipocytes, the

large intestine, and monocyte lineage cells.

PPARa regulates key steps in lipid and fibrate metabolism, fatty

acid oxidation and fasting response. It is the molecular target for

naturally occurring plant fatty acids and peroxisome proliferators,

including pharmaceuticals, phthalates and pesticides (28, 29).

PPARg ligands include fatty acids, prostaglandins and

pharmaceuticals such as the group of antidiabetic drugs,

thiazolidinediones (glitazones) (25, 30, 31). As with other ligand-

activated nuclear receptors, the PPARs bind to their cognate DNA

elements as heterodimers with the Retinoid X Receptor (RXR), and

then activate the transcription of downstream genes, including e.g.,

Cytochrome P450 (CYP)-mediated metabolism CYP4A genes. This
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can lead to enhanced CYP metabolism of the ligand as reviewed

previously (31), and activation of genes involved in the regulation of

energy homeostasis (32).

Activation of PPARa induces the expression of CYP enzymes

involved in the w-oxidation pathway, such as CYP4A, which

catalyzes the oxidation of fatty acids (29). PPARg also regulates the

expression of certain CYP enzymes, particularly in adipose tissue,

with potential regulatory effects in the expression of Cyp2f2 (33).

As RXR is relevant for the PPARMIE, the scope of the chemical

selection review, took this into consideration. Figure 1 gives an

overview of the PPARs and their roles in adipogenesis.
1.2 Adipogenesis

Adipogenesis is the molecular and cellular process by which

undifferentiated cells, typically mesenchymal stem cells,

differentiate and develop into mature adipocytes (fat cells)

capable of storing and releasing lipids (34). This process plays a

fundamental role in the development and maintenance of adipose

tissue, which is responsible for storing energy in the form of fat. It is

also crucial for energy homoeostasis; adipocytes store excess energy,

releasing it during times of need. If adipocytes become

hypertrophic, owing e.g., to chronic energy excess, they also can

become insulin-resistant. They lose their ability to appropriately

respond to physiological levels of insulin and other mediators of

energy metabolism/expenditure, such that energy expenditure is

impaired, and lipid storage becomes dysfunctional, leading to excess

accumulation of (visceral) body fat. Dysfunctional adipocytes are

unable to respond adequately to physiological levels of insulin and

other mediators of energy metabolism/expenditure. Fatty acids are

released into the circulation and accumulate in other organs and are

stored as body fat. The dysregulated secretion of endocrine factors

from hypertrophic and dysfunctional adipocytes contributes to the

development of systemic inflammation, insulin resistance, and

metabolic disruption, leading to pathological changes in various

organs and tissues implicated in obesity-related metabolic

disorders (35).

Adipocytes originate from mesenchymal stem cells (MSCs),

which are multipotent cells that can differentiate into various cell

types, including adipocytes, osteoblasts, and chondrocytes through

a complex and multi-step process comprising a network of

transcription factors (36, 37). Adipogenic signalling pathways

(e.g. Wnt, BMP or Hedgehog signalling) and transcription factors

such as PPARg, C/EBPs, sterol regulatory element-binding protein

(SREBP), and glucocorticoid receptor (GR) are considered as

master regulators of genes in adipogenesis (38) and their

differential expression/activation determines the adipocytic

phenotype (i.e., WAT, BAT, or beige adipocytes).

Adipocyte differentiation can be induced in cell culture by the

stimulation of MSCs with isobutylmethylxanthine (IBMX),

dexamethasone, and insulin, in particular for the murine 3T3-L1

cell line (39). Multipotent human MSCs are reported to require a

PPARg agonist to effectively promote differentiation (40). The 3T3-

L1 cell line is a well-established model for studying adipogenesis

and has been extensively used to elucidate the transcriptional
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cascade and molecular mechanisms underlying adipocyte

differentiation. Greater details on the relative merits of the

murine and human cell systems are reviewed in Kassotis et al.,

2022 (41) and references therein. Stimulation by IBMX inhibits

phosphodiesterases, leading to increased intracellular levels of cyclic

AMP (cAMP) and activation of C/EBP-d. Dexamethasone induces

expression of C/EBP-a, C/EBP-b and -d, in turn, these induce the

expression of C/EBP-a and PPARg2. Insulin stimulates both

adipogenesis and lipogenesis through induction of SREBP-1c and

other transcription factors, in addition to directly inhibiting

lipolysis (41). Whilst GR is therefore highly relevant to PPARg
with respect to the promotion of cellular differentiation (42, 43),

and therefore consideration of GR ligands is included in this

chemical selection, chemical selection and pre-validation

specifically focused upon the GR was not included in the original

GOLIATH proposal, and is currently being addressed by the

PEPPER platform (L’association Pepper (ed-pepper.eu)).

Adipogenesis can be assessed and quantified in vitro by

measuring endpoints such as the degree of intracellular lipid

accumulation, the expression of adipogenic genes and their

corresponding protein products. This is therefore the basis of in

vitro test method development, that, when ready, can be proposed

for test guideline development, as part of the obesity endpoint

aspect of an IATA for metabolic disruption.
1.3 Testing strategies

Currently, there are no existing test guidelines, approaches or

testing strategies for metabolic disrupting chemicals, but the need for

such methods has been expressed in a number of international and
Frontiers in Endocrinology 04
European reports (44–46), and the intention to develop and optimise

such test methods was part of the European Commission Horizon

2020 call that the GOLIATH consortium has striven to address.

For regulatory purposes, test methods need to demonstrate that

they are able to address the intended chemical applicability domain

and to classify chemicals correctly (47–50). In vitro test method

tools can provide mechanistic information to elucidate the modes of

action leading to apical adverse outcomes, thereby contributing to

the reduction of in vivo testing (51), especially when combined

within IATAs (50). To facilitate the development of IATAs, to

improve human health relevance and better utilise in vivo data, new

approach methodologies (NAMs) can also provide concentration-

response information. Historically, for many OECD in vitro Test

Guidelines (TGs), the initial focus has been on (dichotomous)

hazard identification particularly for classification and labelling

needs, but also based upon the extent to which the results from

the validation study can be reliably interpreted. However, to enable

in vitro test methods to be used beyond prioritisation for

subsequent testing in animal studies, to develop utility within

IATAs, it is of value if a test method can also provide continuous

(quantitative) data to inform upon the potency of a chemical (47,

52). This will enable the characterisation of the influence of physico-

chemical properties on variability across the concentration response

being generated (52).

Here we report on a minimum set of tentative provisional

proficiency chemicals for test method development, optimisation

and (pre-)validation testing for molecular and tissue-level effects

with relevance towards metabolic disruption. Specifically, chemicals

were selected to probe molecular transactivation of the human

nuclear receptors PPARa and PPARg and also adipogenesis (for the
latter, commitment of human mesenchymal stem cells to the
FIGURE 1

The role of the PPARs in fat and glucose metabolism (modified from Evans et al., 2004, organ illustrations from Biorender.com and Microsoft
PowerPoint). FAO, Fatty acid oxidation; WAT, White adipose tissue.
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adipose lineage, and promotion of lipid accumulation in WAT

adipocytes is key).
2 Methods

The selection of chemicals, suitable for the industrial chemical

applicability domain and associated test method regulatory

purposes was based upon the following criteria: i) structural

diversity to address the physico-chemical properties applicability

domain of the industrial chemical universe (e.g. biocides, pesticides,

plasticizers, flame retardants, industrial coatings, pharmaceuticals

etc.), for which the test method is intended to predict endpoint-

specific toxicity (i.e., PPARa, PPARg, adipogenesis), ii) receptor

cross-talk in lipid homeostasis, and iii) be structurally relevant for

the biological role of the endpoint, as shown for example with

known natural or endogenous ligands, and in PPAR molecular

modelling receptor ligand binding studies, as often conducted in

drug discovery (31, 53–58).

At the outset of the project, in 2020, a targeted literature review

was performed, for each endpoint, utilising expert knowledge in the

fields of nuclear receptor activation, adipogenesis, nutrition and

metabolic disruption, together with (guidance from) highly relevant

well-documented reviews, to focus and retrieve pertinent chemical

and target endpoint literature evidence. The literature search was later

updated and supplemented in relation to PPAR and adipogenesis

obesity key events in late 2023, to include relevant recently published

articles for each chemical and test method. Details regarding the

literature search are provided in Supplementary Material 1:

Literature search.

The data were primarily prioritised and evaluated according to

greatest human relevance and data reproducibility, with support

from data generated within the GOLIATH project, e.g. Garoche

et al. (59), for candidate proficiency chemicals. Based on this initial

expert input, key candidate chemicals were identified, and the

Scopus and PubMed databases were iteratively queried for

additional, related chemicals with substantial literature support.

Where identified, prototypical chemicals from literature review

articles were included in the preliminary candidate list. Chemicals

with the highest assessment with a reasonably well documented

weight of supporting evidence, relevance towards metabolic

disruption mechanisms, and relevance towards OECD test

method development, were prioritized and are proposed as

tentative chemicals for test method development, optimisation,

proficiency, and (pre-)validation testing. These are summarised in

Table 1, together with concentration information, CAS Number

and 2D structures, and are itemised for PPARa, PPARg and

adipogenesis in, Tables 2A–C respectively, with the detailed

review provided in Supplementary Material 2: Table 1. Structural

diversity was assessed by structural examination in combination,

with an understanding of known ligands and molecular

pharmacophore and docking studies for the PPARs (31, 54–56,

58, 225).

As documented in Supplementary Material 2: Table 1: The

Weight of Evidence (WoE) approach undertaken to evaluate the

literature obtained first examined the scope of each paper,
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describing the study or review undertaken, the range of

concentrations/doses tested where given, and collated the

uncertainties and limitations of each paper reviewed, to arrive at

a summary of the literature for each chemical, in relation to the

specific endpoints under scrutiny.

Chemical selection coverage considered specific reference

chemicals for the hPPARa and hPPARg transactivation test

methods and the adipogenesis test method individually. It also

included chemicals that are in common with PPARa and PPARg,
PPARa but not PPARg, and then PPARg and not PPARa. And then
also in combination with the (hMSC) adipogenesis test

method evaluates the capacity of chemicals to stimulate the

formation of (in vitro) human adipocytes. Additionally, the PPAR

heterodimerisation partner RXR was also considered, as studies

have shown that activation of RXRa without direct binding of

PPARg can lead to increased lipid accumulation in hMSCs. This has

been shown for example for 2,4-di-tert-butylphenol (2,4-DTBP)

(226) and for tributyltin (TBT) (227) and this mechanism is

considered perturb the development of WAT.

The aim was also to have as broad a coverage as realistically

possible within a minimum number of chemicals for which there is

robust evidence, to address and probe the chemical applicability

domain that the metabolic disruption IATA for obesity needs to

address. As indicated for the development of testing strategies, the

chemical applicability domain needs to reflect the chemical sector

universe for which the test method will be utilised, and the

chemicals selected and subsequently tested can start to gauge the

relative points of departure for the mechanism and/or endpoints

under investigation.

In common with, and expanding upon the primary

considerations for the selection of chemicals (48) and as

indicated in previous publications (12, 13), the following aspects

also guided the selection and prioritization of candidate chemicals:

Availability and international considerations; cost; human

mechanistic relevance; reproducibility; range of activity;

inclusion of metaboli tes and avoidance of undefined

chemical mixtures.
2.1 Availability and international limitations
in transport and use of certain chemicals

The chemicals were selected to accommodate national and

international limitations on use, as the pre-validation reference

chemicals will ultimately be intended for use in OECD TGs, with

global distribution and use. Consequently, chemicals listed under

the Stockholm Convention on Persistent Organic Pollutants (228)

or being proposed to be added, were generally avoided, with respect

to validation and subsequent TG development.

However, some chemical classes are of high current interest,

and a relatively rich amount of information was available for these,

particularly the perfluorinated chemicals (189–191, 229). Whilst it

is very useful to learn more about the toxicity of these chemicals and

confirm test method performance in the development/optimisation

phase, for (pre-)validation purposes, it is preferred to keep the

reference and proficiency chemicals that also are on the POPs list, to
frontiersin.org
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TABLE 1 Summary chemical selection table for the pre-validation of hPPARa and hPPARg transactivation, and hMSC adipogenesis test methods.

Key References
(See also Sup-
plementary
Material 2:
Table 1)

Comments/inclusion in test
method chemical set?

(60) hPPARg weak positive.
Mechanistically interesting, suitable back-up
chemical.
Triglyceride lowering effect of MBX-102 is
PPARa independent.
Limited amount of supporting literature retrieved,
therefore lower priority for test
method development.

(19, 61, 62) hPPARg strong positive, endogenous ligand.
Difficult to work with due to (low) stability, but
reliably works as an agonist in the PPARg
transactivation assay.

(63–78) Vitamin D active metabolite, inhibits intracellular
fat accumulation. Therapeutic benefits in reducing
body fat mass.
Potential crosstalk with RXR.
Part of signalling pathway in adipose/osteoblast
development.
Expensive chemical.

(7, 59, 62, 79–83) hPPARg andadipogenesis positive; hPPARa
negative/non-agonist
Structurally similar to BPA but different activity
in PPARs.
Active metabolite: sulfate (but TBBPA sulfate is
not stable over time/difficult to store).

(84, 85) PPARa weak antagonist.
Selective RXR agonist (0.1–1 nM); slight
activation of RARa/b/g 0.1–1 µM, no activation
of FXR, LXRa/b, PPARg up to 11–10 µM.
Anti-inflammatory and anticarcinogenic
properties.
Limited amount of supporting literature retrieved,
therefore lower priority for test
method development.

(Continued)
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Chemical Cas No.
Molecular weight
Log P

Structure Use Test methods
Recommended to include in assays:
ag/antag ● inactive ○

bold font:
selected
chemicals

hPPARa hPPARg hMSC
adipogenesis
(lipid
accumulation)

(aR)-4-chloro-a-[3-
(trifluoromethyl)
phenoxy]benzeneacetic
acid, (MBX-102/
JNJ39659100)
Arhalofenate
MBX-102

24136–23-0
415.8 g/mol
na

Experimental
pharmaceutical

○
-

●
+
Weak
agonist

?

15-Deoxy-D12,14-
prostaglandin J2
(15d-PGJ2)

87893–55-8
316.4 g/mol
3.983

Metabolite of
endogenous
prostaglandin
(PGJ2)

? ●
+
Strong
agonist

?

1alpha,25-
Dihydroxyvitamin D3
(calcitriol)Active
metabolite of Vitamin
D3)
(OHVitD3)

32222–06-3
416.6 g/mol
5

Nutrient/essential
vitamin/vitamin
supplement/
Hormone
Vitamin D3
analog
Metabolite of
Vitamin D3

? ? Unknown

3,3’,5,5’
Tetrabromobisphenol
A (TBBPA)

79–94-7
543.9 g/mol
at 25°C: 6.53 (pH 3.05),
4.75 (pH 7.53), 3.00 (pH
8.12), 1.25 (pH 9.18)

Flame retardant ○
-/?

●
+
Strong
agonist

●
+Moderate inducer
10 mM induced
adipogenesis in 3T3-
L1 cells

AGN194204
(IRX4204)

220619–73-8
352.5 g/mol
na

Pharmaceutical ●
Weak
antagonist

? ?
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TABLE 1 Continued

Key References
(See also Sup-
plementary
Material 2:
Table 1)

Comments/inclusion in test
method chemical set?

(7, 62, 79, 81, 83,
86–127)

hPPARa/g negative
Adipogenesis: Mixed reports. Negative in all
adipogenic cell lines except one, murine 3T3-L1
cell line, likely this is because the cell line is
already induced, so results for this cell line are
borderline/weakly active. 3T3-L1 cell line is less
human relevant than primary human cells.
Sexual dimorphism: mostly female-
specific adipogenesis

(93, 128–135) Some animal studies showed an association
between CPF and obesity as well as metabolic
disruption. CPF oxon is the major in vivo
metabolite. The in vitro evidence is limited. One
study showed 0.1, 1, and 10 mM chlorpyrifos
inhibited the osteogenic differentiation capacity of
human MSCs, although the potential of MSCs to
differentiate into adipocytes was not tested.
Likely genotoxicity and developmental
neurotoxicity, lower priority in terms of
prospective use in the EU.

(136–143) hPPARa/g moderate positive. Widely used for
lowering triglyceride levels. However, the
metabolite clofibric acid is more active. 50% on
PPARa (-10 µM), 40% PPARg.

(59, 144) hPPARa/g moderate/weak positive. Clofibrate
metabolite; more active than clofibrate, therefore
preferred over the parent chemical.

(59, 83, 93, 104,
145–154)

hPPARa/g negative, adipogenesis negative for
hMSC but pp’-DDE is adipogenic in 3T3-L1 cells
(30–100 µM). The evidence is mixed from human

(Continued)
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Chemical Cas No.
Molecular weight
Log P

Structure Use Test methods
Recommended to include in assays:
ag/antag ● inactive ○

bold font:
selected
chemicals

hPPARa hPPARg hMSC
adipogenesis
(lipid
accumulation)

Bisphenol A (BPA) 80–05-7
228.29 g/mol
3.32

Plasticiser,
industrial
chemical

○
-

○
-

-/~

Chlorpyrifos (CPF) 2921–88-2
350.6 g/mol
4.96

Organophosphate
pesticide

○
-

●
+
Weak
agonist

○
-

Clofibrate 637–07-0
242.70 g/mol
3.3

Pharmaceutical,
fibrate

●
+ Weak-
moderate
agonist up to
10–4 µM

●
+ Weak-
moderate
agonist

?-

Clofibrate metabolite:
Clofibric acid

882–09-7
214.64 g/mol
na

Herbicide and
pharmaceutical;
active metabolite
of clofibrate

●
+ Moderate
agonist
(EC50 = 50.0
µM)

●
+ Weak-
Moderate
agonist
(but
weaker
than
PPARa)

?-

Dichlorodiphenyl-
dichloroethylene
(p,p’-DDE)

72–55-9
318.0 g/mol
6.51

Pesticide
metabolite

○
-

○
-

○
?-
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TABLE 1 Continued

ey References
ee also Sup-
lementary
aterial 2:
able 1)

Comments/inclusion in test
method chemical set?

(epidemiological) studies: no clear association
with obesity.
On the Stockholm POPs Convention list.

9, 155–158) hPPARa/g positive.
DHA cheaper than EPA and two times more
potent on PPARs

9, 31, 155, 159) hPPARa/g positive.

0, 59, 62, 160, 161) RXRa agonist (AC50 = 14.3 µM). Adipogenic in
3T3-L1 and mBMSCs.

9, 161–166) Potent and selective liver X receptor (LXR)b
agonist; commits human mesenchymal cells to
adipose lineage. LXR is involved in the tissue
distribution of fat (visceral vs. sub-cutaneous vs.
skeletal muscle) and activation reverses
cholesterol transport. LXR activation induces
steatosis and may affect pancreatic beta cells.
Crosstalk with PPARg.
Limited amount of supporting literature retrieved,
therefore lower priority for test method
development, although interesting and
important mechanistically.

2, 59, 140, 167–169) Selective agonist for PPARa; 1000x less potent on
PPARg than on PPARa

(Continued)
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Chemical Cas No.
Molecular weight
Log P

Structure Use Test methods
Recommended to include in assays:
ag/antag ● inactive ○

K
(S
p
M
Tbold font:

selected
chemicals

hPPARa hPPARg hMSC
adipogenesis
(lipid
accumulation)

Docosahexaenoic
acid (DHA)

6217–54-5
328.5 g/mol
na

Nutrient, Long
chain PUFA
essential fatty acid

●
+
Strong
agonist

●
+
Strong
agonist

? (1

Eicosapentaenoic
acid (EPA)

10417–94-4
302.5 g/mol
6.1

Nutrient, Long
chain PUFA
essential fatty acid

●
+Moderate
agonist

●
+Moderate
agonist

? (1

Fludioxonil 131341–86-1
248.18 g/mol
4.12 at 25°C

Non-
systemic fungicide

? ○
-/?

●
+ Strong (significant
at 0.2 µM)

(4

GW3965
hydrochloride

405911–17-3
618.5 g/mol
na

Pharmaceutical
candidate

? ●
+
Weak
agonist

●
+ Weak/
moderate inducer

(5

GW7647 265129–71-3
502.8 g/mol
na

Pharmaceutical
Selective

●
+ Selective
agonist,
positive
control
10 nM

●
+
Moderate
agonist

? (3
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TABLE 1 Continued

Key References
(See also Sup-
plementary
Material 2:
Table 1)

Comments/inclusion in test
method chemical set?

(170–173) Predicted to be positive for adipogenesis in the
3T3-L1 Filer et al., 2022 model (174).
Selective RXR agonist. An RAR activator at high
concentrations. 9-cis RA was excluded because it
activates RAR similarly as all-trans RA (atRA)
and it can be photo- or thermally isomerized to
other forms (same with atRA). The best available
RXR ligands are LGD100268 and AGN 194204.
Limited amount of supporting literature retrieved,
therefore lower priority for test
method development.

(59, 81, 93, 102, 119,
175–188)

hPPARa/g/adipogenesis positive.
Active metabolite of DEHP Activity via PPARg is
mediated via the metabolite, MEHP, not the
parent chemical DEHP.
Cytotoxic at higher concentrations in the
adipogenesis assay.

(59, 189, 190) hPPARa/g negative.
Tentative negative for adipogenesis, despite
association with altered blood/serum lipid
composition. Pronounced reproductive toxicity.
Member of polyfluorinated chemicals group, for
which application of international restrictions
are foreseeable.

(59, 81, 83, 93, 100,
104, 149, 190–192)

hPPARa/g/adipogenesis positive.
PFOA-family compounds with 8–9 carbon
backbone have greater activity than those with 7
and 10 carbons. PFAS: strong association of
grandmaternal exposure with obesity in
granddaughters. Both, negative and positive for
lipid accumulation in murine 3T3-L1 pre-
adipocytes and mixed evidence from human
models (in vitro and epidemiology).
Human in vivo: some indication for association
with altered lipid profile (esp. triglycerides), but
no clear correlation with obesity, fat mass, or

(Continued)
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Chemical Cas No.
Molecular weight
Log P

Structure Use Test methods
Recommended to include in assays:
ag/antag ● inactive ○

bold font:
selected
chemicals

hPPARa hPPARg hMSC
adipogenesis
(lipid
accumulation)

LGD1069
(Targretin) Bexarotene

153559–49-0
348.5 g/mol
6.9

Pharmaceutical ○
-

○
-

?

Mono-(2-Ethylhexyl)
Phthalate (MEHP)
DEHP metabolite

4376–20-9
278.34 g/mol
na

Phthalate,
plasticiser

●
+
Moderate
agonist

●
+
Moderate
agonist

●
+ Moderate
10 mM and was
maximal at 100 mM

Perfluorohexanoic
acid (PFHXA)

307–24-4
314.05 g/mol
na

Breakdown
product of PFAS.
Used in stain
resistance, carpets,
photographic film
&
PFCAs substitute

○
-

○
-

?

Perfluorooctanoic
acid (PFOA)

335–67-1
414.07 g/mol
6.3

Industrial
chemical, non-
stick coating

●
+
Strong
agonist

●
+
Strong
agonist

●
+ Weak inducer
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TABLE 1 Continued

y References
ee also Sup-
ementary
aterial 2:
ble 1)

Comments/inclusion in test
method chemical set?

body weight.
Listed under Stockholm convention on POPs.

, 188, 193–198) hPPARa/g weak positive. Data suggest that
phytanic acid is a natural agonist for RXR at
physiological concentrations, while it is more
likely that it is the metabolite pristanic acid,
rather than phytanic acid itself, that acts as
PPARa agonist. Phytanic acid, but not pristanic
acid, mediates the beneficial effects of phytol
derivatives on brown adipocyte
differentiation (193)

, 188, 193,
, 196)

hPPARa/g positive, more potent in hPPARa.
Active metabolite of phytanic acid (see
notes above).

, 81, 82, 93,
, 191)

Standard positive control for PPARg 1000x less
potent on PPARa than on PPARg (168), but not
reproduced. Induces fluorescence at conc. of 10–5M
max. conc. tested 10–6M in cell line HG5LN.

, 199, 200) hPPARa/g moderate/strong positive respectively.
No substantive evidence for
adipogenesis induction.

82, 100, 102, 104,
, 201–208)

hPPARa negative.
More an effect on RXR. Most reproducible results
across assays.
Inhibition of luciferase in reporter gene assays, so
not good to use. All Rexinoids inhibit GAL4
luciferase. Can be used in hMSC adipogenesis

(Continued)
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Chemical Cas No.
Molecular weight
Log P

Structure Use Test methods
Recommended to include in assays:
ag/antag ● inactive ○

K
(S
p
M
Tbold font:

selected
chemicals

hPPARa hPPARg hMSC
adipogenesis
(lipid
accumulation)

Phytanic acid 14721–66-5
312.5 g/mol
na

Dietary lipid ●
+ Very weak
agonist
10–4 µM

●
+ Weak-
moderate
agonist

? (3

Phytanic acid
metabolite:
Pristanic acid

1189–37-3
298.5 g/mol
na

Dietary lipid
Metabolite of
phytanic acid

●
+ Strong
agonist
1 µM

●
+ Weak-
moderate
agonist
10 µM

? (3
19

Rosiglitazone (ROSI) 122320-73-4
357.4 g/mol
2.4

Pharmaceutical ○
-

●
+
Positive
control

●
+ Positive control

(5
11

Tesaglitazar/
AZ 242

251565–85-2
408.5 g/mol
na

Pharmaceutical ●
+ Selective
moderate
agonist
3 µM

●
+ Strong
agonist
40 nM

?- (6

Tributyltin
(TBT) chloride

1461–22-9
325.50 g/mol
4.76

Fungicide ○
-

●
+ Partial
agonist
(weak)

●
+ Strong inducer
adipogenic
differentiation
(3T3-L1)

(7
11
e

l

a

1

1
5

9
9

2

,
9
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TABLE 1 Continued

include in assays:
ive ○

Key References
(See also Sup-
plementary
Material 2:
Table 1)

Comments/inclusion in test
method chemical set?

g hMSC
adipogenesis
(lipid
accumulation)

assay.
Sexual dimorphism: male specific (209, 210)

○
-

(59, 79, 104, 127, 177,
211–222)

hPPARa/g/adipogenesis negative.
Human studies: while some studies indicate
adipogenesis potential, overall, the weight of
evidence suggest TCS does not induce obesity/
adipogenesis/lipid accumulation in adipocytes,
in humans.

●
+ Agonist at high
dose (>1µM)

(59, 62, 104, 223) hPPARa negative, hPPARg strong positive, with
greater relative potency than PFOA.

○
-
Strong inhibitor of
adipogenesis; unlike
retinoic acids
(9cRA) that
promotes
adipogenesis

(224) RAR activator (all 3 RARs).
Limited amount of supporting literature retrieved,
therefore lower priority for test
method development.

ge. It is established that there is no GR crosstalk for the PPAR transactivation candidate test methods, and the intended

ted differently, activity information refers to agonism and statistical significance is p ≤ 0.05.
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Chemical Cas No.
Molecular weight
Log P

Structure Use Test methods
Recommended t
ag/antag ● inact

bold font:
selected
chemicals

hPPARa hPPA

Triclosan (TCS) 3380–34-5
289.5 g/mol
4.76

Bacteriocide ○
-

○
-

Triphenyl
phosphate (TPP)

115–86-6
326.3 g/mol
4.59

Industrial
chemical:
Adhesives and
sealants, coating
products,
cosmetics and
personal
care products

○
-

●
+
Strong
agonist

TTNPB, 4-[(E)-2-
(5,6,7,8-Tetrahydro-
5,5,8,8-tetramethyl-2-
naphthalenyl)-1-
propenyl] benzoic
acid, Arotinoid acid

71441–28-6
348.5 g/mol
na

Pharmaceutical ? ?

Natural/endogenous ligands for LXR, oxysterols, and positive control for GR, dexamethasone, are lower priority chemical considerations at this sta
minimum number of chemicals to be proposed.
Chemicals listed in bold are recommended as higher-priority as they have more robust literature support for test method development. Unless st
+, active; -, inactive; ~, equivocal; ?, uncertain/unknown; na, not available.
Source of Log P data: pubchem accessed date 3 November 2023. Chemicals in alphabetical order.
o

R

a
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TABLE 2A Selected chemicals and activity bands for the PPARa assay.

Chemical Cas No. Structure Use hPPARa
ag/antag ●
inactive ○

Negative

Bisphenol A (BPA) 80–05-7 Plasticiser,
industrial chemical

○
-

Triphenylphosphate (TPP) 115–86-6 Industrial chemical ○
-

Dichlorodiphenyldichloroethylene
(pp’-DDE)

72–55-9 Pesticide metabolite
(Stockholm POPs list)

○
-

Triclosan (TCS) 3380–34-5 Bacteriocide ○
-

Rosiglitazone (ROSI) 122320–73-4 Pharmaceutical ○
-

Chlorpyrifos (CPF) 2921–88-2 Organophosphate
pesticide

○
-

Perfluorohexanoic acid (PFHXA) 307–24-4

Breakdown product
of PFAS

○
-

(aR)-4-chloro-a-[3-(trifluoromethyl)phenoxy]
benzeneacetic acid, (MBX-102/JNJ39659100)
Arhalofenate
MBX-102

24136–23-0 Experimental
pharmaceutical

+ Selective partial agonist

Tetrabrominated BPA (TBBPA) 79–94-7 Flame retardant ○
-/?

LGD1069 (Targretin) Bexarotene 153559–49-0 Pharmaceutical ○

Weak activity

Phytanic acid 14721–66-5 Dietary lipid ●
+ Very weak agonist
10–4 µM

Clofibrate 637–07-0 Pharmaceutical, fibrate ●
+ Weak-moderate
agonist up to 10–4 µM

AGN194204 (IRX4204) 220619–73-8 Pharmaceutical ●
Weak antagonist

(Continued)
F
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TABLE 2A Continued

Chemical Cas No. Structure Use hPPARa
ag/antag ●
inactive ○

Weak to moderate activity

Mono-(2-Ethylhexyl) Phthalate (MEHP) 4376–20-9 Phthalate, plasticiser ●
+ Moderate agonist

Eicosapentaenoic acid (EPA) 10417–94-4 Nutrient, Long chain
PUFA essential
fatty acid

●
+Moderate agonist

Tesaglitazar/AZ242 251565–85-2 Pharmaceutical ●
+ Selective moderate
agonist
3 µM

Clofibric acid 882–09-7 Herbicide and
pharmaceutical; active
metabolite of clofibrate

●
+ Moderate agonist
(EC50 = 50.0 µM)

Strong activity

Perfluorooctanoic acid (PFOA) 335–67-1 Industrial chemical,
non-stick coating

●
+ Strong agonist

Pristanic acid 1189–37-3 Dietary lipid ●
+ Strong agonist
* 1 µM

Docosahexaenoic acid (DHA) 6217–54-5 Nutrient, Long chain
PUFA essential
fatty acid

●
+ Strong agonist

Positive control

GW7647 265129–71-3 Pharmaceutical
candidate

?

F
rontiers in Endocrinology
 13
TABLE 2B Selected chemicals and activity bands for the PPARg assay.

Chemical Cas No. Structure Use hPPARg ag/antag ●
inactive ○

Negative

Bisphenol A (BPA) 80–05-7

Plasticiser,
industrial chemical

○
-

Dichlorodiphenyldichloroethylene
(pp’-DDE)

72–55-9 Pesticide metabolite
(Stockholm POPs list)

○
-

(Continued)
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TABLE 2B Continued

Chemical Cas No. Structure Use hPPARg ag/antag ●
inactive ○

Negative

Triclosan (TCS) 3380–34-5 Bacteriocide ○
-

Perfluorohexanoic acid (PFHXA) 307–24-4
Breakdown product
of PFAS

○
-

LGD1069 (Targretin) Bexarotene 153559–49-0 Pharmaceutical ○
-

Weak activity

Chlorpyrifos (CPF) 2921–88-2 Organophosphate
pesticide

●
+ Weak agonist

Clofibrate 637–07-0 Pharmaceutical, fibrate ●
+ Weak-moderate agonist

Phytanic acid 14721–66-5 Dietary lipid ●
+ Weak-moderate agonist

(aR)-4-chloro-a-[3-(trifluoromethyl)phenoxy]
benzeneacetic acid, (MBX-102/JNJ39659100)
Arhalofenate
MBX-102

24136–23-0 Experimental
pharmaceutical

+ Weak agonist

GW3965 hydrochloride 405911–17-3 Pharmaceutical
candidate

●
+ Weak agonist

Weak to moderate activity

Mono-(2-Ethylhexyl) Phthalate (MEHP) 4376–20-9 Phthalate, plasticiser ●
+ Moderate agonist

GW7647 265129–71-3 Pharmaceutical
candidate

●
+ Weak agonist

Eicosapentaenoic acid (EPA) 10417–94-4 Nutrient, Long chain
PUFA essential
fatty acid

●
+Moderate agonist

Clofibric acid 882–09-7 Herbicide and
pharmaceutical; active
metabolite of clofibrate

●
+ Weak-Moderate agonist
(but weaker than PPARa)

Pristanic acid 1189–37-3 Dietary lipid ●
+ Weak-moderate agonist
10 µM

Strong activity

Triphenyl phosphate (TPP) 115–86-6 Industrial chemical:
Adhesives and sealants,
coating products,

●
+ Strong agonist

(Continued)
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TABLE 2B Continued

Chemical Cas No. Structure Use hPPARg ag/antag ●
inactive ○

Strong activity

cosmetics and personal
care products

Docosahexaenoic acid (DHA) 6217–54-5 Nutrient, Long chain
PUFA essential
fatty acid

●
+ Strong agonist

Tetrabrominated BPA (TBBPA) 79–94-7 Flame retardant ●
+ Strong agonist

Perfluorooctanoic acid (PFOA) 335–67-1 Industrial chemical,
non-stick coating

●
+ Strong agonist

15-Deoxy-D12,14-prostaglandin J2 (15d-PGJ2) 87893–55-8 Metabolite of
endogenous
prostaglandin (PGJ2)

●
+ Strong agonist

Tesaglitazar/
AZ 242

251565–85-2 Pharmaceutical ●
+ Strong agonist
40 nM

Positive control

Rosiglitazone (ROSI) 122320–73-4 Pharmaceutical ●
+ Positive control
F
rontiers in Endocrinology
 15
TABLE 2C Selected chemicals and activity bands for the hMSC adipogenesis assay.

Chemical Cas No. Structure Use hMSC adipogenesis
(lipid accumulation)
ag/antag ● inactive ○

Negative

Triclosan (TCS) 3380–34-5 Bacteriocide ○
-

TTNPB, 4-[(E)-2-(5,6,7,8-Tetrahydro-5,5,8,8-
tetramethyl-2-naphthalenyl)-1-propenyl]
benzoic acid, Arotinoid acid

71441–28-6 Pharmaceutical ○
-
Strong inhibitor of adipogenesis;
unlike retinoic acids (9cRA) that
promotes adipogenesis

Dichlorodiphenyldichloroethylene
(pp’-DDE)

72–55-9 Pesticide metabolite
(Stockholm POPs list)

○
?-

Chlorpyrifos (CPF) 2921–88-2 Organophosphate
pesticide

○
-

(Continued)
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an absolute minimum, as, in addition to the disposal issues, this

may lead to practical difficulties in running the tests and acceptance

for some OECD member countries.

Additional chemicals to be excluded are those that have

(variable) global restrictions with respect to substance abuse, such

as anabolic steroids, and (illegal) drugs such as cannabinoids. Thus,

while there are interesting data available for anabolic steroids and

cannabinoid chemical classes, with potency for the endpoints of

interest (230–233), these were not suitable for test method

validation purposes.
Frontiers in Endocrinology 16
2.2 Cost

Chemicals that are rare, difficult to obtain and costly are generally

not be prioritised unless there are no alternatives. Ultimately the

components of a validated test method that is intended for OECD

(TG) adoption needs to be globally and financially accessible for all

OECD stakeholders. There also needs to be consideration of longer-

term production and availability of the proficiency chemicals as far as

reasonable. Specific issues in this regard for these chemicals were

checked and concerns were not identified.
TABLE 2C Continued

Chemical Cas No. Structure Use hMSC adipogenesis
(lipid accumulation)
ag/antag ● inactive ○

Weak activity

Perfluorooctanoic acid (PFOA) 335–67-1 Industrial chemical,
non-stick coating

●
+ Weak inducer

Weak to moderate activity

GW3965 hydrochloride 405911–17-3 Pharmaceutical
candidate

●
+ Weak/moderate inducer

Tetrabrominated BPA (TBBPA) 79–94-7 Flame retardant ●
+Moderate inducer
10 mM induced adipogenesis in
3T3-L1 cells

Mono-(2-Ethylhexyl) Phthalate (MEHP) 4376–20-9 Phthalate, plasticiser ●
+ Moderate
10 mM and was maximal at
100 mM

Triphenyl phosphate (TPP) 115–86-6 Industrial chemical:
Adhesives and sealants,
coating products,
cosmetics and personal
care products

●
+ Agonist at high dose (>1µM)

Strong activity

Fludioxonil 131341–86-1 Non-systemic fungicide ●
+ Strong (significant at 0.2 µM)

Tributyltin (TBT) chloride 1461–22-9 Fungicide ●
+ Strong inducer adipogenic
differentiation (3T3-L1)

Positive control

Rosiglitazone (ROSI) 122320–73-4 Pharmaceutical ●
+ Positive control
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2.3 Species relevance

Chemicals were selected based on high relevance to humans,

wherever possible. This is because the test methods are being

developed to address human relevant mechanisms/endpoints.

Species specific differences are well known for PPAR

transactivation and metabolism studies (57, 59), although for

both human and mouse mesenchymal stem cells, cannabidiol for

example has been shown to activate mouse and human PPARg, but
not its heterodimeric partner RXR. As a consequence of PPARg
activation, increased lipid accumulation and the expression of

adipogenic genes was shown for both species in vitro (230).

Human MSC data are considered to be more human relevant

than murine 3T3-L1 data, as discussed further in the following

section. Whilst the 3T3-L1 mouse pre-adipocyte cell line is

extensively utilised for identifying adipogenic chemicals, and it is

easier to use a cell line, rather than primary cells, the species

relevance with respect to induction of human adipogenesis is

weaker. This cell line is already induced/committed to the (pre-)

adipocyte lineage, so data generated are indicating the potential for

promotion but not initiation of adipogenesis. For this particular cell

line, data often differ for certain chemicals, as compared to a more

human relevant model using primary hMSCs (41) and pre-

validation (Hoffmann et al., manuscript in preparation) and

lineage derived cells (201), and thus greater weight in the

literature review was given to data generated using in vitro test

systems that better address initiation of adipogenesis.
2.4 Reproducibility and approaches needed
where data is not well reproduced

With test method validation in mind, chemicals need to be

selected on the basis of reproducible data, not a single literature

report. Where data have been reported to not be reproducible, as for

example with the PPAR activity data from Tox21 (40, 160), these

data were not used. Janesick et al. (160) report that in trying to

reproduce the ToxCast data only 5/21 of the top scoring ToxCast™

PPARg activators were activators, three were PPARg antagonists,

the remainder were inactive. The authentic PPARg activators

identified induced adipogenesis in 3T3-L1 cells and murine

MSCs. Only 7 of the 17 chemicals predicted to be active by the

ToxCast™ ToxPi promoted adipogenesis, one inhibited

adipogenesis, and two of the 7 predicted negatives were also

adipogenic. Of these 9 adipogenic chemicals, three activated

PPARg, and one activated RXRa. It can therefore be concluded

that ToxCast™ PPARg and RXRa assays and some of the

computational tool predictions available from the US EPA

Chemical Dashboard, are suitable for high throughput screening

(HTS) in the identification of potential hazards and prioritisation of

chemicals from large chemical libraries that could not otherwise be

screened in lower-throughput model systems. However, for the test

method applications intended here, the lack of correlation with

laboratory measurements of PPARg and RXR meant that the data

were not sufficiently robust to support the chemical selection.
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Therefore, taken in isolation, this set of 3T3-L1 data was

considered to be unreliable for identifying new PPAR and

adipogenesis reference chemicals, but was useful in contributing

to the WoE. Notably, the 3T3-L1 cell line is derived from mouse

embryonic fibroblasts, and while it shares some similarities with

human adipocytes, there are significant species-specific differences

in gene expression, metabolism, and response to stimuli. As with

many and indeed most cell lines that haven’t been validated, there

can be variability in the differentiation efficiency of 3T3-L1 cells

between different laboratories and experimental conditions, as well

as strain drift. Factors such as passage number, cell confluency, and

the composition of differentiation media can influence the extent

and kinetics of adipocyte differentiation in the cell line, leading to

inconsistencies in experimental results. Due to the limitations and

variability associated with 3T3-L1 cell-based assays, hazard

assessment for regulatory purposes needs to be cautious if relying

solely on data generated from these models in regulatory decisions.

However, such data does have utility as supporting information,

with value for future applications, as data robustness and reliability

is improved.

Independently, Filer et al. (174) assessed the discrepancies and

uncertainty of ToxPi predictions using the different ToxCast

datasets, focusing on the accuracy to predict activity of chemicals

inducing adipogenesis and metabolic disruption in murine 3T3-L1

preadipocytes (174). Poor predictive performance was considered

to be a consequence of a number of factors such as reliance on a

single model, the development phase/stage of ToxCast, the

cytotoxicity scoring and correction system, the weighting

approaches and chemical selection utilised (174). While an

adjusted prediction model yielded a balanced accuracy of 0.97 in

predicting adipogenesis of a ToxCast chemical subset, the authors

recommend that an extended verification of the predictive capacity

with more chemicals (38 in training set, 30 in test set) is needed to

better cover the diverse chemical space. Examining the models

developed by Filer et al., for the purposes of this chemical selection,

it was noted that the focus was more on semi-volatile chemicals and

use of the 3T3-L1 cell line. Use of semi-volatile chemicals, without

further technical adjustments to prevent chemical cross-

contamination (“chemical creep”), such as using adhesive seals on

the testing plates is a confounding hazard that requires strict

control, volatile chemicals generally need to be avoided in

validation studies. Chemical data from Filer et al. (174) were

therefore included where relevant, to support the chemicals

selected (and this is noted in Supplementary Material 2: Table 1).

Further, it has also been recognised that expression levels in cell

sources of 3T3-L1 cells can vary and this can influence the

classification of (adipogenic) chemicals. Gene expression assays

have shown that PPARg expression is higher in OP9 cells

compared to ATCC 3T3-L1 cells. This could partially account for

the lower relative fold induction observed in these cells. However,

Zenbio 3T3-L1 cells exhibited the highest relative fold inductions,

showing no difference with those from ATCC 3T3-L1 (86).

Furthermore reported reproducibility issues and variation in 3T3-

L1 preadipocytes laboratory strains (86) and different protocol

induction/exposure periods and plasticware also substantially

affected the results generated, as also noted above. For example,
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in some protocols, there was a distinction between the induction

period (with “induction cocktail” or similar, often containing e.g.,

IBMX, insulin, dexamethasone) and exposure to test chemicals (in

medium with/without induction chemicals).

Finally, while PPARg activation is considered necessary and

sufficient for adipogenesis in humans and cell culture systems,

including mouse models and cell lines such as 3T3-L1, the

fundamental mechanisms of adipogenesis are highly conserved

across species, including humans. Activation of the signalling

pathway may occur through mechanisms other than or in

addition to receptor activation (25, 234).

Pharmaceutical chemicals with a defined mode of action are

included, so that there is sufficient coverage of mechanistically well

understood weak-moderate actives, such that target specificity is

addressed as well as reasonably possible. Principally, GW3965 is

included as a weak PPARg agonist and weak adipogenesis inducer,

and tesaglitazar as a weak PPARa agonist.
2.5 Range of activity

Chemicals selected should preferably have a range of activity that

spans negative, low/weak, moderate, and high/strong activity in the test

method, as compared to the positive control, but this may not always be

feasible, - depending upon the quality and weight of evidence of the

supporting literature. To verify the selected potency bands (negative,

weak, moderate and strong) and to ensure their validity and

applicability towards the target in vitro test method, subject matter

experts reviewed the literature for information relating to concentration

and dose -response, consistency and biological relevance and (potential)

uncertainties. From this review (Supplementary Material 2: Table 1)

putative bands of activity ranging from negative, weak to moderate and

strong were determined and are provided in Tables 1 and 2A–C. These

potency bands will be confirmed following (pre-)validation of the

respective test methods.

At least 25% of the chemicals in the full reference set should be

negatives, ideally more, up to 50%. While a lower share of negatives

can be acceptable during test method development, optimisation

and early proficiency testing, recommendations should be improved

as confidence in the test method is gained aiming at ultimately

achieving 25–50% negative proficiency chemicals for (pre-)

validation studies. The use of tools to identify and exclude

chemicals with potentially promiscuous activity was an addition

to the chemical selection process, and it will be important to

continue to look for clusters of in vitro assays that may indicate

non-specific activity through a common molecular target.

Therefore, all chemicals included here were also assessed with

respect to their potential to deliver false-positive results in

screening assays due to non-specific reactive chemistry

interference, using the “pan assay interference compounds

(PAINS) remover” tool (version Demo 0.99) (235). None of the

structures were identified as active/positive for non-specific reactive

chemistry interference using this filtering tool.

Tables 1, 2A–C and the Supplementary Material 2: Table 1.

provide summary and full review details respectively.
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2.6 Inclusion of active human metabolite(s)
of parent chemicals

Some chemical metabolites may have increased or reduced

toxicity. OECD expert group recommendations are to include

some active metabolites where possible (159, 236, 237). If a

respective model has limited metabolic capacity, the inclusion of

both the parent chemical and the active metabolite(s) is relevant.
2.7 Avoidance of undefined
chemical mixtures

To ensure clear attribution of effects observed with the endpoint

in question, when characterising both a chemical and a candidate

test method, single and pure chemicals need to be used. Purity

needs to be documented. Undefined isomeric and racemic mixtures

of a specific chemical should be avoided. Isomeric mixtures of the

same chemical are variable and consequently can result in highly

variable results. This has been observed for nonylphenol in some

early optimisation and validation efforts for ER binding, for

example (Jacobs personal communication), and so is best

avoided, unless the isomer distribution can be clearly and

consistently quantified, isomers can be tested individually, and

there is additional justification for using such a chemical.
2.8 IATA development considerations with
respect to chemical selection across the
GOLIATH metabolic disruption
test methods

As indicated in the methods section 2, this chemical selection

was developed to support the design and development of a

conceptual IATA for metabolic disruption, with specific reference

chemicals for each PPARa and PPARg transactivation test method,

and theWAT adipogenesis test method, but also to selectively probe

each one of the three test methods, as well as consideration of the

heterodimerisation partner RXR. Thus, the chemicals were selected

to provide some overlap, and thus strengthen the mechanistic

evidence linking molecular and adverse organ/tissue-level effects

and support the development of both Adverse Outcome Pathways

(AOPs) and IATAs for metabolic disruption. This approach to

chemical selection is being recommended to enhance regulatory

relevant development of IATAs and the design of validation studies

for the NAMs addressing the IATA KEs (238).
3 Results

3.1 The PPARa and PPARg transactivation
test methods

As diabetes and metabolic diseases are often associated with

high blood glucose and lipid levels, drugs that activate both PPARa/
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g are included. In addition to the environmental contaminants and

pharmaceuticals known to perturb this receptor, inclusion of

natural ligands will assist in developing the predictive models for

PPAR transactivation test methods.

Learnings from medicinal chemistry developments and

molecular docking studies (7, 59, 239–243), contribute to the

selection, especially in relation to physico-chemical properties.

For example, the addition of fluorine to the headsets of

experimental PPAR ligands, increase potency and persistence, and

can indicate the likelihood of respective PPAR ligand binding, as

seen in vitro, for example, with the PFAS class of chemicals (59).

Looking at the PPARs heterodimerisation partner RXR, RXR

ligands such as CD3264, TBT, or 9-cis retinoic acid are reported to

interfere in reporter cell lines such as the HG5LN GAL4-PPAR, by

decreasing the signal induced by the PPAR ligands according to

their Kd for RXRs (59). Therefore, the RXR ligand TBT is included

in the chemical selection for an adipogenesis test method, and

relevant RXR interactions reported in the literature are captured.

Whilst inclusion of more chemicals with antagonistic activity

would be desirable for mechanistic understanding and complete

characterisation of a chemical’s activity towards the respective

receptor, such information was scarce, and support from human

health-relevant studies (i.e., human in vivo information) was

lacking. Therefore, the tentative preliminary proficiency chemicals

proposed herein focus on PPAR agonist binding/activity modalities.

The hMSC-derived in vitro adipogenesis test method is the

prototypical method that was considered as a potentially suitable

candidate for human-relevant WAT adipogenesis (230). While the

US EPA Tox21 screening battery utilises the murine 3T3-L1

preadipocyte cell line for identifying (environmental) obesogens

with recently reported more satisfactory accuracy (174), the data

did not satisfy the objectives here, with respect to greater accuracy

of human relevance. The aim of this chemical selection was to

identify chemicals with highest relevance towards the perturbation

of initiation and promotion of human adipogenesis, and for a

candidate test method to ideally capture both, the commitment of

precursor cells such as MSCs, to the (WAT) adipocyte lineage, and

the subsequent promotion of intracellular lipid accumulation.

Building upon the chemicals selected for PPARa and PPARg,
the chemicals to be utilised for this test method could also include

modulators of the Wnt and other critical signalling pathways with a

demonstrated role in adipogenesis (244–247), and also in relation to

the PPAR heterodimerization partner RXR. With respect to the

latter, pharmacological rexinoids such as targretin (170), and

natural ligands e.g. retinoic acids (248) that have also been shown

to directly interact with PPAR receptors (249, 250) were also

considered. The putative potency bands derived were negatives

and positives, in addition to the positive control (weak, weak to

moderate, moderate and strong activity).

In summary, 20 chemicals, including back-up chemicals were

identified as a source list for PPARa preliminary proficiency

testing. Of these, 10 are negatives: BPA, TPP, pp’-DDE, TCS,

ROSI, CPF, PFHXA, MBX-102, TBBPA and targretin; and 10 are

positives: phytanic acid, clofibrate and AGN194204 (3 weak

agonists); MEHP, EPA, tesaglitazar, and clofibric acid (4 weak-

moderate agonists); PFOA, pristanic acid, DHA (3 strong
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agonists), plus the positive control chemical: GW7647. For

PPARg proficiency testing 21 chemicals were identified. Of

which 5 are negatives: BPA, pp’-DDE, TCS, PFHXA and

targretin; and 16 are positives: CPF, clofibrate, phytanic acid,

MBX-102 and GW3965 hydrochloride (5 weak agonists); MEHP,

GW7647, EPA, clofibric acid, and pristanic acid (5 moderate

agonists), TPP, DHA, TBBPA, PFOA, 15d-PGJ2 and tesaglitazar

(6 strong agonists), plus the positive control chemical:

rosiglitazone. Fludioxonil was categorised as unknown for

PPARg, however there are some negative results.

For the hMSC adipogenesis test method we propose 11

proficiency chemicals. The following 4 negatives were identified:

TCS, TTNPB, pp’-DDE, and CPF. 7 positives were identified, PFOA

(1 weak), GW3965 hydrochloride, TBBPA, MEHP, TPP (4

moderate), fludioxonil and TBT chloride (2 strong). Rosiglitazone

is the positive control for candidate adipogenesis test methods.

Phytanic acid, a natural PPAR agonist, regulates glucose

metabolism in rat primary hepatocytes (251). Whilst phytanic

acid induces beige adipocyte differentiation, (but does not for

brown fat), this differentiation has been shown to be mediated by

PPARa (252). It is also a natural RXR agonist at physiological

concentrations and it mediates the favourable effects of phytol

derivatives on BAT adipocyte differentiation, and also induces

differentiation of UCP1 in mouse under in vivo and in vitro

conditions, postulated to be via RXR especially in presence of

other PPARg activators (193). 50 mM phytanic acid treatment

induced differentiation in 70% of the 3T3-L1 preadipocytes

assessed by lipid droplet accumulation and aP2 mRNA induction

(194), and in similar experiments this was considered to probably

be mediated by RXR (195). However, adipocyte differentiation in

mouse embryo fibroblast (C3H10T1/2) cells was reported to be very

low, as few cells were differentiated following 50 mM phytanic acid

treatment (193, 251). Thus, whilst phytanic acid has been

implicated in the normal biological process of adipogenesis,

further research is needed to elucidate its precise mechanisms of

action and its role in adipose tissue biology including whether it is

able to commit MSCs to the (WAT) adipocyte lineage, or rather

promotes lipid accumulation and maturation in committed (pre-)

adipocytes. Therefore, phytanic acid has been categorised in

category unknown, and is currently a lower priority chemical for

(initial) test method characterisation and (pre-)validation.

A summary of high priority chemicals is given in Table 1, and

extensive background information is provided in Supplementary

Material 2: Tables 1 and 2. Other RXR relevant chemicals are BPA,

TBT, phytanic acid, calcitriol, targretin, AGN194204, fludioxonil

and 2,4-DTBP. Studies have indicated that they can interact with

RXR and affect its activity, potentially disrupting signalling

pathways mediated by RXR-containing heterodimers (84, 87, 88,

160, 170, 194, 195, 202, 226, 253, 254).

Consideration of mechanistic and mode of action interactions

of some prototypical reference/proficiency chemicals, within a

putative natural history mechanistic model for overall increased

adipogenesis are shown schematically in Figure 2. Perturbed PPAR

activation is a primary MIE, that is an initial and early adaptive

stimulus towards adipogenesis, with a subsequent increase in weight

gain leading to obesity.
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Here we sought reference chemicals specific to unique targets

within specified molecular pathways, whilst also considering the

broader IATA development that is critical for regulatory acceptance

of these assays. Due to the higher complexity of the hMSC

functional assay compared to molecular-level nuclear receptor

transactivation assays, the relatively longer duration, and

associated higher implementation cost, we recommend a smaller

set of well-characterised prototypical chemicals, including limited

pharmaceuticals, as a first tier of adipogenesis test method

optimisation and proficiency testing, to demonstrate the robust

performance of an assay. Subsequently, a larger chemical set,

including more borderline or weakly active chemicals is

introduced once the test method is more mature, as a second tier

of test method optimisation and in preparation for (pre-)

validation testing.

Such an approach is becoming increasingly advocated, given the

recent regulatory acceptability difficulties for validated in vitro

assays that do not have an IATA or guidance as to how to use

them (c.f. in vitro CYP induction test method (13)), and EU

regulatory concerns with respect to industry dossier submissions

considering peroxisome proliferation and putative lack of relevance

to human toxicity (229, 255, 256), including liver tumour formation

(257). Some aspects of this, in relation to cell proliferation can

already be ascertained in standard in vivo toxicity testing for

pesticides and pharmaceuticals (e.g., in OECD TG 407/408) (258).

The provision of this minimum set of literature-supported

proficiency chemicals will facilitate the development of regulatory
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relevant test methods for metabolic disruption in relation to obesity.

The methodological considerations, in accordance with OECD

Good In Vitro Method Practices (4), for the selection of

chemicals will also support the chemical selection for other (in

vitro) test methods, related to adverse outcomes consequent to

metabolic disruption.
4 Discussion

Here we have described the evidence-based selection of suitable

chemicals for the development and validation of PPARa and PPARg as
molecular-level events, and white adipose tissue adipogenesis as an

apical organ/tissue-level adverse effect for obesity. In order to facilitate

further characterisation and proficiency testing of three relevant in vitro

test methods that can assess the MIE of the hPPARa and hPPARg
transactivation (luciferase-based receptor transactivation test methods

using HG5LN GAL4-PPAR cell lines (59, 259) towards perturbed

adiposity (hMSC primary cell test method). Understanding adipocyte

biology is essential for understanding the pathophysiological basis of

obesity and related metabolic diseases (such as type 2 diabetes). From

this understanding, one can elucidate and support the development of

suitable and more human relevant in vitro test methods towards

become validated Test Guidelines.

By moving these test methods further along the road towards

validation, the intention is to ultimately support regulatory

applications in the assessment of chemical hazards towards the
FIGURE 2

A schematic simplified overview model of the natural history leading to excess white adipose tissue with associated prototypical positive ligands
indicated principally for the mechanisms mediated by the PPARs, RXR and adipogenesis. When heterodimerised with RXR, PPARa and PPARg are the
molecular initiating event (MIEs) gene regulators of PPAR response elements (PPREs), which maintain metabolic homeostasis, and when activated
have multiple roles in adiposity and can lead to reduced insulin sensitivity and increased insulin resistance. (The heterodimerisation partner of the
PPARs is also the heterodimerisation partner for a number of other nuclear receptors (NRs), of which LXR, VDR and GR are particularly relevant
here.) In relation to adiposity, these include the induction of CYP4A gene transcription factors for lipid metabolism for PPARa to adipocyte
differentiation, glucose homeostasis, and the expression and transcription of adipose tissue-secreted factors for PPARg. C/EBPa, CCAAT/enhancer-
binding protein a; STAT1, STAT5A and STAT5B, signal transducer and activator of transcription 1, 5A and 5B, respectively; aP2, fatty acid binding
protein 2; ACBP, acyl-CoA–binding protein; LPL, lipoprotein lipase; CD36, cluster of differentiation 36; PEPCK, phosphoenolpyruvate carboxykinase;
ACS, acyl-CoA synthetase; GyK, glycerol kinase; Glut4, glucose transporter 4; PI3K, phosphoinositide 3 kinase; IRS-1 and IRS-2, insulin receptor
substrate 1 and 2, respectively. Pink octagons indicate prototypical ligands for the respective receptors that they are attached to, more potent
ligands are indicated with the black border. MDCs are in bold, endogenous and natural ligands in italics, and pharmaceuticals in normal font.
Negatives and weak chemicals from Tables 1 and 2 are not included in this figure.
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adverse health outcome of obesity/metabolic disruption, and to

facilitate progress towards test guideline and IATA development.

The initial list of proposed proficiency chemicals was further

supported with review by international experts in regulatory test

method development. However, it is acknowledged that while the

PPARa to a lesser degree, and PPARg in particular are key

coordinators in the adipogenesis metabolic axis, this is not the

entire mechanistic picture towards adverse adipogenicity leading to

obesity (260–262). White adipocytes play essential roles in energy

storage, insulation, and hormone regulation. Mature white adipocytes

serve as the primary site for energy storage in the form of

triglycerides. There is little cellular turnover, they expand, and they

are very long-lived. A proliferating pool of MSCs and preadipocytes

are the source of differentiated adipocytes that need to be created in a

balanced manner to accommodate both reduced and excess energy

intake. Effective means to regulate the differentiation of new

adipocytes so that the number of cells balance the lipid storage

need is essential, and C/EBPb has been identified to be a critical

regulatory switch controlling the transcriptional activation potential

of preadipocytes and fibroblasts that can be stimulated to differentiate

into mature adipocytes (25, 263). Abdou et al. (264) describe how the

commitment to differentiation occurs stochastically within different

cell cultures, with increasing strength of adipogenic stimulus leading

to the commitment of increasing numbers of preadipocytes to

differentiation and maturation. Members of the C/EBP

transcription factor family are transcriptionally involved in the role

of PPARg as a primary effector of adipogenesis (25). There are further

intricate mechanistic observations that are influential in capturing

adversity in the mode of action landscape of the development of

obesity. For example, the interactive pathways in relation to the GR

(265), the liver-X receptor (LXR) and the heterodimerisation partner

RXR, hepatic fibrosis, cholestasis and insulin are influential.

Inflammatory cytokines (266), epigenetics and hormonal appetite

control and satiety are also integral in the development and

progression of obesity and metabolic syndrome. Epigenetic

mechanisms, particularly histone modifications for example via

HDAC1 and cofactors on C/EBPb functions directly prior to the

onset of commitment, play a contributory role in the initiation of the

transcription of the commitment factors C/EBPa and PPARg.
Threshold-driven, cross-regulation of C/EBPa and PPARg lead the

cells towards terminal differentiation. In some cases, PPARg is not the
mechanistic trigger towards adipogenesis at all, as reported for

example for the flame retardant dechlorane plus (267).

For another example, the antioxidant 2, 4-Di-tert-butylphenol (2,4-

DTBP) increased lipid accumulation in hMSCs by activating the

PPARg-RXR heterodimer via RXRa but not directly binding to

PPARg, confirmatory evidence was shown in crystal studies of bound

RXR (226). Indeed, other examples are also mediated by RXR, such as

TBT, and others require further elucidation, such as phytanic acid.

Receptors that also heterodimerise with RXR, such as VDR, can also be

affected by RXR binding, and receptor competition for RXR

heterodimerisation within a given tissue, is a broader consideration (31).

In relation to the cellular and tissue level, for adipogenesis test

method models, whilst the weight of evidence appears to be stronger

for the promotion of lipid accumulation in murine in vitro cell

models (especially in 3T3-L1 cells), there is greater uncertainty in
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humans/human in vitro cell models. The adipogenicity of BPA

appears to be particularly contentious. Whilst on balance, BPA is

clearly positive in 3T3-L1 cells, in human primary pre-adipocytes, it

is not a PPARg agonist. Whilst BPA and BPS both induce

adipogenesis, the results from Boucher et al. (88), show that BPS

affects adipose specific transcriptional changes earlier than seen for

BPA, and alters the expression of genes specifically related to

adipogenesis and lipid metabolism (88).

Importantly, one study (89) found that in murine 3T3-derived

cells, lipid accumulation was not observed without application of

the “induction cocktail” in vitro (this was not investigated in other

studies). Indeed Longo et al. and Kossotis et al. (41, 89), suggest that

overall, the murine 3T3-L1 cell line is a useful but less relevant

model for human adipogenesis, as mechanistically, they are already

initiated/committed to the adipocyte lineage, and there is variability

across batches and reproducibility issues between laboratory strains.

With respect to regulatory relevance for human health, for the

evaluation of potential obesity related hazard(s), the essential points

for clarification include the differences reported for different

adipogenesis cell models in particular. These are most likely also

explained by differences in initiated states and different protocols

and induction methods. Independent HTS assessments of data

generated by ToxCast and Tox21 in relation to metabolic

disruption have found these to be inadequate with respect to

reliability (160), and whilst there is great utility in HTS for the

purposes of prescreening, for (pre)validation purposes with respect

to the objective of the current exercise, they were not considered to

contribute substantially to the WoE. However subsequent

independent assessments are reported to improve ToxPi

predictability (174), but as explained in section 2.4 this 3T3-L1

data could only be utilised as supporting information (160).

This exercise has been one of the more challenging with respect to

recommendations for the selection of chemicals for test methods that

are intended for a metabolic disruption IATA, here in relation to

obesity, compared to single endpoints. Overall, a reasonable number of

negatives and potential reference/proficiency chemicals with a range of

activity have been elucidated from the literature and recommendations

for (pre-)validation purposes of the individual test methods can be

made, but also with consideration of their inclusion in an IATA. To

that end, chemicals from the list generated herein are being selected

and implemented in pre-validation studies of hPPARa and hPPARg
transactivation assays (59) and hMSC cells in the GOLIATH project.

Further work is being taken up within other related projects, such as

PARC, in relation to for example the testing of the proposed chemicals

in a higher throughput 96 well format for the hMSC test method, and

will be proposed in relevant follow-up projects, also with the intention

of contributing to the OECD detailed review paper on metabolic

disruption underway. Other relevant mechanisms, such as retinoid

and PPARd-dependent neurite outgrowth assay and hGR activation,

are being (pre) validated by the PEPPER platform. The intention is that

these test methods can ultimately be proposed as draft TGs, to be

included in IATAs and ultimately define approaches, when fully

validated in the future.

Collectively this work will contribute to the development of the

OECD TG NAM toolbox to assess the potential chemical hazards from

obesogenic chemicals. By contributing to a better mechanistic
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understanding of the contribution of chemical toxicity to the global

obesity epidemic, we will also be able to support the development of

safer-by-design chemicals and the future development of relevant

endocrine modality chemical regulations, to better protect public health.
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