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López, Julián, Alonso, Julve and Mauricio. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 19 June 2024

DOI 10.3389/fendo.2024.1400961
Therapeutic implications for
sphingolipid metabolism in
metabolic dysfunction-
associated steatohepatitis
Bruno Ramos-Molina1†, Joana Rossell2,3†,
Alejandra Pérez-Montes de Oca4†, Eva Pardina5, Idoia Genua6,
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The prevalence of metabolic dysfunction-associated steatotic liver disease

(MASLD), a leading cause of chronic liver disease, has increased worldwide

along with the epidemics of obesity and related dysmetabolic conditions

characterized by impaired glucose metabolism and insulin signaling, such as

type 2 diabetes mellitus (T2D). MASLD can be defined as an excessive

accumulation of lipid droplets in hepatocytes that occurs when the hepatic

lipid metabolism is totally surpassed. This metabolic lipid inflexibility constitutes a

central node in the pathogenesis of MASLD and is frequently linked to the

overproduction of lipotoxic species, increased cellular stress, and

mitochondrial dysfunction. A compelling body of evidence suggests that the

accumulation of lipid species derived from sphingolipid metabolism, such as

ceramides, contributes significantly to the structural and functional tissue

damage observed in more severe grades of MASLD by triggering inflammatory

and fibrogenic mechanisms. In this context, MASLD can further progress to

metabolic dysfunction-associated steatohepatitis (MASH), which represents the

advanced form of MASLD, and hepatic fibrosis. In this review, we discuss the role

of sphingolipid species as drivers of MASH and the mechanisms involved in the

disease. In addition, given the absence of approved therapies and the limited

options for treating MASH, we discuss the feasibility of therapeutic strategies to

protect against MASH and other severe manifestations by modulating

sphingolipid metabolism.
KEYWORDS
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1 Introduction

Metabolic-associated steatotic liver disease (MASLD, formerly

known as non-alcoholic fatty liver disease, NAFLD) (1) is defined as

the pathological accumulation of lipids in the form of lipid droplets

in more than 5% of hepatocytes (steatotic liver) and the presence of

at least one cardiometabolic risk factor (2). MASLD has emerged as

the most prevalent chronic liver disease, affecting approximately

30% of the global population (3). Surpassing viral hepatitis in

incidence, MASLD has become a significant public health concern

with a steadily growing impact on healthcare systems worldwide.

MASLD represents a continuum of chronic liver disorders, ranging

from simple steatosis to more advanced stages, such as metabolic

dysfunction-associated steatohepatitis (MASH, formerly known as

NASH) (1). MASH, characterized by steatosis, lobular or portal

inflammation, and hepatocellular ballooning, may progress to liver

fibrosis, cirrhosis, and ultimately hepatocellular carcinoma (HCC).

According to a recent meta-analysis involving 26,738 patients

with MASLD, it has been estimated that around 30% of patients

developed MASH after less than five years (4). Notably, fibrosis

progression can occur in both MASLD and MASH, but the

incidence rate of hepatic fibrosis is higher in MASH patients (5).

In addition to fibrosis, MASLD patients have been reported to

develop type 2 diabetes mellitus (T2D) or impaired glucose

tolerance in the long term (6). Furthermore, long-term follow-up

evaluation of MASLD patients showed that MASH patients have

increased liver-related mortality compared with those without

MASH, especially when T2D is present (7).

MASH is often diagnosed incidentally as it is considered a

clinically silent disease (8). Currently, predicting the course of the

disease in a specific manner is challenging due to the lack of low-cost

and easily accessible diagnostic tools for routine monitoring of

individuals at high risk of progression. While there have been

advancements in MASLD concerning the diagnosis of steatosis

and fibrosis (9, 10), liver biopsy continues to be the ‘gold standard’

for MASH diagnosis due to the absence of thoroughly validated

biomarkers for diagnosis, prognosis, and monitoring of disease

progression. However, its use is limited by invasiveness, rare but

potentially fatal complications, sample variability, and high cost.

Additionally, given the high prevalence of MASH in the population,

widespread evaluation with liver biopsy is neither practical nor

recommended (11). Therefore, there is an urgent need to identify

new non-invasive and reliable biomarkers that can serve as

alternatives to liver biopsy for the diagnosis and prognosis of MASH.

Whilst the metabolic drivers contributing to the transition from

simple steatosis to MASH remain partly elusive (12, 13), recent

investigations suggest that lipotoxicity may play a vital role in the

progression of MASLD, as it can boost inflammation and promote

hepatic fibrogenesis (14, 15). Derangements of lipid metabolism

stands out as a major factor contributing to MASLD and advanced

active form of this condition (16). In this regard, accumulating

experimental evidence supports that lipotoxicity can result from the

accumulation of different potentially cytotoxic lipid intermediates

derived from sphingolipid metabolism (17).

The use of omics approaches represents a potent strategy to

uncover hidden, distinct signatures of biomarkers derived from
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lipid metabolism related to liver disease. Sphingolipids, which can

be divided into three different structural categories, i.e., sphingoid

bases and derivatives, ceramides, and complex sphingolipids (18),

have unique roles as signaling molecules (16). As such,

differentially-expressed sphingolipids can contribute to the

cellular reprogramming relevant to the development of MASLD

and contribute to its progression to MASH (16). Noteworthy, some

ceramide and other complex sphingolipid species are increased in

obesity and T2D, posing them as potential candidates to direct

metabolic drivers of hepatocellular injury (17). In this context, a

growing body of recent evidence also supports the notion that some

commonly used anti-diabetic therapies (e.g., thiazolidinediones,

metformin, glucagon-like peptide-1 receptor agonist (GLP-1 RA))

may exert protection against hepatic lipotoxicity. This protective

effect is achieved by reducing the synthesis of reactive sphingolipid

species in target non-adipose tissues, including the liver, thereby

unraveling potentially novel benefits of current therapies.

In this review, we will mainly discuss [i] the alterations in

sphingolipid metabolism possibly involved in MASLD

pathogenesis, with particular emphasis on those related to its

progression to MASH, and [ii] the impact of current and

potentially novel therapies that target sphingolipid metabolism for

MASH treatment.
2 Intracellular metabolism and cellular
actions of sphingolipids

Sphingolipids, one of eukaryotes’most complex bioactive lipids,

are ubiquitous. Apart from their structural and/or energetic

functions, they regulate several cellular processes (19, 20).

Sphingolipids are derivates of long-chain aliphatic amino

alcohols, with a backbone of sphingoid bases. In mammals, these

sphingoid bases are mostly derived from dihydrosphingosine (also

known as sphinganine) or sphingosine, and they actually include

hundreds of compounds (21). Sphinganine and sphingosine differ

by their synthesis pathway (Figure 1). While sphingosine is

produced through the salvage pathway, using ceramide as a

substrate, sphinganine is synthesized in the de novo biosynthesis

pathway as a result of the condensation of serine and palmitoyl-

CoA. Sphingoid bases can be N-acylated to form ceramides;

phosphorylated to form sphingomielin or glycosilated to give rise

to more complex lipids, the glycosphingolipids, i.e. cerebrosides,

globosides or gangliosides (22).

Historically, sphingosine was the first sphingolipid described by

Thudichum in 1884 (23). It was structurally characterized by Herb

Carter in 1947, who defined “lipids derived from sphingosine as

sphingolipids” (24). Currently, ceramides are considered critical

intermediates in the metabolism of sphingolipids (22, 25).
2.1 Intracellular metabolism
of sphingolipids

There are elegant reviews where the biosynthesis of

sphingolipids has been described in depth (22, 25, 26). In
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summary, ceramides can be synthesized in de novo and salvage

pathways (Figure 1).

The de novo biosynthetic pathway begins in the cytosol of the

endoplasmic reticulum (ER) with the condensation of a saturated

acyl-CoA with an amino acid by serine palmitoyltransferase (SPT),

the key regulatory enzyme of the pathway, giving 3-

ketodihydrosphingosine (3-KDHS). While palmitate and serine are

the canonical substrates for SPT, depending on the enzyme’s isoform,

various fatty acids (stearic or myristic acid) and amino acids (alanine

or glycine) can also be used, resulting in the formation of atypical

sphingoid bases that increases the diversity of sphingolipids (27).

After the reduction of 3-KDHS, dihydrosphingosine is

obtained. The ceramide synthase (CerS) family, through N-

acylation and subsequent addition of a double bound by

desaturase 1 or 2 (Des 1 and Des2, respectively), generates a

plethora of more than 200 different types of ceramides (28).

While there are six mammalian CerS, only Cer2 - with a

preference for fatty acyl CoA C22 to C24 - and CerS4 - with a

preference for fatty acyl CoA C18 to C20 - have been expressed in

the liver (29). Their substrate specificity determines the fatty acid

composition of sphingolipids (30).

The salvage pathways are those that obtain ceramide from more

complex sphingolipids. One such pathways is the sphingomyelinase

pathway (25), where sphingomyelin (SM) is hydrolyzed by the

action of sphingomyelinases (SMases). Another option is the
Frontiers in Endocrinology 03
deacylation of ceramide to sphingosine by ceramidases (CDases);

this sphingosine can be reacylated by CerS again. In humans, five

different CDases have been described which have been named

according to their optimum catalytic pH: alkaline CDase (ACER

1, 2 and 3), acid CDase (ASAH1), and neutral CDase (ASAH2) (31).

The last option involves the degradation of glycosphingolipids in

late endosomes or lysosomes by hydrolases that remove the added

glycans until ceramide is obtained again (25).

Ceramides can be further modified to obtain many other

complex bioactive lipids. Still in the ER, galactose can be

transferred into the C1 ceramide’s backbone by ceramide

galactosyl transferase (CGT), obtaining galactosphingolipids that

could become galactocerebrosides (32). For the formation of other

glycosphingolipids, such as globosides or gangliosides, ceramides

must be transported into the trans-Golgi either by the

phosphatidylinositol-four-phosphate adaptor protein 2 (FAPP2) or

by vesicular transport, respectively (33); and finally suffer glycation

with UDP-glucose by the glucosylceramide synthase (GCS) (34, 35).

On the other hand, CERT-transported ceramides are converted

to SM by sphingomyelin synthase 1 (SMS1) in the cis-Golgi by the

transference of a phosphorylcholine group from phosphatidylcholine

(33). Finally, ceramides can also be phosphorylated by ceramide

kinase (CerK), giving ceramide 1P in the trans-Golgi (36, 37), or

acylated at the 1-OH position by diacylglycerol O-acyltransferases

(DGATs) in ER (38, 39).
FIGURE 1

Sphingolipids synthesis. Ceramide (Cer) is one of the central precursors of Sphingolipids. Cer can be obtained in the ER by de novo synthesis with
the condensation of palmitoyl-CoA and serine or by salvage pathways from more complex sphingolipids in the mitochondria, lysosome, ER, or
plasma membrane. Cer can be exported to Golgi to form Glucocerebrosides (GLC) or Sphingomyelin (SM). Cer can produce Sphingosine (Sph) in the
plasma membrane that can be recycled again into Cer and sphingosine-1-P (S1P), which is exported out of the cell. SPT, serine palmitoyltransferase;
3kdhSph, 3-ketodihydrosphingosine; KDS, 3-ketoreductase; dhSph, dihydrosphingosine; CerS, ceramide synthase; Des, desaturase; aCDase, acid
ceramidase; nCDase, neutral ceramidase; S1PPase, sphingosine 1 phosphate phosphatase; S1PLyase, sphingosine 1 phosphate lyase; GCase,
glucosylceramidase; GCS, glucosylceramide synthase; aSMase, acid sphingomyelinase; nSMase, neutral sphingomyelinase; SMS, sphingomyelin
synthase; FAPP2, four-phosphate adaptor protein 2. Created with BioRrender.com.
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Noteworthy, sphingosine generated by CDases can be

phosphorylated by sphingosine kinases 1 (cytosolic) and 2

(mitochondrial and nuclear) (SK1 and SK2, respectively),

obtaining sphingosine-1-phosphate (S1P) (40). S1P can serve as

an intracellular signal transduction molecule via the G-coupled

receptors S1PR1–5, which are expressed in many tissues and

modulate signals by RAS-GTP, phosphoinositide-3-kinase (PI3K),

phospholipase C (PLC) and Rho (41). Otherwise, S1P can enter the

irreversible catabolic pathway of ceramides using S1P lyase, which

cleaves the molecule into an ethanolamine phosphate and a fatty

aldehyde (hexadecenal), which in turn could be further metabolized

to enter the energetic lipid metabolism (42).
2.2 Cellular actions of sphingolipids

As stated above, sphingolipids are involved in many cellular

processes. Among the latter, the most important are apoptosis and

autophagy. Ceramides have been described mainly as proapoptotic

drivers. On the one hand, they have been described as activators of

the JNK signaling pathway (43). Besides, ceramides, and Bcl2-family

pro-apoptotic proteins (Bax and Bak), can form barrel-like channels

in the outer layer of mitochondrial membranes (29), guiding cell to

death by permeabilization of the organelle. Surprisingly, there is also

evidence that long-chain polyunsaturated ceramides can also be anti-

apoptotic (44, 45). Phosphorylated sphingolipids such as S1P, C1P, or

ganglioside GD3 have been related to the autophagosome formation

for survival metabolism (29). S1P is also a potent inducer of

proliferation and cell survival (46). Of note, the anti-inflammatory

adipokine Adiponectin has been related to the upregulation of CDase,

increasing S1P concentration (47).

Besides their intervention in programmed cell death, ceramides

are also related to mitochondrial dysfunction. For example, the

C16:0 ceramides (Cer16) derived from CerS6 activity interfere in

the mitochondrial fission (45). Moreover, ceramides also induce

oxidative stress in hepatic mitochondria as their accumulation

promotes the production of the ganglioside GD3 in the ER, which

induces the production of superoxide anion (48).

Considering the aforementioned actions, it is unsurprising that

sphingolipids also play a role in modulating inflammation. Ceramides

can induce inflammation by the activation of the NF-kB – TLR4

pathway (49) and the NLRP3 (NOD-, LRR, and pyrin domain-

containing protein 3) inflammasome (50) resulting in an increase of

proinflammatory cytokines such as IL-1b or IL-18 (51). S1P generated

by SK1 has also been described to act through the NF-kB pathway by

S1PR1–3 (52). In turn, the secretion of proinflammatory cytokines

stimulate several key enzymes of the sphingolipid metabolic pathway

(SPT, CerS1, CerS2 and CerS6, SMases) (49, 53).
3 Alterations of sphingolipid
metabolism in MASH pathogenesis

Hepatic inflammation, a diagnostic characteristic of MASH, is

triggered by several factors (54). Among these factors, the

development and progression of MASLD to MASH has been
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linked to disturbances in hepatic sphingolipid metabolism, as

revealed using metabolomics approaches (55–57). The

relationship between increased hepatic inflammation and

ceramide content is intricate and bidirectional (48). As such, the

de novo synthesis of ceramides may be upregulated via toll-like

receptor (TLR)-dependent mechanisms, whereas ceramides can

exacerbate hepatic inflammation by activating TLR and

inflammasome signaling pathways.

The hepatic content of ceramides is frequently increased in

experimental MASLD and may mediate its progression to MASH

(58–60). Experimental studies support the notion that increased

hepatic ceramides and upregulation of target genes encoding key

enzymes involved in their synthesis, including CerS, are related to

diet-induced MASH/hepatic fibrosis in mice (61, 62). Therefore,

targeting CerS isoforms, which are responsible for the synthesis of

distinct ceramide species (48), may become a potential therapeutic

approach to reduce ceramide synthesis. Consistently, genetic causes

of CerS2 deficiency, the dominant form in the liver that

preferentially synthesizes very-long-chain (Cer22/Cer24/Cer24:1)

ceramide species, results in concurrent reductions in these

ceramides species in the liver (63). Additionally, the

pharmacological blockage of de novo synthesis of ceramides using

myriocin, a serine palmitoyl transferase inhibitor, protects against

hepatic ceramide accumulation and can prevent the development of

MASH in rats (64). Intriguingly, the synthesis of long-chain Cer16

was upregulated in the above-mentioned genetic setting of CerS2

deficiency, and therefore the susceptibility to diet-induced

steatohepatitis (63). The underlying mechanism responsible for

such increase in C16-ceramides was not further investigated, but,

at least in part, it could be likely compensatory, thereby shedding

doubts in considering CerS as a molecular target in future therapies.

Although the evidence in humans is somewhat limited, direct

determination of sphingolipids has been addressed in hepatic

biopsies only in a few studies for obvious ethical reasons.

Accumulating clinical studies show that circulating and hepatic

ceramides are strongly associated with MASH (65–69). Of note,

hepatic total ceramides were particularly higher in obese subjects

with steatohepatitis compared with those with steatosis or without

MASLD (69). Alongside ceramides, the sphingolipid profile has also

been characterized by concurrent elevations in the hepatic content

of their direct precursors, the dihydroceramides (70). Consistently,

the hepatic content, of dihydroceramides (16:0, 22:0, and 24:1) and

lactosylceramides are increased in subjects with steatohepatitis (69).

In agreement with this, the hepatic levels of dihydroceramides were

increased along with the histological severity in patients with

MASLD (71, 72). More specifically, hepatic levels of Cer(d18:0/

20:0) and Cer(d18:0/24:1) have been shown to be significantly

elevated in subjects with MASH compared with those with simple

steatosis (72). In addition, several long-chain ceramides,

dihydroceramides, or 1-deoxy-dihydroceramides have also been

reported to display an overlap between differentially-expressed

lipids in both the liver and peripheral circulation, thereby

unveiling their potential as biomarkers for diagnostic purposes

(67, 71). These findings indicate that a high level of circulating

ceramides is a common feature of MASH in both adult and

pediatric patients.
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A distorted sphingolipid metabolism is directly linked to

hepatic insulin resistance, a well-known hallmark of MASLD (20,

69). Insulin-deficient signaling states directly correlate with

concurrent elevations of some sphingolipid species in subjects

with MASH, suggesting that these lipids may play a role during

progression from simple steatosis to MASH. Supporting this notion,

in a recent study made on people with severe obesity undergoing

bariatric surgery, the hepatic content of dihydroceramide, which is

considered a marker of de novo synthesis of ceramides, and

ceramides were markedly increased in subjects with higher

HOMA-IR (68). Similar results were also reported in an

independent study, where the total ceramide concentration was

positively correlated with HOMA-IR and insulin levels in obese

children with MASLD (73). Additionally, the hepatic content of

dihydroceramides and ceramides was markedly increased, along

with that of free fatty acids and triglycerides, in subjects with

significantly higher insulin resistance (68). In another

independent study, circulating total ceramides were inversely

correlated with whole-body insulin sensitivity in subjects with

obesity and insulin resistance (with and without MASLD/MASH)

who were eligible for bariatric surgery (69). These findings reinforce

the contribution of impaired insulin signaling to dysregulated

sphingolipid metabolism and its relationship with MASH.

There are several possible mechanisms by which sphingolipids

can modulate insulin signaling: a) ceramides are described to impair

insulin activation of Akt/PKB altering its translocation (via PKCz or
protein phosphatase 2 a -PP2A); b) alternatively-phosphorylated

RNA-dependent protein kinase (PKR) by ceramides would prevent

the binding of IRS1 to PI3K; and c) using changes in plasma fluidity

(20, 48). Glucosylceramides and gangliosides (especially GM3) are

also involved in insulin resistance, as GM3 interferes directly with

IRS1 (74). The results of S1P insulin modulation are controversial.

When S1P is bound to apolipoprotein (apo)M, it enhances insulin

signaling via Akt-pathway activation through S1PR1 and S1PR3,

whereas S1P bound to albumin would interfere with insulin

sensitivity through SP1R2 (75).

The hepatic ratio of long-chain ceramides vs. very long-chain

ceramides has been described as a marker of metabolic diseases,

including diabetes (63, 68). Furthermore, the excess of hepatic non-

esterified fatty acid influx, the inflammatory processes (that is,

elevated TNF-alpha and IL1), and the oxidative stress altogether

promote the SPT activation, increasing the de novo ceramide

synthesis and the SMase activation, increasing the SMase pathway

(26, 76). On the other hand, the hepatic S1P produced from the

excess of palmitate activates local stellate cells by signaling through

S1PR3. It increases myofibroblast migration, establishing a possible

relationship with fibrosis (77).

Lipidomic analysis may also enable the identification of changes

related to the degree of hepatic fibrosis in the context of MASH.

Specifically, the lipid composition of livers from obese patients with

MASH significantly differed depending on the extent of hepatic

fibrosis (78). Sphingomyelin levels, particularly those of SM (35:0)

and (37:0) species, were significantly reduced in the livers from

MASH patients with significant fibrosis. In contrast to ceramides,

sphingomyelin content favorably influences cell survival (79).

Indeed, the balance between sphingomyelin and ceramides is
Frontiers in Endocrinology 05
considered a predictor of cell survival and proliferation (79).

Accordingly, an increased ceramide-to-sphingomyelin ratio due

to reduced sphingomyelin in subjects with MASH and significant

hepatic fibrosis could suggest that the sphingolipid profile may be

worsened compared to those with mild hepatic fibrosis (78).
4 Experimental/clinical evidence of
therapies targeting sphingolipid
metabolism and its impact on
MASLD/MASH

Due to the role of sphingolipids, and particularly ceramides, in

inflammation and MASH development, sphingolipid metabolism is

one of the potential targets to focus on for MASH treatment strategies.

Several candidate compounds are currently known to favorably

influence sphingolipid metabolism, thus becoming therapeutic drugs

(Table 1). The sites of action for each specific drug are illustrated in

Figure 2. Nevertheless, these compounds are at different stages of

research. Several antidiabetic drugs have a beneficial effect on MASH

through their action on sphingolipid metabolism. This section

summarizes the current potential benefits of MASH therapies

targeting sphingolipid metabolism.
4.1 Drugs known to act on different
molecular targets involved in
sphingolipid metabolism

4.1.1 Myriocin
Myriocin is a compound originally isolated from a fungus

commonly used in traditional Chinese medicine. This molecule

inhibits the activity of serine-palmitoyl transferase (SPT), the rate-

limiting enzyme in SM synthesis (105). This drug has been chiefly

used in different in vivo models involving liver injury, with positive

effects against MASLD and MASH. In this context, myriocin has

been shown to reduce liver steatosis inflammation and overall liver

injury in obese mice fed a high-fat diet (65, 85). Consistently, the

treatment of streptozotocin-induced diabetic rats (80, 85), with

myriocin successfully ameliorated the hyperglycemia and protected

against hepatic steatosis in treated rats. Remarkably, this favorable

phenotype was accompanied by a concomitant reduction in the

hepatic content of ceramides, SM, and sphinganine but resulted in

an increased hepatic content of S1P (64). Moreover, inflammatory

cell aggregates were also reduced, showing that myriocin positively

affected hepatic inflammation (64). Additionally, myriocin has been

also shown to be hepato-protective in a mouse model of alcoholic

liver disease. This was revealed by significantly lessening the hepatic

fatty acid lipid profile after administering this compound (82).

However, despite such positive results, further research is probably

needed regarding using of myriocin in humans. In a recent article,

Li et al. (83) used commercially available extracts derived from the

fungus Cordyceps, also used in traditional Chinese medicine, as a

myriocin source to treat mice fed a high-fat diet. These extracts

reduced circulating ceramide levels, improved glucose homeostasis,
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TABLE 1 Drugs targeting sphingolipid metabolism with a potential therapeutic role on MASH*.

Compound Therapeutic target Experimental/
clinical model

Drug administration effects

Myriocin SPT inhibitor Rats Myriocin was administered for 7 days by intraperitoneal injections
(0.3 mg/kg of body weight). Myriocin reduced SM content in liver, but
increased S1P (80).

Rats Myriocin was administered intraperitoneally every other day for 12 weeks
(0.3 mg/kg of body weight). Reduced plasma glucose, reduced ceramide,
sphinganine, and SM liver content. Increase in S1P. Reduction in liver
DAG and TAG content. Reduced inflammatory cell aggregates (64).

Rats Myriocin was administered every other day by gavage for 8 weeks (0.3
mg/kg of body weight). Improved lipid profile and decreased serum
transaminases. Corrected the expression pattern of fatty acid metabolism
associated genes (65).

Mice Myriocin was administered by daily oral gavage for 12 weeks (0.3 mg/kg
of body weight). Down-regulated the expression of MCP-1 and its
receptor CCR2. Decreased pro-inflammatory Ly-6c high monocytes (81).

Rats Myriocin was administered intraperitoneally on alternate days, 3 times
per week, for 5 weeks (0.3 mg/kg of body weight). Improve the
affectations cause by alcohol on fatty acid lipid profile on liver (82).

Mice Cordyceps powdered sample was administered orally mixed with diet
(19.7 mg/kg, containing 4–6 nmol/g myriocin). Reduced ceramide levels.
Increase in energy expenditure (increase in beiging/browing of adipose
tissue). Improved glucose homeostasis and resolved hepatic steatosis (83).

In vitro Cells were treated with 10 mM myriocin 16 h before collecting
supernatants. Reduced the pro-inflammatory activity of intrahepatic
Cholangiocarcinoma-derived extravesicular cells (84).

Fingolimod S1P antagonist Mice Fingolimod was administered intraperitoneally for 2 weeks (1 mg/kg of
body weight). Reduction of steatosis, liver injury, and inflammation (85).

Mice Fingolimod was administered via oral gavage three times a week for 16
weeks (0.3 mg/kg of body weight). Reduction in hepatic sphingolipid
levels (ceramides, monohexosylceramides, and sphingomyelins). Reduced
steatosis but no significant changes in hepatic inflammation, hepatocyte
ballooning, NAFLD activity score, or fibrosis.
Significant reductions in the expression of [i] CXCL10, also known as
interferon g-induced protein 10, a known chemoattractant for monocytes/
macrophages, T-cells, and dendritic cells, and [ii] CCL5, also known as
RANTES (regulated on activation, normal T-cell expressed and secreted),
that plays an active role in the recruitment of leukocytes (86).

In vitro HepG2 cells were treated with various concentrations of fingolimod (0,
10, 100, 200, 500, and 1000 mM) for 24 h. Binding to S1PR3 which
activates sequentially Gq, PI3K, and mTOR leading to an increase in
SREBP expression and PPARg activation (87).

Fumonisin B1 CerS Inhibitor Rats Administration FB1 at different concentrations over approximately 2
years (0.8 – 1.6 mg/kg of body weight). Hepatotoxic effects of FB1 (88).

Mice FB1 was administered orally mixed in the drinking water daily for 3
weeks (10 mg/kg body weight). Decreased body weight, blood fasting
glucose, hepatic steatosis, and liver weight, but increased plasmatic
transaminases. FB1 in obesity led to severe hepatic inflammation (89).

Mice FB1 was administered intraperitoneally every other day for 2 weeks 2.25
mg/kg of body weight). Resveratrol has protective effects against FB1 liver
toxicity (90).

ASO CerS Inhibitor Mice Antisense oligonucleotides targeting CerS6 were administered
intraperitoneally 3 times (day 1, 4 and 8) (5 mL/kg body weight).
Decreased body weight, plasmatic and liver ceramide content. Improved
glucose homeostasis and decreased liver triglyceride content (91).

ASM inhibitor Imipramine Mice Imipramine was administered intraperitoneally daily for 2 weeks (10 mg/g
of body weight). Prevention of steatosis, reduced hepatic ceramides, and

(Continued)
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and resolved hepatic steatosis in treated mice. Interestingly,

myriocin-treated mice also showed an increase in the beiging/

browning of adipose tissue, leading to increased energy

expenditure, which partially prevented the obesogenic effects of

the high-fat diet (83). Moreover, genetic models have provided

important information on the mechanism behind the anti-

inflammatory effects of myriocin. In ApoE-/- mice, myriocin

decreased pro-inflammatory monocytes down-regulated the

expression of monocyte chemoattractant protein-1 (MCP-1) and

CD36 in sections of atherosclerotic lesions and the circulating levels

of MCP-1 receptor (CCR2) (81).
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4.1.2 Fingolimod
Fingolimod is a chemical derivative of myriocin. In contrast to

myriocin, fingolimod has lower toxicity and has been approved for

human use for treating multiple sclerosis (106). This drug acts as an

S1P antagonist, downregulating CerS2 (106, 107), thereby

suggesting a mechanism of reduced very-long-chain ceramides.

Mechanistically, fingolimod also binds to S1PR3, increasing

SREBP expression and activating PPARg through the activation of

Gq, PI3K, and mTOR (87). In mice fed obesogenic diets, the

administration of fingolimod has been associated with reduced

steatosis, liver injury, and inflammation (85). However, the
frontiersin.or
TABLE 1 Continued

Compound Therapeutic target Experimental/
clinical model

Drug administration effects

reduced activation of stress kinases. Improved blood glucose
tolerance (92).

Knock-out Mice Not progression to MASH (93).

ARC39 In vitro L929, HepG2, and B16F10 cells were treated with ARC39 at 1 mM.
Reduction in total ceramides, toxicity after 48h (94).

Amitriptyline Mice Amitriptyline was administered intraperitoneally every day for 10 weeks
(0.5 mg/mouse). Inhibition of hepatic steatosis. Suppressed SP1 and
ceramide formation, reduction of proinflammatory cytokines, suppressing
hepatic inflammation (95).

Mice Amitriptyline was administered intraperitoneally every day for 6 weeks
(2.5 mg/kg of body weight the first 4 weeks, and 5.0 mg/kg of body
weight the last 2 weeks). Reduced hepatic levels of ceramides, protection
from steatosis and MASH (96).

FXR agonists Gly-MCA Mice Gly-MCA was orally administered every day for 8 weeks (10 mg/ kg of
body weight). Reduced lipid accumulation, inflammatory response (in
injury markers, ALT and AST), and collagen deposition in NAFLD and
NASH models. Lower liver endoplasmic reticulum stress and
proinflammatory cytokine production (97).

Vonafexor Human Vonafexor was orally administered every day (100, 200, or 400mg).
Reduced liver steatosis and showed an improvement in imaging
biomarkers of fibrotic steatohepatitis after only 12 weeks of
treatment (98).

DES1 deletion Fenretinide In vitro RAW 264.7 cells were treated with Fenretinide (5 mM). Fenretinide
decreased ceramide level and inhibited the release of proinflammatory
cytokines (99).

Mice Fenretinide was orally administered at 0.04% mixed with a High-fat diet.
Decrease in ceramides decrease in gene expression of IL-6, IL-1B, IL-
10 (100).

XM462 In vitro C38 human bronchial epithelial cells were treated for 14h with XM462
(20 mM). Protection against inflammation and oxidative stress in lung
cells exposed to smoke (101).

Gene model Mice Resolved hepatic steatosis and insulin resistance (102).

Other
approaches

Dietary fats Human Reduced circulating FA containing sphingolipids. Effect on T2D less
clear (103).

Predimed trial Human Reduction of circulating ceramides (103).

Scoparone Mice Decrease in ceramides and other sphingolipids altered due to HFD in a
MASH model (104).
ALT, alanine aminotransferase; AST, Aspartate transaminase; CCR2, monocyte chemoattractant protein-1 receptor; CerS, ceramide synthase; DAG, diacylglycerol; FA, fatty acids; FB1,
Fumonisin B1; HFD, high-fat diet; Ly6c1, lymphocyte antigen 6 family member C1; MASH, metabolic dysfunction-associated steatohepatitis; MCP-1, monocyte chemoattractant protein-1;
MASLD, metabolic associated steatotic liver disease; PI3K, Phosphoinositide 3-kinases; SM, Sphingomyelin; S1P, sphingosine-1-P; T2D, diabetes mellitus type 2; TAG, triglycerides.
*When indicated, the current terms MASH/MASLD that appear in this table were used instead of the traditional terms NASH/NAFLD.
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favorable impact of this drug on steatohepatitis was not proven in

another diet-induced mouse model of MASLD (86). The reason for

such controversy is not known but may at least in part be related to

differences in experimental dietary inducers and the genetic

background of the animal models used in each study (85, 86).

Remarkably, despite having minimal effects on the expression of

hepatic markers of inflammation in one of these two studies (86), its

administration significantly decreased the gene expression of

chemoattractants for different immune cells in the liver of treated

mice (interferon g-induced protein 10, i.e., CXCL10, and RANTES,

i.e., CCL5), which are commonly dysregulated in liver fibrosis (108).

In a clinical setting, despite being approved for human use,

fingolimod administration has also been linked to hepatotoxicity

(109, 110), which complicates its feasibility to become a new

treatment for MASLD/MASH.

4.1.3 Ceramide synthase inhibitors
Another compound derived from fungi is Fumonisin B1 (FB1).

This molecule reduces sphinganine formation through competitive-

like CerS inhibition mechanisms (111, 112). FB1 can reduce hepatic

steatosis and decrease body weight and fasting blood glucose in

C57BL/6J mice fed a high-fat diet (89). Despite the positive effects,

FB1 was associated with more inflammation, as shown by increased

expression of inflammatory genes, and more inflammatory foci

(89). Hepatotoxicity is a main drawback regarding the potential of
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FB1 to become a treatment candidate (88, 113). This toxicity also

becomes much more pronounced with increased adiposity (89).

Nevertheless, a recent study showed that these adverse effects can be

mitigated when resveratrol is co-administered, as this polyphenol

acts as an hepato-protector (90).

Antisense oligonucleotides (ASO) can be used to selectively

inhibit the action of CerS (specifically CerS6). It results in decreased

body weight, especially fat mass, and reduced plasmatic and liver

ceramide content. Glucose homeostasis was generally improved,

with reduction in insulin, glucose, and HOMA-IR indexes.

Moreover, liver triglyceride content was also decreased (91).

4.1.4 Specific inhibitors of acid sphingomyelinase
Another potential target in sphingolipid metabolism is the

enzyme acid SMase (aSMase), which catalyzes SM hydrolysis to

ceramides (114). aSMases are partly responsible for the

upregulation of the inflammatory response seen in MASLD (95),

thereby suggesting that therapies targeting this enzyme could

protect against MASLD and/or MASH development. Supporting

this notion, experimental data using genetically modified mice

deficient in aSMase (aSMase (-/-)) developed steatosis when fed a

Western diet. However, hepatic steatosis did not progress into

MASH compared with the wildtype mice on the same diet (93).

Consistently, the aSMase(-/-) mice fed a high-fat diet were resistant

to the diet-induced hepatic ER stress, resulting in less hepatic
FIGURE 2

Main known drug action targets on sphingolipid synthesis. Many potential therapies for MASH/MAFLD target key enzymes involved in sphingolipid
synthesis, particularly ceramides. SPT, serine palmitoyltransferase; 3kdhSph, 3-ketodihydrosphingosine; KDS, 3-ketoreductase; dhSph,
dihydrosphingosine; CerS, ceramide synthase; Des, desaturase; aCDase, acid ceramidase; nCDase, neutral ceramidase; S1P, sphingosine 1
phosphate; S1PPase, sphingosine 1 phosphate phosphatase; S1PLyase, sphingosine 1 phosphate lyase; GCase, glucosylceramidase; GCS,
glucosylceramide synthase; aSMase, acid sphingomyelinase; nSMase, neutral sphingomyelinase; SMS, sphingomyelin synthase; FAPP2, four-
phosphate adaptor protein 2; ASO, Antisense oligonucleotides. Created with BioRrender.com.
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inflammation (96). Although the hepatic content of ceramides was

not directly measured in these previous studies, it could be

suggested that these species would be reduced in the livers of

aSMase-deficient mice.

Commercially available drugs, such as tricyclic antidepressants,

have been shown to have inhibitory properties on aSMase activity

and, thus, contribute to ameliorating steatosis or inflammation in

hepatocytes (115). Amitriptyline is one of the possible candidates.

In a study using an LDL receptor-deficient mice model to evaluate

the role of aSMase in the inflammatory process, MASH and

atherosclerosis were induced through a high-fat diet enriched

with palmitic acid and/or endotoxin. The administration of

amitriptyline protected the mice against body weight gain and

ameliorated insulin signaling, as revealed by concomitant

reductions in the circulating concentrations of insulin and

decreased HOMA-IR (95). The administration of this drug also

inhibited hepatic steatosis, hepatocellular ballooning, and hepatic

inflammation. Noteworthy is that on isolated macrophages from

these mice, amitriptyline successfully suppressed SP1 formation,

reduced ceramide content, and reduced pro-inflammatory

cytokines such as IL-6 (95). In an independent study, the use of

amitriptyline in wild-type mice fed a high-fat diet successfully

reduced hepatic levels of ceramides. This reduction protected the

development of hepatic steatosis, fibrosis, and liver inflammation

induced by a high-fat diet (96). The hepatic content in ceramides

was not eventually determined; it could be postulated that

ceramides would be decreased in the treated mice. In support of

this hypothesis, the treatment of wildtype mice with imipramine,

another tricyclic antidepressant, reduced hepatic ceramides, which

was accompanied by decreased steatosis and improved blood

glucose tolerance (92). Concurrently, the administration of this

drug was also able to reduce the ethanol-derived activation of stress

kinases. Further research is needed, but imipramine could be

improving MASH also in non-alcoholic animal models.

Another molecule identified as aSMase’s functional direct and

high-affinity inhibitor is 1-aminodecylidene bis-phosphonic acid

(ARC39), a bisphosphonate compound. ARC39 acts on the

lysosomal and secretory forms of the enzyme and leads to a

marked decrease of cellular ceramide in different hepatocyte cell

types, i.e., L929, HepG2, and B16F10 cells. However, when

administered intraperitoneally in vivo, ARC39 showed renal and

hepatic toxicity, whereas lower doses, not related to adverse toxic

effects, did not influence ceramide content (94). Further research

may still be needed to assess the efficacy of this drug in vivo.

4.1.5 Specific inhibitors of dihydroceramide
desaturase 1

Another possible therapeutic target is the enzyme dihydroceramide

desaturase 1 (DES1), which is involved in ceramide production (116).

The synthetic retinoid Fenretinide acts as a DES1 antagonist, inhibiting

ceramide de novo synthesis. In RAW 264.7 macrophage cells,

Fenretinide decreased ceramide level and inhibited the release of

proinflammatory cytokines (99). In a mouse model of atherosclerosis

and MASLD, Fenretinide prevented body weight gain, and improved

the signs of MASLD, while reducing the gene expression of fibrosis
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markers. However, a worsening in aortic plaque formation was

observed (100).

In lung epithelial cells, inhibition of DES1 by XM462 led to

protection from the inflammatory effects of smoke, reducing several

inflammatory cytokines (101). In an obese model of leptin-deficient

mice, whole-body DES1 deletion resolved hepatic steatosis and

normalized insulin resistance. Moreover, liver-specific deletion of

DES1 also led to the same results and decreased several

inflammatory cytokines (102).
4.1.6 Intestinal farnesoid X receptor antagonists
Accumulating experimental evidence recently accounted for

intestinal farnesoid X receptor (FXR) as another potential

candidate target to protect against MASLD/MASH (117). For

instance, abrogating the FXR signaling with specific antagonists

ameliorates MASLD and decreases circulating ceramide levels in

high-fat-fed mice. Improved MASLD was explained by a decreased

de novo lipogenesis in treated mice (118). Glycine-b-muricholic acid

(Gly-MCA) is an FXR agonist that suppresses ceramide synthesis-

related genes, thus reducing ceramide levels in the livers of treated

mice (97). A generally improved inflammatory response was seen in

both MASLD and MASH mice models treated with this agonist,

which showed fewer injury markers and lower levels of aspartate and

alanine transaminases (97). The reduction of ceramide levels was

concomitant with a lower liver ER stress and reduced

proinflammatory cytokine production, which accounted for the

much lower degree of inflammation in the livers of treated mice (97).

More recently, in patients with suspected fibrotic MASH,

vonafexor, a second-generation, non-bile acid farnesoid X

receptor agonist, markedly reduced liver steatosis and showed an

improvement in imaging biomarkers of fibrotic steatohepatitis after

only 12 weeks of treatment (98).
4.1.7 Other approaches
Food supplements and dietary manipulations are another

potential strategy to influence sphingolipid alterations and prevent

MASH development. A high intake of vegetables and fruits directly

affects circulating ceramide levels, as shown in two independent

studies. The first was a sub-study of the PREDIMED trial in 980

subjects following a Mediterranean diet, which showed significantly

lower circulating levels of ceramides than the control group (119).

Similarly, circulating ceramides were also lower in another study,

reducing general circulating ceramide content but C16:0 and

lowering general inflammatory status (120). Another clinical trial

observed that subjects eating a diet high in unsaturated fatty acids

had reduced plasmatic fatty acids containing sphingolipids than

subjects eating a diet high in saturated fatty acids (103). However,

none of these human studies analyzed hepatic status.

Regarding dietary supplements, in a study performed on lean

female rats, green coffee extract reduced hepatic triglyceride content

and C20:0 ceramide (121). Another study using scoparone, a compound

derived from the Artemisia capillaris plant used in traditional Chinese

medicine as a lipid-lowering and anti-inflammatory (122), in a MASLD

mice model fed a high-fat diet, the authors observed that the
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sphingolipid profile was favorably modified, decreasing the levels of

several ceramides upon scoparone treatment (104).
4.2 Anti-diabetics

Among antidiabetic pharmacological agents currently used to

treat T2D, only two drug groups, i.e., thiazolidinediones

(pioglitazone) and GLP-1 receptor agonists, but not metformin,

have been shown to alleviate MASH (123, 124). Apart from these,

despite favorably influencing hepatic steatosis, no clinical evidence

has been reported on MASH amelioration by other frequently used

antidiabetic drugs, i.e., sodium–glucose cotransporter 2 (SGLT2)

inhibitors and insulin.

As traditional antidiabetic interventions continue to evolve, a

deeper understanding of their influence on MASLD/MASH, and

more specifically, sphingolipid pathways, holds the potential to

reveal novel insights into disease mechanisms and therapeutic

strategies. Among the various antidiabetic medications, each

demonstrates distinctive impacts on lipid profiles, explicitly

targeting ceramides, phosphatidylcholines, SMs, and triglycerides,

suggesting a broader association between antidiabetic therapies and

lipid metabolism modulation. Table 2 summarizes the evidence

regarding the impact of the most studied antidiabetic drugs on

sphingolipid metabolism, exploring their potential connection

to MASLD.

4.2.1 Metformin
Metformin demonstrated efficacy in blocking the increase of

fatty acid transport protein CD36, along with aberrant ceramide

and diacylglycerol content in the skeletal muscle of diabetic rats

(76). Further experimental evidence also suggests that metformin’s

insulin-sensitizing effect in the liver promotes mitochondrial b-
oxidation, protecting against ceramides and diacylglycerol

accumulation and preserving insulin sensitivity under a high-fat

diet consumption (126).

Clinical studies support this evidence. For instance, the lipidomic

profile of 27 individuals with polycystic ovary syndrome (PCOS)

revealed lower levels of three ceramides and four SM after treatment

with metformin. This suggests that this antidiabetic drug may

influence insulin resistance in women with PCOS by interacting

with ceramides, critical players in the insulin signaling pathway (149).

In healthy subjects, metformin significantly decreased the levels of

S1P, a bioactive lipid generated by converting ceramide to

sphingosine. S1P is associated with inflammation, immunity, and

insulin resistance and has also been associated with the development

of obesity and T2D (129). The changes in lipid species indicated

essential lipid signaling pathways that might be related to the varied

effects of metformin.

An experimental study with human hepatocytes aimed to

elucidate the pathogenesis of MASLD. It found significant changes

in genes related to fatty acid metabolism using metformin as a

steatosis inhibitor. These changes include a reduction of ceramides,

higher mitochondrial activity, and enabled b-oxidation, redirecting
fatty acid metabolism from energy storage to expenditure (127).
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4.2.2 Thiazolidinediones
Pioglitazone, a thiazolidinedione primarily targeting the PPARg

receptor, has demonstrated efficacy in improving the liver histology

of non-diabetic non-alcoholic steatohepatitis subjects in clinical

trials (150). Experimental models, particularly a mouse model

simulating non-alcoholic steatohepatitis, linked pioglitazone to

enhanced hepatic mitochondrial function, coupled with a

significant decrease in intrahepatic diacylglycerol classes and

specific ceramide species (C22:1, C23:0) (131).

In individuals with metabolic syndrome, a study indicated that

pioglitazone significantly reduced multiple plasma ceramide

concentrations, aligning with improvements in insulin resistance

and adiponectin levels (134). However, a clinical study including

patients with diabetes and obesity following six months of

pioglitazone treatment (45 mg/day) did not show significant

changes in the ceramide or diacylglyceride content in adipose

tissue. Instead, pioglitazone induced a selective remodeling of the

glycerophospholipid pool, resulting in increased overall saturation

and shortened chain length of fatty acyl groups within cell

membrane lipids (132). Other studies align with these results

(133), underscoring the need for further research to elucidate

lipid metabolism and pioglitazone treatment.

Experimental studies have shown no changes in ceramide levels

relating to rosiglitazone treatment (135, 136).
4.2.3 Glucagon-like peptide-1 receptor agonists
Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1

RA), has significantly impacted lipid metabolism. In the LiraFlame

trial, involving 102 participants with T2D, liraglutide treatment for

26 weeks led to substantial reductions in ceramides, hexocyl-

ceramides, phosphatidylcholines, phosphatidylethanolamines, and

triglycerides (138). Furthermore, a postHOC of two randomized

control trials (RCTs) found that in the LiraFlame26 trial, liraglutide

significantly reduced specific ceramides associated with

cardiovascular risk, namely C16 and C24:1, compared to placebo.

Conversely, in the LirAlbu12 trial, a 12-week liraglutide treatment

did not result in significant ceramide changes. Weight loss did not

affect the observed results (139).

Regarding insulin resistance and liver steatosis, in patients with

T2D, six months of treatment with liraglutide (1.2 mg/day) led to a

significant decrease in total dihydroceramide by 15.1%, affecting

16:0, 18:0, 18:1, 20:0, 23:0 and 24:1 species. Total plasma ceramides

did not significantly change after treatment, but species 18:0, 18:1,

19:0, 24:1 and 26:1 decreased significantly. The reduction in

dihydroceramide after liraglutide was independently associated

with reduced liver fat content (p=0.0005) and improved insulin

resistance measured by the TyG index (p-value=0.05) (140). Other

studies exploring liraglutide’s impact in MASLD demonstrated the

potential to down-regulate genes related to glycoceramide

metabolism, prevent ceramide accumulation in cardiac progenitor

cells, and offer anti-steatotic effects (151). Overall, the evidence

supports the role of liraglutide in lipid metabolism modulation,

providing potential therapeutic benefits in conditions like T2D,

MASLD, and cardiovascular disease.
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TABLE 2 The most researched antidiabetic drugs on sphingolipid metabolism and their potential connection to MASLD*.

Drug Therapeutic
action

Sphingolipid metabolism MASLD impact

Experimental Clinical

Metformin Suppressed liver
gluconeogenesis,

decreased intestinal
absorption of
glucose, and

improved insulin
sensitivity (125).

Promotes mitochondrial b-
oxidation, decreasing ceramides
and diacylglycerol levels (76,

126, 127).

Reduced levels of 3 ceramides
and 4 sphingomyelins in

subjects with PCOS. Orally, 4
week progression from 500

mg/day to 1500 mg/day, dose
continued during 7 weeks

(128).
Decreased the levels of S1P
after a single oral dose of 500

mg metformin (129).

Reduction of ceramides
redirecting FA metabolism
from energy storage to
expenditure. Human

hepatocytes were treated
with 1 mM metformin (127).
May reduce the incidence
and death rate of NASH-

related HCC (130).

Thiazolidinediones Pioglitazone Improved insulin
sensitivity and
binding to the
peroxisome

proliferator-activated
receptor gamma
(PPARg) (125).

Reduction in certain ceramide
species (C22:1, C23:0) and
intrahepatic diacylglycerol.

Orally through diet
supplemented with pioglitazone

(0.01%) (131).
No changes in ceramides in

subjects with T2D and obesity.
Pioglitazone was administered
orally for 2 or 7 weeks (2.5 mg/

kg) (132, 133).

Reduced ceramide
concentrations in individuals
with metabolic syndrome.

Pioglitazone orally
administered (45mg/day)

(134).
No changes in ceramides in

subjects with T2D and obesity
but increased saturation of FA
within cell membrane lipids.
Pioglitazone was administered
orally for 6 months (45mg/

day) (132).

Improvement in individual
histologic scores, adipose
tissue, hepatic, and muscle
insulin sensitivity (125).

Rosiglitazone No changes in ceramide levels.
Mice were fed rosiglitazone

mixed with chow diet (200 mg/
kg chow) for 20 or 28 days, or

(50 ppm) for 8 weeks,
respectively (135, 136).

Limited evidence; further
research needed.

Improvement of steatosis
correlated with a reduction

of transaminase level
improvement in insulin
sensitivity. No results on

ballooning and
fibrosis (125).

GLP-1
receptor agonists

Liraglutide Enhanced glucose-
dependent insulin
secretion; inhibition
of glucagon release

from the
pancreas (125).

Prevents accumulation of C16
and C24-ceramides. Liraglutide
was infused via micro-osmotic

pump (0.1 µl/h) (137).

Reductions in ceramides,
hexocyl-ceramides,

phosphatidylcholines, and
triglycerides. Liraglutide was
administered orally at a

starting dose of 0.6 mg/day
and up to 1.8 mg/day

maintenance-dose during 26
weeks (138).

Reduction in specific
ceramides associated with

CVD risk (C16 Cer and C24:1
Cer). Liraglutide was

administered orally (1.8 mg/
day) during 12 weeks (139).

Prevention of ceramide
accumulation in cardiac
progenitor cells, and

displayed anti-steatotic
effects. 31% reduction of
hepatic steatosis (125).
Significant reductions in

ceramides (18:0, 18:1, 19:0,
24:1 and 26:1) and decreased
liver fat content (p=0.0005).
Subjects receives liraglutide

(1.2 mg/day) for 6
months (140).

Exenatide Decrease in diacylglycerols and
ceramides. Mice were daily
injected with exenatide for 8
weeks (30 µg/kg of body

weight) (141).

Reduced steatosis,
significantly decreased

NASH-related biomarkers
(ALT, AST, GGT). Improved
fibrosis score (NFS, APRI
score but not FIB-4).

Exenatide was given orally at
a dose of 10 mg per day the
first 4 weeks, and continued
up to 6 months at 20 mg per

day (142).
Decrease in ceramides.

Downregulation in hepatic
lipogenic genes and genes
involved in inflammation

and fibrosis (141).

(Continued)
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On the other hand, exenatide, another GLP-1 RA, has shown

significant improvements in lipid metabolism, as demonstrated in a

diet-induced mouse model of MASH. The study revealed that

exenatide significantly decreased intrahepatic triglyceride content,

reduced 23% hepatic glucose production, reduced insulin resistance,

and alleviated hepatocyte lipotoxicity. The lipidomic profile showed

decreased diacylglycerols and ceramides, downregulated hepatic

lipogenic genes, and genes involved in inflammation and

fibrosis (141).

With regard to other GLP-1 RA, in a randomized controlled

trial (RCT) comparing dulaglutide with another drug and placebo, a

lipidomic analysis found no changes in total ceramides and

SM (147).

4.2.4 Sodium-glucose cotransporter 2 inhibitors
Research on empagliflozin suggests that SGLT2 inhibitor

modulates sphingolipid metabolism, influencing de novo and

catabolic pathways in diabetes and specifically downregulating the

catabolic pathway in hypertension (143). In diabetic rats, empagliflozin

treatment reduced SM, ceramide, S1P, and neutral CDase activity. In

hypertensive rats, it decreased SM, S1P, aSMase, and neutral CDase

activity (143). Moreover, in a study with diet-induced obese-MASH

mice, empagliflozin treatment lowered hepatic lactosylceramides

(LCER), including LCER (16:0) and LCER (18:0). Increased

concentrations of unsaturated triglyceride species were observed,

potentially contributing to improved hepatic inflammation through

enhanced autophagy (145). Additionally, proteomic analysis of

individuals with diabetes receiving a 4-week empagliflozin treatment

(25 mg/day) led to significant alterations in 43 proteins, including
Frontiers in Endocrinology 12
neutral CDase. This change is related to the sphingosine/ceramide

metabolism, a known pathway of cardiovascular disease (144).

The role of SGLT-2 inhibitors, including empagliflozin,

dapagliflozin, and ipragliflozin, in protecting against MASLD

progression involves decreasing de novo lipogenesis, fatty acid

uptake, and hepatic triglyceride secretion while promoting vital

regulatory genes of fatty acid b-oxidation (152).

4.2.5 New antidiabetic drugs
Experimental studies revealed that treating prediabetic rats with

pioglitazone and alogliptin prevents diabetes onset and lowers islet

lipids. However, they did not fully restore islet function or lower

ceramide levels (133). Moreover, even though its usage in diabetes is

in decay, acarbose significantly influenced fatty acids and

sphingolipids in the liver, leading to notable changes in more

than ten species (some increased while others decreased) in

experimental studies (153).

In the clinical setting, a study comparing lipid profiles of

patients treated with glipizide or metformin found significant

increases in both groups in phosphatidylcholine (PC) lipids and

decreases in SM species. Of these, PC (O-34:1), SM (d18:0–24:1),

and SM (d18:1–20:1) were associated with long-term composite

cardiovascular events. Lipidomic data revealed alterations in 7 lipid

classes, including SM, known for their roles in diabetes and

atherosclerosis (154).

Similarly, in a study of the metabolomic profile of subjects

treated with liraglutide or glimepiride, significant effects on various

lipid classes were observed, including free fatty acids, amino acids,

bile acids, triglycerides, phosphatidylethanolamines, and SM.
TABLE 2 Continued

Drug Therapeutic
action

Sphingolipid metabolism MASLD impact

Experimental Clinical

SGLT2 inhibitors Empagliflozin Increased glucagon
levels, reduced renal
reabsorption of

glucose increasing its
excretion (125).

Reduced SM, ceramide, S1P, and
neutral CDase activity in

diabetic rats. Empagliflozin was
daily administered (30 mg/kg)

during 4 weeks (143).

Change in sphingosine/
ceramide metabolism via

neutral CDase in individuals
with T2D. Subjects received
empagliflozin (25 mg/day) for

4 weeks (144).

Reduction in BMI,
cholesterol, GGT,

ballooning, and fibrosis.
Improvement in liver

steatosis and serum ALT
level (125).

Lowered hepatic
lactosylceramides (LCER
16:0, 18:0). Mice received
oral empagliflozin for 12
weeks 10 mg/kg/day) (145)

GIP and GLP-1
receptor agonist

Tirzepatide Stimulated insulin
release from the
pancreas and
increased
adiponectin
levels (146).

Limited evidence; further
research needed.

Reduced levels of individual
saturated ceramides and
sphingomyelins; increased

levels of individual unsaturated
sphingomyelins and

conjugated ceramides. Subjects
received subcutaneously doses
of tirzepatide (1, 5, 10, 15 mg)

once a week for 26
weeks (147).

Significantly decreased
NASH-related biomarkers
(ALT, cytokeratin-18,
procollagen III) and

increased adiponectin in
patients with T2D. Patients
received subcutaneously

doses of tirzepatide (1, 5, 10,
15 mg) once a week for 26

weeks (148).
MASLD, metabolic associated steatotic liver disease FA, fatty acids; NAFLD, non-alcoholic fatty liver disease; HCC, hepatocellular carcinoma; CVD, cardiovascular disease; T2D, type 2 diabetes;
BMI, body mass index; GGT, gamma-glutamyl transferase; ALT, alanine aminotransferase; GIP, gastric inhibitory polypeptide.
*When indicated, the current terms MASH/MASLD that appear in this table were used instead of the traditional terms NASH/NAFLD.
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Particularly, substantial declines in SM (d33:1), SM (40:2), and SM

(37:1) were noted following the administration of glimepiride (155).

More recently, in a lipidomic analysis of an RCT, tirzepatide, a dual

glucose-dependent insulinotropic polypeptide (GIP) and GLP-1

RA, lowered levels of individual saturated ceramides and SM and

increased levels of individual unsaturated SM and conjugated

ceramides. No changes in total ceramides and SM were

observed (147).

Future studies may further elucidate the mechanisms through

which new antidiabetics benefit patients with metabolic disorders.

Reducing lipotoxic lipids with antidiabetic drug therapy could pave

the way toward precision medicine.
5 Conclusions and perspectives

There are no specific non-invasive biomarkers for MASH

diagnosis/prognosis. Though liver biopsy is considered the gold

standard for diagnosis of MASLD in subjects at very high risk, the

dramatic rise in the prevalence of this condition and that of its

advanced form, i.e., MASH, means that such a histological approach

has become limited in clinical practice. In this context, clinicians

have limited the assessment of fibrosis using imaging techniques,

such as transient elastography, in combination with serum

surrogate biomarkers of inflammation and fibrosis to identify

subjects at high risk for MASH. In the era of “omics”, the use of

novel, innovative approaches may not only lead to uncover hidden

biomarkers but also allow better understanding of the

pathophysiology of this condition. Notably, lipid metabolism,

including that of sphingolipids, is profoundly altered in MASLD/

MASH. Experimental and recent clinical studies suggest that some

sphingolipid species, especially ceramides and dihydroceramides,

are differentially expressed in subjects with MASH compared with

MASLD and non-steatotic livers. A similar differential sphingolipid

pattern has also been identified in paired serum samples. As the

liver is considered the main contributor to circulating ceramides

and, conceivably, dihydroceramides, their direct determination in

serum samples may help open novel avenues in MASH diagnosis.

The assessment of novel experimental drugs targeting key

enzymes involved in ceramide production are under intense

investigation for combating MASH. Noteworthy, recent research

has also unveiled the repurposing potential of “old” drugs with a

“new dress”. For instance, fingolimod, an approved treatment for

multiple sclerosis, and some frequently used antidiabetic drugs,

such as pioglitazone and GLP-1 RA, have demonstrated efficacy in

protecting against MASH development through favorably

influencing sphingolipid metabolism in experimental animal

models. Overall, pharmacological targeting of sphingolipid

metabolism could open a promising new therapeutic strategy for

patients with this chronic liver condition.
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Żendzian-Piotrowska M. Inhibition of ceramide de novo synthesis with myriocin
affects lipid metabolism in the liver of rats with streptozotocin-induced type 1
diabetes. BioMed Res Int. (2014) 2014:1–10. doi: 10.1155/2014/980815

81. Yu Z, Peng Q, Li S, Hao H, Deng J, Meng L, et al. Myriocin and d -PDMP
ameliorate atherosclerosis in ApoE–/– mice via reducing lipid uptake and vascular
inflammation. Clin Sci. (2020) 134:439–58. doi: 10.1042/CS20191028

82. Yalcin EB, Tong M, Homans C, de la Monte SM. Myriocin treatment reverses
alcohol-induced alterations in polyunsaturated fatty acid-containing phospholipid
expression in the liver. Nutr Metab Insights. (2022) 15:117863882210820.
doi: 10.1177/11786388221082012

83. Li Y, Talbot CL, Chandravanshi B, Ksiazek A, Sood A, Chowdhury KH, et al.
Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic
steatosis. Sci Rep. (2022) 12:7273. doi: 10.1038/s41598-022-11219-3

84. Oliviero B, Dei Cas M, Zulueta A, Maiello R, Villa A, Martinelli C, et al.
Ceramide present in cholangiocarcinoma-derived extracellular vesicle induces a pro-
inflammatory state in monocytes. Sci Rep. (2023) 13:7766. doi: 10.1038/s41598-023-
34676-w

85. Mauer AS, Hirsova P, Maiers JL, Shah VH, Malhi H. Inhibition of sphingosine 1-
phosphate signaling ameliorates murine nonalcoholic steatohepatitis. Am J Physiology-
Gastrointestinal Liver Physiol. (2017) 312:G300–13. doi: 10.1152/ajpgi.00222.2016

86. Rohrbach TD, Asgharpour A, Maczis MA, Montefusco D, Cowart LA, Bedossa
P, et al. FTY720/fingolimod decreases hepatic steatosis and expression of fatty acid
synthase in diet-induced nonalcoholic fatty liver disease in mice. J Lipid Res. (2019)
60:1311–22. doi: 10.1194/jlr.M093799

87. Rida R, Kreydiyyeh S. Effect of FTY720P on lipid accumulation in HEPG2 cells.
Sci Rep. (2023) 13:19716. doi: 10.1038/s41598-023-46011-4

88. Gelderblom WC, Abel S, Smuts CM, Marnewick J, Marasas WF, Lemmer ER,
et al. Fumonisin-induced hepatocarcinogenesis: mechanisms related to cancer
initiation and promotion. Environ Health Perspect. (2001) 109:291–300. doi: 10.1289/
ehp.01109s2291
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