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Thyroid-associated ophthalmopathy (TAO) is an autoimmune condition affecting

the eyes, characterized by proptosis, extraocular muscle involvement, and in

severe cases, vision impairment including diplopia, optic neuropathy, and

potential blindness. The exact etiology of TAO remains elusive; however,

increased oxidative stress and decreased antioxidant capacity are pivotal in its

pathogenesis. Elevated oxidative stress not only directly damages orbital tissues

but also influences thyroid function and autoimmune responses, exacerbating

tissue destruction. This review explores the role of oxidative stress in TAO,

elucidates its mechanisms, and evaluates the efficacy and limitations of

antioxidant therapies in managing TAO. The findings aim to enhance

understanding of oxidative stress mechanisms in TAO and propose potential

antioxidant strategies for future therapeutic development.
KEYWORDS

thyroid-associated ophthalmopathy, oxidative stress, inflammation, therapeutic
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1 Introduction

Thyroid-associated ophthalmopathy (TAO), also known as Graves’ ophthalmopathy, is

an autoimmune condition affecting the eyes, orbit, and surrounding structures (1). TAO

presents with a spectrum of ocular manifestations in clinical practice. Symptoms include

eyelid retraction, proptosis, forward displacement of the eyeball, periorbital edema,

conjunctival injection, and dysfunction of the extraocular muscles (2). Additionally,

TAO can impair vision, causing diplopia, reduced visual acuity, and in severe cases,

blindness (3). The severity of TAO varies among individuals, significantly impacting

quality of life (4). Patients often experience visual disturbances, facial deformities,

psychological distress, and increased risk of suicide (5). It is considered the most
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prevalent orbital disease in adults. While typically associated with

Graves’ disease—an autoimmune disorder causing hyperthyroidism

—TAO can also occur in patients with normal thyroid function or

hypothyroidism, affecting 25% to 58% of those with Graves’ disease

(6). Therefore, extensive research is essential to elucidate TAO’s

pathogenesis, identify new therapeutic targets, and establish precise

treatment strategies.

Despite the intricate interplay of genetic, environmental, and

immune factors, the exact mechanisms underlying TAO remain

incompletely understood (7). Autoantibodies, such as thyroid

stimulating immunoglobulin, likely initiate autoimmune reactions

by binding to thyroid stimulating hormone receptors on orbital

fibroblasts (8). This triggers production of proinflammatory

cytokines, fibroblasts activation, and recruitment of immune cells,

resulting in tissue inflammation, swelling, and fibrosis (9). Recent

studies have implicated oxidative stress in the pathogenesis of TAO

(10). Oxidative stress arises when the production of reactive oxygen

species (ROS) exceeds the body’s antioxidant defense mechanisms

(11). Patients with TAO exhibit elevated oxidative stress markers,

including increased ROS levels, diminished antioxidant capacity,

and accumulation of oxidative byproducts in ocular tissues (12, 13).

These findings suggest that immune dysfunction and inflammation

induced by oxidative stress play significant roles in ocular

manifestations associated with TAO.

Oxidative stress contributes to TAO through multiple

mechanisms. Firstly, it directly damages ocular tissues, provoking

inflammation and immune cell infiltration (14). Secondly, oxidative

stress impacts thyroid function and autoimmune responses,

indirectly influencing ocular pathology (15). Furthermore,

interactions between oxidative stress, inflammation, and

autophagy may exacerbate TAO (16). Researchers are actively

investigating the role of oxidative stress pathways in TAO to

develop novel therapeutic approaches. Currently, antioxidant

therapies aimed at neutralizing free radicals have shown

promising results in clinical settings (17). Future efforts should

focus on elucidating oxidative stress mechanisms in TAO and

advancing treatment strategies to enhance patient outcomes and

quality of life.
2 Oxidative stress in TAO

2.1 Basic concept of oxidative stress

Oxidative stress occurs when there is an imbalance between

ROS production and the antioxidant defense systems capacity to

neutralize them (18). ROS are natural byproducts of cellular

metabolism and play essential roles in physiological processes

(19). Maintaining ROS within a balanced range is crucial for

cellular homeostasis; excess ROS or insufficient antioxidants can

lead to oxidative damage and cellular dysfunction (20).

Oxidative stress plays an important role in the pathomechanism

of TAO. Oxidative stress is the disruption of the balance between

oxygen free radicals and antioxidant systems in the body, leading to

cellular damage and tissue injury. Studies have shown that oxidative

stress not only directly damages orbital tissues, but also promotes
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inflammatory responses and fibrosis by activating various signaling

pathways (21). Inflammatory response is another important

pathological mechanism of TAO. There is a large infiltration of

inflammatory cells, such as T cells, B cells, and macrophages, in the

orbital tissues of TAO patients. These inflammatory cells further

exacerbate orbital tissue damage by secreting various inflammatory

factors, such as interleukin-6 (IL-6) and tumor necrosis factor-a
(TNF-a) (22). In addition, fibrosis is the final pathological change

in the pathologic process of TAO. In TAO, activation and

differentiation of fibroblasts are critical steps in the development

of fibrosis. Studies have shown that transforming growth factor-b1
(TGF-b1) is an important regulator of TAO fibrosis, which

promotes the proliferation of fibroblasts and collagen synthesis by

activating the Smad signaling pathway (23). Moreover, oxidative

stress and inflammatory responses can also promote fibrosis by

activating the TGF-b1 signaling pathway (24). Thus, oxidative

stress, inflammatory response, and fibrosis are key mechanisms

that are interrelated and mutually reinforcing in the pathologic

process of thyroid-related eye disease.

Various lifestyle factors contribute to oxidative stress,

potentially triggering the development of TAO, including

smoking, environmental exposures, and sleep disturbances (25).

Under normal conditions, the body’s antioxidant defenses regulate

ROS levels effectively (26). Enzymatic antioxidants such as

superoxide dismutase (SOD), catalase, and glutathione peroxidase

play pivotal roles in converting ROS like superoxide anions (O2-)

into less harmful substances such as hydrogen peroxide (H2O2),

which are subsequently detoxified by catalase and glutathione

peroxidase (27, 28). Non-enzymatic antioxidants like vitamins E

and C, along with glutathione, function as electron donors or

scavengers to directly neutralize ROS, thus maintaining cellular

redox balance and preventing oxidative damage (29).

Oxidative stress disrupts cellular redox balance, leading to

excessive production of oxidants that initiate harmful oxidative

reactions. Further investigations reveals that oxidative stress can be

categorized as follows (Figure 1):
1. Mitochondrial oxidative stress: Mitochondria, crucial for

cellular energy production, are primary targets of oxidative

stress. Dysfunction in mitochondria can lead to electron

leakage in the electron transport chain, resulting in

overproduction of ROS such as superoxide anions and

hydrogen peroxide (30). These oxidative species can

damage mitochondrial DNA, peroxidize membrane

lipids, oxidize proteins, and exacerbate mitochondrial

dysfunction, creating a detrimental cycle (31).

2. Endoplasmic reticulum oxidative stress: The endoplasmic

reticulum (ER), responsible for protein synthesis and

folding, is vulnerable to oxidative stress. Disruption in

ER function or sudden accumulation of misfolded

proteins triggers ER stress responses (32). Oxidative

stress in the ER can induce protein oxidation, thiol

oxidation, alter calcium ion homeostasis, and perturb

cellular signal transduction (33).

3. Lysosomal oxidative stress: Lysosomes, involved in cellular

waste degradation, contain enzymes and metal ions that
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can generate oxidative compounds such as hydrogen

peroxide and hydroxyl radicals under oxidative stress

conditions (34, 35). Elevated oxidative stress can damage

lysosomal membranes and disrupt the acidic internal

environment essential for lysosomal function.

4. Nuclear oxidative stress: The nucleus, housing genetic

material, is susceptible to oxidative damage. Oxidative

stress can induce nuclear DNA damage, alter chromatin

structure, interfere with gene transcription, and increase

cellular susceptibility to DNA damage (36, 37).

5. Environmental exposure, smoking and late nights:

Environmental pollutants, including air pollutants, heavy

metals, and chemicals, contribute to oxidative stress by

inducing ROS production through oxidation reactions

upon exposure via respiratory, digestive, or dermal routes

(38). Tobacco smoke, containing harmful chemicals like

carbon monoxide and polycyclic aromatic hydrocarbons,

directly increases ROS formation upon inhalation,

significantly impacting antioxidant defenses and causing

cellular damage (39). Sleep disturbances, such as chronic

sleep deprivation or circadian rhythm disruption from

staying up late, elevate oxidative stress by altering

antioxidant enzyme function, impairing immune

responses, and promoting inflammation (40).
Oxidative stress in TAO is a well-studied component,

implicated in disease initiation and progression (41). Evidence
tiers in Endocrinology 03
suggests that oxidative stress from immune cells, orbital

fibroblasts, and adipocytes infiltrating the orbit contributes to

TAO pathogenesis (42). Understanding these mechanisms is

critical for developing targeted therapeutic strategies to mitigate

oxidative stress and improve outcomes in TAO patients (43).
2.2 Relationships between oxidative stress
and TAO

The relationship between oxidative stress and TAO involves

intricate mechanisms influenced by multiple factors. Imbalance

between ROS production and the antioxidant defense system is

implicated in TAO pathogenesis (44). Increased ROS production

and compromised antioxidant capacity can lead to cellular damage

and dysfunction in TAO. Understanding these mechanisms

requires exploring oxidative stress at the organelle level and its

impact on inflammation and fibrosis, critical components in TAO

pathophysiology (45, 46). Oxidative stress perpetuates

inflammation, exacerbating tissue damage in a vicious cycle.

Additionally, genetic factors and smoking contribute to

heightened oxidative stress in orbital tissues of TAO patients (47).

2.2.1 Mitochondrial oxidative stress and TAO
1. Mitochondrial dysfunction: Mitochondria, pivotal for

cellular energy production, are implicated in TAO due to
FIGURE 1

Schematic representation of the increase in intracellular oxidative stress caused by various external factors and its impact on individual organelles,
ultimately leading to ocular histopathology in patients with thyroid-associated ophthalmopathy.
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their role in thyroid hormone synthesis and metabolism,

which consume subs tant i a l energy . Impa i red

mitochondrial function exacerbates hyperthyroidism

associated with ocular manifestations in Graves’ disease

patients (48, 49).

2. Oxidative stress damage: During oxidative stress,

mitochondria generate excessive free radicals and

oxidants, disrupting cellular redox balance of cells. This

can compromise mitochondrial membrane integrity and

DNA, affecting normal ocular tissue function in TAO (50).

3. Inflammatory response: Oxidative stress promotes

persistent inflammatory reactions that contribute to

ocular tissue damage in TAO (51).
Mitochondrial oxidative stress likely plays a significant role in

TAO pathogenesis by influencing thyroid function, damaging ocular

tissues, and perpetuating inflammation. Further research on

mitochondrial oxidative stress is crucial for understanding the

underlying mechanisms of TAO and developing targeted treatments.

2.2.2 Endoplasmic reticulum oxidative stress
and TAO

ER oxidative stress occurs when the ER is challenged by various

insults, leading to impaired ER function and intracellular oxidative

stress (52). Several aspects highlight the connection between TAO

and ER oxidative stress:
1. Autoimmune Response Induction: In TAO, thyrotropin

receptor antibodies activate thyroid cell receptors, leading

to hyperthyroidism and ocular complications. ER oxidative

stress increases intracellular free radical generation,

triggering inflammation and autoimmune responses

(32, 53).

2. Inflammatory response: ER oxidative stress induces the

release of inflammatory factors like tumor necrosis factor-a
(TNF-a), interleukin-6 (IL-6), which contribute to

inflammation, edema, and fibrosis in ocular tissues

associated with TAO (54, 55). Furthermore, ER oxidative

stress disrupts calcium ion homeostasis, crucial for cell

signaling and regulation (56). Calcium imbalance further

exacerbates inflammation and fibrosis in TAO (57, 58).

3. Oxidative stress damage: ER oxidative stress increases

intracellular oxidative stress, disrupting cellular redox

balance. Abnormal protein folding due to ER dysfunction

can trigger cell apoptosis and fibrosis, exacerbating disease

progression in TAO (59, 60).
Understanding the interplay between ER oxidative stress and

TAO requires further basic and clinical research to validate these

mechanisms and develop targeted therapeutic strategies.

2.2.3 Lysosomal oxidative stress and TAO
Lysosomes play critical roles in cellular degradation, regulation,

and immunity (61). Lysosomal oxidative stress, arising from redox
tiers in Endocrinology 04
imbalance, contributes to ROS overproduction and inflammation

(62). Several factors link lysosomal oxidative stress to TAO:
1. Inflammatory response: Lysosomal oxidative stress triggers

inflammatory reactions, involving infiltration and

activation of immune cells , exacerbating tissue

inflammation and damage in TAO (63). Inflammatory

molecules like TNF-a and interleukin-1b are released,

contributing to ocular tissue inflammation and

fibrosis (64).

2. Apoptosis: Oxidative stress from lysosomal enzymes can

induce cell apoptosis, further complicating TAO pathology

by promoting tissue damage (65).

3. Immune regulation imbalance: Lysosomal oxidative stress

disrupts antigen degradation and presentation, potentially

exacerbating autoimmune responses in TAO (66, 67).

Lysosomal dysfunction may contribute to adipose tissue

hyperplasia and proliferation in orbital tissues associated

with TAO (68).

4. Impact on other organelles: Lysosomal oxidative stress can

interact with other organelles, such as the ER and

mitochondria, affecting cellular signaling and function (34).
Further research is necessary to elucidate the role of lysosomal

oxidative stress in thyroid-related eye conditions, confirming and

expanding upon exist ing theoret ical frameworks and

research findings.

2.2.4 Nuclear oxidative stress and TAO
The nucleus, housing genetic material and regulatory molecules,

is vulnerable to oxidative stress-induced damage (69). Nuclear

oxidative stress affects TAO through several mechanisms:
1. DNA damage: ROS directly damage DNA in orbital

fibroblasts of TAO patients, causing strand breaks, base

modifications, and oxidative lesions that disrupt gene

expression and DNA repair mechanisms (70).

2. Regulation of transcription factor activity: Oxidative stress

influences transcription factor activity, regulating genes

involved in inflammation, cell proliferation, apoptosis,

and other processes relevant to TAO pathology (71–73).

3. Protein oxidation and modification: Oxidative conditions

in the nucleus lead to protein oxidation and modification,

altering protein structure and function critical for nuclear

processes in TAO (74).

4. Cell cycle and apoptosis regulation: Oxidative stress

impacts cell survival and apoptosis pathways, influencing

cell cycle progression and apoptotic signaling relevant to

TAO progression (75, 76).
Nuclear oxidative stress disrupts cellular functions essential for

maintaining ocular tissue integrity in TAO. Further research is

essential to comprehensively understand these processes and their

implications for therapeutic interventions.
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2.3 The role of oxidative stress due to
environmental exposure, smoking and late
nights in the development of TAO

Several factors contribute to the onset of thyroid-associated eye

conditions, including environmental exposure, tobacco use, and

sleep patterns.
Fron
1. Environmental exposure: Air pollutants, heavy metals,

chemicals, and radiation constitute environmental

exposure. These pollutants enter the body through

various pathways, such as the respiratory tract, digestive

system, and skin (77). Research links environmental

exposure to TAO, where pollutants induce ROS through

oxidation reactions, increasing intracellular oxidative stress

(78, 79). This oxidative stress activates the immune system,

triggering autoimmune reactions that contribute to TAO

development (80).

2. Smoking: Smoking is identified as a significant risk factor

for TAO development (81). Chemicals in tobacco smoke

initiate oxidative reactions, releasing reactive oxygen

radicals that elevate oxidative stress levels in cells.

Additionally, smoking induces vasoconstriction and

inflammatory responses that exacerbate symptoms of

thyroid-related eye disease (82).

3. Late nights: Sleep deprivation disrupts the body’s circadian

rhythm and adversely affects immune function and

metabolism (83). Insufficient sleep leads to increased free

radical production, reduced antioxidant enzyme activity,

and oxidative stress reactions. Elevated oxidative pressure

due to late nights can influence thyroid function and

contribute to orbital abnormalities observed in TAO.
Overall, factors like environmental exposure, smoking, and

disrupted sleep patterns significantly contribute to the

development of thyroid-related eye conditions by increasing free

radicals, reducing antioxidants, and disrupting circadian rhythms.

Therefore, reducing environmental exposure, quitting smoking and

maintaining healthy sleep habits are crucial in preventing and

managing thyroid-related eye diseases. Additionally, patients are

advised to pursue other effective treatments including medication,

surgery, and lifestyle improvements to promote remission

and recovery.
2.4 Oxidative stress in the process of
inflammation and fibrosis in TAO

2.4.1 Oxidative stress and inflammatory pathways
in TAO

Oxidative stress plays a pivotal role in the inflammatory

pathways associated with TAO. Overproduction of ROS triggers

inflammatory responses, prominently involving the nuclear factor

kappa-B (NF-kB) pathway, a key regulator of inflammation (84,
tiers in Endocrinology 05
85). Activation of NF-kB leads to increased levels of inflammatory

cytokines such as IL-1b, IL-6, and TNF-a, contributing to persistent
inflammation in TAO (86, 87). Moreover, oxidative stress

upregulates adhesion molecules like intercellular adhesion

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1

(VCAM-1) on orbital fibroblasts and endothelial cells, facilitating

immune cell recruitment and adhesion to inflamed orbital tissue

(88, 89). Additionally, oxidative stress activates MAPKs (mitogen-

activated protein kinases) including extracellular signal-regulated

kinases, c-Jun N-terminal kinases (JNK), and p38 MAPK, which

regulate cell growth, differentiation, and inflammation (90, 91).

Activation of MAPKs in TAO results in the production of pro-

inflammatory mediators and activation of fibroblasts, perpetuating

inflammation and fibrosis within the orbit (92).

2.4.2 Oxidative stress and fibrosis of TAO
Oxidative stress also influences the fibrotic processes observed

in TAO. ROS stimulate the production of transforming growth

factor-b (TGF-b), a major mediator of fibrosis (93, 94). TGF-b
promotes transformation of orbital fibroblasts into myofibroblasts,

leading to excessive production and accumulation of extracellular

matrix components such as collagen and fibronectin (95).

Moreover, oxidative stress disrupts the balance between matrix

metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases

(TIMPs), critical for collagen turnover and tissue remodeling (96).

Excess ROS inhibit MMP activity and expression, impairing collagen

degradation and contributing to fibrotic changes observed in TAO,

such as increased orbital fat volume and fibrotic tissue expansion (97).
3 Therapeutic agents for oxidative
stress in TAO and their potential
therapeutic targets

3.1 Application of antioxidants

TAO exhibits dysregulation of oxidative stress pathways, which

can be targeted to mitigate oxidative damage and restore redox

balance (Figure 2). One strategy involves the application of

antioxidants, which scavenge ROS and reduce oxidative damage

in orbital tissues (98).

3.1.1 Clinical application of therapeutic drugs
3.1.1.1 Selenium

Selenium a trace element found in foods like Brazil nuts, tuna,

shrimp, meat, eggs, cereals and grains (99), plays a crucial role in

thyroid function (100). Selenoproteins, including glutathione

peroxidase, thioredoxin reductase, and iodothyronine deiodinase,

function as antioxidants regulating redox reactions (101, 102).

Selenium also reduces inflammatory cytokine production by

preventing NF-B from binding to its gene promoter (103).

Consequently, selenium is considered an important supplement

in TAO clinical treatment.
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3.1.1.2 Pentoxifylline

A xanthine derivative primarily used to treat peripheral vascular

diseases (104), pentoxifylline acts as an antioxidant by eliminating

excess ROS, thereby reducing inflammation-related damage (105).

In TAO patients, pentoxifylline inhibits the proliferation and

synthesis of glycosaminoglycans (GAGs) by extraocular

myofibroblasts (106). It exerts immunomodulatory effects on

cytokine production (107). Suitable for patients with moderate to

severe TAO who have normal thyroid function, pentoxifylline can

be used without corticosteroids (108). However, further clinical and

experimental validation is required to confirm its specific dosage

and effectiveness.
Frontiers in Endocrinology 06
3.1.1.3 Allopurinol and Nicotinamide

In vitro studies show that allopurinol and nicotinamide prevent

superoxide-induced growth of orbital fibroblasts in TAO patients

(109). Nicotinamide reduces the expression of human leukocyte

antigen-DR and ICAM-1 stimulated by cytokines in orbital

fibroblasts during the active phase of TAO (110). Additionally, it

suppresses the growth of orbital fibroblasts and reduces HSP72

expression induced by superoxide (111). A clinical trial found that

82% of patients with mild to moderately severe, recently diagnosed

active TAO experienced a decrease in the severity of orbital lesions

after three months of oral allopurinol and nicotinamide treatment,

compared to 27% in the control group (112). Further clinical and
FIGURE 2

Therapeutic drugs against oxidative stress and their components.
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experimental evidence is necessary to confirm the efficacy and

safety of nicotinamide and allopurinol in TAO treatment.

3.1.1.4 Enalapril

This ACE inhibitor, commonly used for hypertension, protects

tissues from oxidative damage by enhancing antioxidant defenses

and decreasing ROS levels (113). Enalapril supports glutathione-

dependent antioxidant protection (114). In vitro studies

demonstrated its antiproliferative and anti-hyaluronic acid (HA)

secretion effects in both TAO patient groups and non-TAO control

fibroblasts (115). A clinical trial with 12 individuals with mild TAO

showed improvements in eye bulging, CAS scores, eyelid retraction,

and overall well-being compared to the control group (116).

Enalapril’s positive impact on TAO is likely due to its antioxidant

properties, inhibition of orbital fibroblast growth, and reduction of

HA accumulation. However, the limited sample size necessitates

additional research to confirm its efficacy in moderate and severe

TAO cases.

3.1.1.5 Statins

Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A

reductase, are widely used to treat hypercholesterolemia (117). They

reduce oxidative stress by lowering blood lipids, eliminating free

radicals, and inhibiting vascularity (118). Evidence suggests that

statins may reduce the risk of thyroid-related adverse events in

patients with thyroid dysfunction (119, 120). Clinical trials have

demonstrated that oral atorvastatin can improve the quality of life

and reduce eye lesions in act ive TAO patients with

hypercholesterolemia compared to intravenous corticosteroids

(121). Statins may prevent the onset and progression of TAO in

newly diagnosed thyroid dysfunction patients, warranting further

clinical trials to investigate their prophylactic potential (122). The

therapeutic feasibility of statins may be explained by the potential

link between TAO and increased free fatty acid load, which leads to

ROS and proinflammatory cytokine release implicated in TAO

pathogenesis (123).
3.1.2 Vitamins, enzymes and amino acids
3.1.2.1 Vitamin C

Ascorbic acid, essential for wound healing and collagen

synthesis, act as a reducing agent in redox reactions (124).

Vitamin E: This fat-soluble antioxidant scavenges ROS in the

body (125). Ubiquinone (Coenzyme Q10): Essential for aerobic

respiration, it prevents free radicals interaction with antioxidant

molecules in the body (126). N-acetylcysteine: A precursor to

glutathione, it helps decrease free radical generation during

oxidative stress (127). Melatonin: Released by the pineal gland to

regulate circadian rhythm melatonin scavenges free radicals and

enhances antioxidant activity (128).

N-acetylcysteine and vitamin C inhibit H2O2-induced fibroblast

proliferation and reduce TGF-b1, IL-1b, and superoxide anion

expression in TAO fibroblasts (129). Studies on primary cultures of

orbital fibroblasts from TAO patients have shown that vitamin C, N-
Frontiers in Endocrinology 07
acetylcysteine and melatonin reduce H2O2-stimulated glutathione

disulphide (GSSG) release, potentially benefiting orbital lesion

treatment (130). Additionally, vitamin C and E supplementation

improved clinical symptoms and clinical scores in TAO patients by

reducing oxidative stress markers (131). These antioxidants inhibit

TAO fibroblast proliferation, with N-acetylcysteine and melatonin

selectively blocking IFN-g release (132). They also reduce HA and IL-

1b levels in orbital fibroblasts of TAO patients and normal controls

(133). Despite promising results, the complexity of the body’s

circulatory metabolism necessitates in-depth clinical studies to

evaluate each antioxidant’s therapeutic efficacy.

3.1.3 Plant extracts
Natural plant extracts with antioxidant properties, such as

polyphenols, curcumin, resveratrol and quercetin, show potential

benefits in reducing oxidative stress and inflammation in TAO

(134). The compounds act as ROS scavengers, inhibit ROS-

generating enzymes, and activate the endogenous antioxidant

system (135). The effectiveness of these compounds in reducing

oxidative stress and improving tissue damage in TAO models has

been demonstrated in preclinical studies (136).

3.1.3.1 Quercetin

A polyphenolic flavonoid found in fruits, vegetables, red wine

and tea, quercetin has antioxidant, anti-inflammatory, and

antiproliferative properties (137, 138). In TAO, quercetin

regulates inflammatory pathways, extracellular matrix molecule

accumulation, and adipose tissue growth in primary cultured

orbital fibroblasts. It suppresses the production of ICAM-1, IL-6,

IL-8, and cyclooxygenase 2 mRNA, and prevents IL-1b-induced
elevations of these molecules (139). Therefore, quercetin’s effects

may alleviate clinical symptoms of orbital lesions in TAO patients.

3.1.3.2 b-carotene
A carotenoid widely found in plants; b-carotene is an

antioxidant with neuroprotective effects (140, 141). It reduces

H2O2-induced GSSG production, IL-1b levels, and cell

proliferation in TAO orbital fibroblasts (142). However,

overconsumption can cause carotenosis, an orange pigmentation

of the skin, and may increase lung cancer risk in smokers (143, 144).

Further investigation is needed to evaluate b-carotene’s long-term
therapeutic effects and safety in TAO.

3.1.3.3 Tea polyphenols (TP)

Derived from tea leaves, TP compounds, primarily catechins,

provide antioxidant and anti-inflammatory benefits (145, 146).

Epigallocatechin-3-gallate, the main component of green tea

extract, reduces IL-1b and exerts anti-inflammatory effects in

TAO orbital fibroblasts (147). TP also modulates NF-kB/NLRP3
pathway, reducing IL-6, IL-1b, and MCP-1 expression in LPS-

induced TAO orbital fibroblasts (148). However, TP treatment for

TAO remains experimental, requiring further research to confirm

its effectiveness and safety.
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3.1.3.4 Resveratrol

A non-flavonoida phenolic compound from red grapes, berries,

and peanuts, resveratrol has antioxidant, anticancer, anti-

inflammatory, anti-apoptosis, and free radical scavenging

properties (149). In TAO, it reduces ROS generated by cigarette

smoke extract or H2O2 and during adipogenesis in primary cultured

orbital fibroblasts (150). Although promising in animal studies,

there is no reliable evidence of resveratrol’s benefits for human

health. Further research is necessary to understand its mechanism

and therapeutic role in TAO.
3.1.3.5 Curcumin

A plant polyphenol from turmeric with demonstrated

antioxidant and anti-inflammatory activity in vitro, in vivo, and

in humans (151, 152). In vitro studies show curcumin inhibits cell

proliferation, adipogenesis, ROS production, and IL-1b-induced
inflammatory responses in TAO patients’ orbital fibroblasts (153).

While its anticancer effects are well-documented, curcumin’s poor

human absorption and bioavailability limit its clinical use (154,

155). Additional studies on efficacy and safety are required.
3.1.3.6 Caffeine (1,3,7-trimethylxanthine)

A plant alkaloid, which is commonly found in beverages such as

coffee, tea, chocolate, and cola (156). Numerous studies have

identified it as an oxygen radical scavenger, demonstrating both

in vitro and in vivo antioxidant activity in animals and humans, and

suggesting it may reduce inflammatory responses (157, 158). In the

context of treating TAO, caffeine appears to inhibit orbital changes

by reducing ROS production in response to cellular oxidative stress

and exhibiting anti-adipogenic effects (159). However, excessive

caffeine consumption can lead to adverse effects, including

addiction, nervousness, irritability, anxiety, tremors, muscle

twitching, insomnia, and heart palpitations (160). Therefore,

determining the appropriate dosage to alleviate TAO-related

orbital lesions without inducing adverse effects is an important

area for future research.
3.1.3.7 Gynostemma pentaphyllum

Gynostemma pentaphyllum is a herbaceous climbing plant, and

its derivatives, particularly gypenosides (Gyps), have long been used

as safe and effective natural remedies for various diseases. Gyps

exhibit different oral bioavailability values and a limited ability to

cross the blood-brain barrier (161). Gyps have been shown to reduce

oxidative stress induced by H2O2 in orbital fibroblasts from TAO

patients, thereby decreasing cellular autophagy and apoptosis, and

consequently minimizing orbital tissue damage (162). Additionally,

Gyps inhibit the activation of the Toll-like receptor 4/NF-kB
signaling pathway and the TGF-b1/SMAD2/SMAD4 signaling

pathway in orbital fibroblasts, exerting anti-inflammatory and

antioxidant effects (163). While Gyps have demonstrated protective

effects on orbital fibroblasts in experimental settings, improving their

bioavailability remains a key focus for their clinical application.
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3.2 Regulation of organismal
oxidative stress

Dysregulation of oxidative stress pathways plays a critical role

in the pathogenesis of TAO (Figure 3). Targeting these pathways

has emerged as a potential therapeutic strategy to mitigate oxidative

damage, reduce inflammation, and improve clinical outcomes in

TAO. One approach involves regulating enzyme systems

responsible for ROS production, such as NADPH oxidase and

xanthine oxidase. These enzymes produce ROS as by-products of

their normal physiological function, and their upregulation or

overactivation can lead to oxidative stress in TAO (164).

Inhibiting or modulating these enzymes has been shown to

reduces ROS production and subsequent oxidative damage (165).

Another strategy is to enhance the antioxidant defense system

to clear ROS and restore redox balance. This can be achieved by

activating endogenous antioxidant enzymes such as SOD, catalase,

and glutathione peroxidase, which neutralize ROS and prevent

oxidative damage (166, 167). The nuclear factor erythroid 2-

related factor 2 (Nrf2) pathway is a key transcription factor that

regulates the expression of antioxidant-responsive genes, playing a

crucial role in this process (168).

The Nrf2 pathway induces broad-spectrum antioxidant responses

and mitigates damage from inflammatory factors (169). Under normal

conditions, Nrf2 is sequestered in the cytoplasm by its inhibitor protein,

Kelch-like ECH-associated protein 1 (Keap1). When oxidative stress

occurs, Nrf2 dissociates from Keap1 and translocates to the nucleus,

where it binds to antioxidant response elements (AREs) in the promoter

regions of specific genes, initiating their transcription process (170). The

Keap1/Nrf2 system significant contributes to maintaining redox and

metabolic homeostasis, demonstrating positive effects in various disease

models, including inflammatory, autoimmune, metabolic, and

neurodegenerative conditions (171).

Activation of the Nrf2 pathway shows promising outcomes in

TAO. Nrf2 activation attenuates oxidative stress in orbital fibroblasts,

reduces inflammation, and ameliorates orbital tissue damage in TAO

patients (172). Additionally, Nrf2 activation has been associated with

reduced fat aggregation in TAO and improved clinical outcomes (173).

Conversely, blockingNrf2 transcriptional activity in leukemia cells leads

to ROS accumulation and cell death via apoptosis (174). Vitamin C, a

well-known antioxidant, enhances the sensitivity of cancer cells resistant

to imatinib by disrupting the Nrf2/ARE complex, resulting in decreased

expression of the catalytic subunit of glutamate-cysteine ligase and

lower GSH levels (175).

The regulation of Nrf2 varies across different diseases, and it could

be beneficial in identifying biomarkers and potential drug targets for

thyroid diseases during TAO treatment. Therefore, key areas for future

investigation include exploring the functions and pathways of Nrf2-

triggered antioxidants in TAO and examining the potential

effectiveness of Nrf2 regulation in modulating autoimmune

responses in TAO. Modulation of oxidative stress pathways as

therapeutic targets for TAO offers a promising avenue for new

interventions. Further studies are needed to elucidate the specific
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molecular mechanisms of oxidative stress in TAO and to assess the

safety and efficacy of therapeutic agents targeting these pathways.

Addressing oxidative stress may help attenuate tissue damage, reduce

inflammation, and improve clinical outcomes in TAO.
4 Summarization and prospect

Oxidative stress plays a significant role in the pathogenesis of

TAO. An imbalance between ROS production and antioxidant

defenses lead to oxidative stress, resulting in cellular damage and

dysfunction. Multiple factors contribute to the relationship between

oxidative stress and TAO, including the activation of inflammatory

pathways, genetic and environmental factors, and dysregulation of

antioxidant defense mechanisms. The relationship between

oxidative stress and TAO is complex and multifaceted. ROS in

TAO are produced by infiltrating immune cells, orbital fibroblasts

and adipocytes, leading to tissue damage and inflammation.

Elevated oxidative stress activates inflammatory pathways,

perpetuating the cycle of tissue damage and inflammation in TAO.
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Addressing oxidative stress in TAO is critical for developing

effective therapeutic strategies. Antioxidants, such as vitamins C and

E, and activation of endogenous antioxidant defense mechanisms have

shown promise in reducing oxidative stress and inflammation in TAO.

Further studies are needed to fully understand the complex

mechanisms of oxidative stress and its role in the pathogenesis of

TAO. Future research could focus on several areas to enhance our

knowledge and improve therapeutic strategies for TAO:
1. Exploring the interactions between oxidative stress and

other key pathways: Investigating the interactions

between oxidative stress and the inflammation, fibrosis,

and immune dysregulation that characterize TAO could

lead to a more comprehensive understanding of the disease.

Elucidating these interactions could reveal underlying

mechanisms and aid in developing targeted therapies that

address multiple aspects of the disease.

2. Identification of new therapeutic targets: Identifying new

targets within the oxidative stress pathway could provide

novel therapeutic opportunities. This could involve
FIGURE 3

Mechanisms of oxidative stress-induced damage in thyroid-associated ophthalmopathy and the modulation of these effects by anti-oxidative
stress drugs.
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Fron
targeting specific enzymes or molecules involved in ROS

production, such as NADPH oxidase or xanthine oxidase.

3. Modulation of antioxidant defense mechanisms: Exploring

ways to enhance endogenous protection against oxidative

stress, such as through the Nrf2 pathway, could be

beneficial. Understanding the regulation and activation of

Nrf2 in TAO could inform new therapeutic strategies.
In conclusion, future research efforts should focus on unraveling the

complex interactions between oxidative stress and other key pathways

in TAO, identifying new therapeutic targets, and conducting robust

clinical studies to validate the effectiveness of antioxidant interventions.

By improving our understanding and developing targeted therapeutic

approaches, we can endeavor to enhance management strategies and

improve the quality of life for TAO patients.
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