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Chronic or non-healing wounds, such as diabetic foot ulcers (DFUs), venous leg

ulcers (VLUs), pressure ulcers (PUs) and wounds in the elderly etc., impose

significant biological, social, and financial burdens on patients and their

families. Despite ongoing efforts, effective treatments for these wounds remain

elusive, costing the United States over US$25 billion annually. The wound healing

process is notably slower in the elderly, partly due to cellular senescence, which

plays a complex role in wound repair. High glucose levels, reactive oxygen

species, and persistent inflammation are key factors that induce cellular

senescence, contributing to chronic wound failure. This suggests that cellular

senescence may not only drive age-related phenotypes and pathology but also

be a key mediator of the decreased capacity for trauma repair. This review

analyzes four aspects: characteristics of cellular senescence; cytotoxic stressors

and related signaling pathways; the relationship between cellular senescence

and typical chronic non-healing wounds; and current and future treatment

strategies. In theory, anti-aging therapy may influence the process of chronic

wound healing. However, the underlying molecular mechanism is not well

understood. This review summarizes the relationship between cellular

senescence and chronic wound healing to contribute to a better

understanding of the mechanisms of chronic wound healing.
KEYWORDS

cellular senescence, chronic wounds, tissue repair, wound microenvironment,
signal pathways
1 Introduction

Chronic wounds, characterized by a failure to progress beyond the inflammatory phase

of normal healing, lead to prolonged low-grade inflammation, significantly reducing

patient quality of life and increasing the risk of systemic complications such as

infections and chronic pain (1). The incidence of chronic wounds is rising, with

diabetes-related chronic wounds affecting 15 - 25% of patients (2), venous ulcers 1 - 3%

(3, 4), age-related wounds 6% (5), and 16.9 - 23.8% in the hospital and intensive care

population (6). There are several hypotheses regarding the difficulty in healing chronic
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wounds, such as the persistent state of chronic inflammation that

prevents normal healing processes (7); impaired angiogenesis,

which leads to insufficient blood supply to the wound (8),

and the presence of biofilms that protect harmful bacteria,

making infections harder to treat (9). However, no consensus has

been reached among researchers to date, and the underlying

mechanisms remain a subject of ongoing investigation. Increasing

evidence suggests that cellular senescence plays a crucial role in the

process of chronic wound healing. Senescent cells, although

metabolically active, are especially harmful as they disrupt tissue

repair and regeneration by altering the wound microenvironment

(Figure 1) (10).

Cellular senescence, first described by Hayflick in 1961, is a state

of stable cell cycle arrest characterized by distinct secretory properties

and altered metabolism, playing a key role in aging and chronic

diseases (11). Senescent cells arise in response to various stresses, such

as oxidative stress and mitochondrial dysfunction, leading to cell

proliferation arrest, resistance to apoptosis, and altered gene and

protein expression profiles (12, 13). Proteins like BCL-2 and P53

enhance this resistance to apoptosis (14, 15). In both preclinical and

clinical models, removing senescent cells through senolytic agents or

therapies that inhibit the senescence-associated secretory phenotype

(SASP) has shown benefits, including delaying tissue dysfunction and

extending health span (16, 17). Despite these advances, chronic

wound management still faces challenges like high recurrence rates

and ineffective treatments (18). Recent studies suggest that cellular

senescence plays a complex role in chronic wounds, though its exact

mechanisms remain debated. Some evidence indicates that

senescence can positively contribute to wound healing (19–21),

while other studies point to its detrimental effects (22, 23). The

accumulation of senescent cells, particularly in the elderly, has been

linked to impaired wound healing, emphasizing the need for targeted

strategies in chronic wound treatment (19, 24).

Recent advancements in the study of cellular senescence and

chronic wounds underscore the necessity of a comprehensive

review in this area. This article summarizes existing research,
Frontiers in Endocrinology 02
offering an overview of the relationship between cellular

senescence and chronic wounds, along with the potential

protective and therapeutic effects at the cellular level. By clarifying

the connection between cellular senescence and wound healing, this

review aims to provide valuable insights into the treatment of

chronic wounds. Despite significant progress, challenges remain.

Future research should prioritize uncovering the mechanisms of

cellular senescence and developing innovative therapies, as

targeting this process holds promise for improving chronic

wound healing outcomes.
2 Cellular senescence

2.1 Characteristics of cellular senescence

Most senescent cells exhibit distinctive characteristics that diverge

significantly from normal cells, encompassing morphological,

biochemical, metabolic, and genetic alterations, highly stable cell

cycle arrest, oxidative damage, apoptosis resistance, a SASP, and

senescence-associated heterochromatin foci (SAHF), the

functionality of which remains enigmatic (25–28). Studies have

revealed that the retinoblastoma (Rb) family and p53 proteins play

critical roles in regulating cell cycle arrest in mammals (29, 30).

Moreover, genes like p53 and p21 are highly expressed in senescent

cells. The CDK kinase inhibitors p16 and p21 are highly expressed in

senescent cells and inhibit the activity of CDK4/6, which

phosphorylates E2F to activate it as a transcription factor, thereby

impeding the cell cycle process (31). The expression of p16INK4a

increases with age and serves as a robust biomarker of senescence in

both human and mouse tissues (32). The secretion of senescent cells

is collectively referred to as the SASP (MMPs, inflammatory

cytokines, growth modulators, angiogenic factors, etc.). SASP plays

a pivotal role in the processes of cellular senescence, inflammation

(33), wound healing (20), and tissue plasticity (34). However, it is

unclear whether SASP links cellular senescence to organ aging (35).
FIGURE 1

Schematic diagram of the molecular mechanisms underlying cellular senescence and chronic wounds. Cellular senescence impairs chronic wound
healing by disrupting tissue repair through inflammation, altered metabolism, and apoptosis resistance.
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There are two common triggers that induce stressor-induced cellular

senescence. Cellular senescence is activated by the DNA damage

cascade signaling, which is defined as the DNA damage response

(Figure 2) (DDR).
2.2 Cytotoxic stressors and
cellular senescence

2.2.1 ROS and cellular senescence
The accumulation of intracellular oxidative stress is a key feature

of cellular senescence, with ROS acting as signaling molecules

involved in regulating cellular metabolism (36). Excessive ROS

accumulation triggers and sustains ROS-mediated senescence, also

known as stress-induced premature senescence (37, 38). Studies have

identified that there are various causes of chronic wounds, one of

which is the excessive accumulation of ROS in the wound bed

(39–41). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a

transcription factor that can regulate the expression of antioxidant

and detoxification genes, facilitating wound healing and tissue

regeneration in aging-related diseases (42). The mitochondrion, an

essential organelle responsible for energy generation in eukaryotic

cells, can experience dysfunction leading to cellular senescence. In

senescent cells, mitochondria undergo significant changes in

morphology, membrane potential, and mass (43). Mitochondrial

ROS (mtROS) plays a critical role in regulating mitochondrial

functions and maintaining organismal homeostasis by influencing

signaling pathways, inducing mitophagy, causing mitochondrial

network fragmentation, and activating antioxidant defenses (43).

Interestingly, while mtROS is often associated with aging and

cellular damage, it can also promote tissue repair (44–48). For

instance, Xu et al. found that mtROS can trigger rapid and

reversible mitochondrial fragmentation, facilitating actin-driven

wound closure in C. elegans epithelial cells (49).
2.2.2 High glucose-induced cellular senescence
Exogenous or endogenous HG are key mediators in the

regulation of cellular senescence, serving as positive regulators of

this process (50). A growing number of studies have shown that HG

stimulation triggers premature cellular senescence (51–53). HG

microenvironment significantly reduces the expression of miR-

30a-5p in HMEC-1, increases the expression of Senescence-

associated beta-galactosidase (SA-b-gal) and p21, promotes

cellular senescence, and inhibits its proliferation, migration, and

vasculogenesis (54). However, the upregulation of miR-30a-5p can

effectively reverse the HG-induced senescence of HMEC-1 and

improve its proliferation, migration, and vasculogenic capacity (55).

Fibroblasts proliferate and migrate to the wound site and participate

in the synthesis and secretion of the ECM during wound healing.

Fibroblasts show a functional state during wound healing; however,

the balance is disrupted in diabetic patients due to the HG

microenvironment. Early studies have revealed that endothelial

cell senescence takes place in vivo and in vitro (56, 57). Hayashi

et al. found that HG exposure can induce endothelial cell senescence

by decreasing the expression of eNOS protein, as indicated by the
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increased SA-b-gal activity (57). They observed a significant

increase in the level of intracellular ROS after 3 days of HG

treatment in HUVEC. L-arginine, L-citrulline, and Vitamins C

and E were found to be able to mitigate this phenomenon. The

potential mechanism of HG-induced endothelial cell senescence

may be related to the cumulative effect of ROS.

2.2.3 Inflammation induce cellular senescence
Aging-related inflammation, also known as inflammaging,

shows that in the process of immune system aging, the decline of

individual immune function with aging has long been regarded as

the cause of inflammatory aging and body aging (58). An increasing

number of studies have confirmed that immune senescence gives

rise to inflammation, and older organs have higher levels of

inflammatory markers (59). The inflammatory state in ulcer

tissues exacerbates the delay in healing chronic wounds. This

inflammation significantly affects non-specific immunity, the

removal of pathogenic microbes, the elimination of dysfunctional

cells, and matrix debris. Consequently, while the quantity and

phenotype of leukocyte subtypes typically return to their initial

levels one or two weeks after their functions are completed, the

persistent inflammation continues to hinder the healing process

(60). This ongoing chronic inflammation is a prominent

pathological feature of chronic wounds. Due to the prolonged

exposure of wounds and the inflammatory environment, the

chronic wounds of DFUs are more prone to infection, causing

myeloid cells, which comprise immune cells such as monocytes,

macrophages, and neutrophils involved in various immune

responses. Neutrophils primarily kill pathogenic microorganisms

by producing reactive oxygen species (ROS), debride wounds by

secreting matrix metalloproteinase (MMP)-9, phagocytose dead

bacteria, and remove matrix debris through receptor-mediated

endocytosis (61).

2.2.4 Oncogene activation-induced
cellular senescence

Another potent stressor that induces cellular senescence is

oncogene activation, which was discovered by Serrano et al. in

1997 (62). Although the mechanisms underlying oncogene-induced

senescence are complex and poorly understood, the activation of

the RB and p53 pathways is necessary for the proliferative

pause (63).
2.3 Master signaling pathways of
cellular senescence

2.3.1 Interleukin-6/STAT3 signaling and
cellular senescence

Currently, senescence, identified as a stress response, is a key

focus in wound healing research. IL-6, a cytokine with multiple

physiological and pathological functions, produced by epithelial,

endothelial, and fibroblast cells, is commonly found in human body

fluids, which is not only closely associated with the immune system

but also promotes cellular senescence and age-related diseases (33).
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Figure 3 illustrates the activation of STAT family by JAKs, which is

crucial for the senescence microenvironment (64). Consequently, in

order to develop a valuable approach for identifying elderly

individuals at risk of increased age, disease, and mortality, a

recent study considered the IL-6 gene as a biomarker for frailty,

regulating aging and age-related diseases (65). As mentioned earlier,

Keyes and colleagues discovered that IL-6/STAT3 signaling

regulates skin expression, facilitating proper wound healing in

aged mice and in vitro (24). A similar result was obtained by

Hirotada et al., indicating that IL-6/STAT3 can induce and

maintain the senescence of human fibroblasts via ROS

accumulation (66).

2.3.2 The mechanistic target of rapamycin
signaling and cellular senescence

mTOR, a major regulator of cell growth and metabolism, is

associated with cellular senescence (Figure 4). Inhibition of the

mTOR pathway extends lifespan in organisms such as drosophila,

yeast, and mice (67, 68). This effect may be due to dietary restriction

or enhanced autophagy resulting from mTOR inhibition, which

helps clear damaged proteins and organelles, thus increasing

lifespan. Inhibition of mTORC1 reduces protein toxicity and

oxidative stress, known stressors of cellular senescence (69).

mTOR is crucial for protein synthesis, lipid, nucleotide, and

glucose metabolism but is also sensitive to stressors like DNA

damage and low ATP levels. Recent studies suggest that mTOR
Frontiers in Endocrinology 04
inhibitors could extend mammalian lifespan (70, 71), though

potentia l drawbacks include glucose intolerance and

immunosuppression. Nevertheless, randomized controlled trials

indicate promising and safe outcomes in healthy elderly

individuals (72). Willemijn et al. found that the mTOR pathway

is relevant to both animal and human aging, with significant

differential expression in seven out of forty mTOR pathway

genes (73).

2.3.3 Insulin-like signaling pathway and
cellular senescence

Insulin-like signaling is essential for development, energy

balance, cell growth, and apoptosis in mammals, with Insulin-R

and IGF-1R, both tyrosine kinase family members, activating

pathways that include the JAK family. Figure 5 illustrates the

insulin-like signaling pathways, highlighting the roles of Insulin-R

and IGF-1R in enhancing mTOR activity and inhibiting autophagy.

Insulin/IGF-1 signaling also influences aging and age-related

diseases through the activation of STAT3 and induction of

immunosuppression (74). Currently, it is well established that

insulin resistance is associated with inflammation (75, 76).

Additionally, aging leads to an increase in the number of

immunosuppressive M2 macrophages in various mouse tissues,

including the bone marrow, spleen, lungs, and skeletal muscles

(77, 78). These studies suggest that insulin signaling regulates low-

grade inflammatory states that are linked to cellular senescence.
FIGURE 2

Characteristics of cellular senescence. The senescence response leads to significant alterations in cellular phenotype. These alterations encompass a
largely irreversible cessation of cell proliferation, the acquisition of apoptosis resistance, and modifications in gene expression patterns. The presence
or manifestation of senescence-associated markers, such as senescence-associated b-galactosidase, p16, senescence-associated DNA damage foci,
and SAHFs, are neither consistently observed nor exclusive to the senescent state, and thus are not depicted.
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3 The challenges of chronic wounds

3.1 Pathophysiology of chronic wounds

Many chronic wounds, irrespective of their etiology, exhibit

shared pathological features, notably a persistent inflammatory

state that impedes progression to the proliferative phase. The

accumulation of senescent cells contributes to impaired cellular

proliferation and sustained inflammation, as these cells remain

metabolically active but are incapable of division or tissue repair.

Senescent cells secrete pro-inflammatory cytokines, exacerbating

chronic inflammation. This microenvironment, characterized by
Frontiers in Endocrinology 05
elevated ROS levels, microbial burden, and unresolved

inflammation, obstructs the transition from the inflammatory to

the proliferative phase. In diabetic wounds, excessive infiltration of

myeloid cells and a failure to transition fromM1 to M2 macrophages

further exacerbate the condition, leading to increased ROS

production, ECM degradation, and compromised fibroblast activity

(79). Understanding the evolutionary theory of aging suggests that

the ability of aging tissues to maintain homeostasis and regenerate

diminishes over time. Chronic wounds are marked by ECM

deficiency, persistent inflammation, and dysregulated growth factor

signaling, with senescent fibroblasts contributing to impaired re-

epithelialization due to their resistance to apoptosis (80, 81).
FIGURE 4

mTOR signaling pathway and cellular senescence. mTOR regulates cell growth and metabolism and is closely linked to cellular senescence. Its
inhibition has been shown to extend lifespan, while promoting cellular senescence through the activation of both mTORC1 and mTORC2 pathways.
FIGURE 3

IL-6/STAT3 signaling pathway and cellular senescence. IL-6 promotes cellular senescence and age-related diseases by activating STAT3. Upon
activation, STAT3 becomes phosphorylated, translocates into the nucleus, and regulates the expression of genes involved in senescence and aging.
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3.2 Aging microenvironment and
chronic wounds

The altered secretory phenotypes shift from an ECM synthesis

phenotype to a degradation phenotype, resulting in delayed wound

closure (82). The accumulation of senescent cells, driven by their

resistance to apoptosis, further complicates healing, though the

underlying molecular mechanisms remain poorly understood.

Chronic wounds often exhibit poor responses to standard

therapies, raising questions about the factors that hinder their

healing. Research indicates that the presence of even 15%

senescent fibroblasts in the wound microenvironment can

significantly impede healing (83). Consequently, reducing the

proportion of senescent cells might enhance wound regeneration

(84). In one study, an anti-senescence compound was administered

to diabetic chronic wounds, resulting in accelerated healing (85).

Immunocytochemistry revealed that high glucose increases SA-b-
gal-positive cells, highlighting the critical role of glucose

metabolism dysfunction in diabetic wound healing. Conversely,

other studies suggest that senescent cells may play a beneficial role

in wound healing (24). For example, Chia et al. found that p21, p53,

and MMP9-markers associated with cellular senescence—increased

during the healing process in younger subjects but not in older ones

(19). Velarde et al. demonstrated that epidermal SOD deficiency,

l inked to mitochondrial damage, enhanced epidermal

differentiation and re-epithelialization, thereby accelerating

wound closure in young mice. Similarly, oxidative signaling has

been shown to promote epidermal wound closure (49, 86),

Moreover, the SASP, particularly PDGF-AA secreted by senescent

cells, has been found to aid in wound healing (20). While the exact

mechanisms by which senescent cells impair tissue renewal remain

unclear, it is evident that the senescence secretome may also
Frontiers in Endocrinology 06
contribute positively to wound repair. Additionally, cellular

senescence has been recognized for its tumor-suppressive and

anti-cancer roles.
3.3 The role of cellular senescence in
chronic wounds

3.3.1 Cellular senescence positively regulates
wound healing

EMT, a process whereby epithelial cells transition to a

mesenchymal state, is associated with tumor metastasis, embryo

development, chronic inflammation, tissue reconstruction, and

fibrosis (87–90) and plays a crucial role in wound healing,

particularly in the tissue remodeling process (91). Over the past

two decades, studies have identified numerous cytokines that are

linked to the occurrence and progression of EMT (92–94). Some

cytokines, such as the TGF-b superfamily, have increased

expression that can induce the EMT process and alter the polarity

of the cell. In vitro studies have demonstrated that TGF-b2, IL-1b,
and BMP (typical senescence-related cytokines) that cause EMT can

induce the upregulation of Snail expression, a master EMT

transcript factor. A study found that the TGF-b–Slug signaling

pathway establishes an EMT-like process that promotes the

proliferation of fibroblasts and the differentiation of keratinocytes

in wound healing (95, 96).

3.3.2 Delayed healing through prolonged
inflammation and impaired proliferation in
chronic wounds

Wound healing is a complex and well-orchestrated process

involving the participation and coordination of multiple cells,
FIGURE 5

Insulin-like signaling pathway and cellular senescence. Insulin-like signaling, through Insulin-R and IGF-1R, influences aging by enhancing mTOR
activity, inhibiting autophagy, and promoting low-grade inflammation linked to cellular senescence.
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growth factors, and the ECM. It encompasses three overlapping

phases: inflammation, proliferation, and remodeling. Dysfunctional

inflammation is a hallmark of chronic wounds, which are typically

characterized by a persistent low-grade inflammatory response (97).

In immune surveillance, resident T cells are activated, and the

infiltration of macrophages, monocytes, and neutrophils occurs

during the inflammatory phase. Excessive recruitment of pro-

inflammatory myeloid cell is attributed to the prolonged

expression of pro-inflammatory cytokines at the wound site,

altering the local wound microenvironment (98–100). Cellular

senescence significantly prolongs the inflammatory phase of

chronic wounds in several ways. Firstly, senescent cells prolong

the inflammatory state of chronic wounds by secreting

inflammatory cytokines, chemokines, and proteases through the

SASP. These factors not only continuously activate immune cells

but also impair the function of surrounding healthy cells. Secondly,

SASP factors disrupt normal cellular signaling, affecting the

proliferation, migration, and apoptosis of cells involved in wound

healing. This disruption prevents the transition from the

inflammatory phase to the proliferative phase, thus extending the

duration of inflammation. Additionally, senescent cells hinder

the initiation and progression of anti-inflammatory responses,

causing persistent inflammation. They also affect the function of

immune cells, leading to ineffective clearance of inflammatory

factors and cellular debris from the wound site. Lastly, senescent

cells alter the local microenvironment, increasing the concentration

of inflammatory factors, which further exacerbates chronic

inflammation and impedes the overall healing process. In

previous studies, the myeloid cell phenotypes during wound

healing in healthy and healing-impaired diabetic mice were

characterized by Joshi et al. They discovered a significantly higher

number of immune cells in the advanced stages of wounds, which

sheds light on the diversity of myeloid cells and draws attention to

the aberrant inflammatory response associated with poor wound

healing (101). Myeloid cell intrinsic factors may be a major driver in

this process (101). Other previous studies have found that excessive

infiltration of myeloid cells was found in the late stage of diabetic

chronic wounds in mice (102). Alleviating myeloid cell infiltration

can effectively accelerate chronic wound healing in mice.

Typically, the proliferation phase of wound healing begins

within 2 to 10 days and involves the proliferation and migration

of various cell types, such as immune cells and wound repair-related

parenchymal cells, critical for wound repair (103). The behavior of

wound repair-related parenchymal cells assumes a critical role

during this period. Fibroblasts repair wounds by repairing the

damaged dermis and remodeling the ECM in DFUs. Fibroblasts

play a key role in repairing the damaged dermis and remodeling

ECM, while epidermal keratinocytes proliferate at the wound edge,

migrate to the surface, and restore the barrier to re-establish

homeostasis. This phase includes re-epithelialization and the

formation of a new epithelial layer. However, cellular senescence

can significantly disrupt the proliferation phase. This persistent

inflammation impairs the proliferation and migration of fibroblasts

and keratinocytes, which are crucial for repairing the dermis and

restoring the epithelial barrier. Additionally, senescent cells
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interfere with angiogenesis, which is essential for providing

nutrients and blood supply to the wound. Senescent cells secrete

inflammatory factors through the SASP, leading to chronic

inflammation. Firstly, SASP factors can disrupt the function of

proliferative cells such as fibroblasts and keratinocytes (104, 105).

Secondly, chronic inflammation driven by these SASP factors

interferes with normal cellular signaling and growth factor

activity, impairing the proliferation and migration of cells needed

for wound closure (18). Lastly, senescent cells hinder angiogenesis

and collagen deposition, both critical for effective wound repair

(106). In summary, cellular senescence prolongs the inflammatory

state, thereby delaying progression to the proliferative phase and

impeding the overall healing of chronic wounds.
4 The relationship between different
types of chronic wound and
cellular senescence

Clinically, chronic wound is defined as one that fails to heal and

form intact skin within 1-3 months after injury (1). According to

statistics, a large number of patients currently suffer from chronic

non-healing wounds that resist healing and require expensive

treatment globally, such as DFUs, venous leg ulcers (VLUs),

wounds in the elderly, Pressure ulcers (PUs) and Arterial wounds.

In addition, chronic wounds are often accompanied by repeated

infections and inflammation, manifested as clinical signs of redness,

swelling, heat, and pain, which brings great pain to patients and

imposes a burden on families and countries worldwide. Therefore, it

is essential to take effective measures to promote wound healing.

Epidemiological research has found that many chronic wounds do

not show improvement after standard care.
4.1 Diabetic foot ulcers

4.1.1 The definition and discovery of DFUs
DFUs are a serious complication of diabetes and are a typical

chronic wound with a high prevalence and disability rate (107).

Approximately 15–25% of diabetic patients are at risk of developing

DFUs throughout their lifetime (108) and 84% of them may require

lower limb amputations (109). The pathogenesis of DFUs remains

unclear. The non-healing of DFUs can be attributed to several

factors: (1) chronically high blood glucose levels, resulting in

vascular damage or incapacity in the wound tissue bed; (2)

recurrent infections, leading to damage to the soft tissues of the

foot; (3) the poor wound microenvironment slows down the

proliferation of vascular endothelial cells, fibroblasts, and

keratinocytes, which in turn contributes to the development of

diabetic chronic wounds. Prolonged exposure to HG, chronic

inflammation, a high ROS load, low growth factor levels, and

infection, among many other factors, contribute to the harsh and

complex wound microenvironment of DFUs. In addition to

standard treatment approaches such as debridement, weight loss,
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and wound dressing, a series of adjunctive treatments, such as

biological tissue engineering skin, recombinant growth factors, and

hyperbaric oxygen, have been employed clinically, but their

therapeutic effects are limited, and satisfactory treatment

outcomes have not been achieved.

4.1.2 Characteristics of DFUs and pathways
involved in cellular senescence

Cellular senescence plays a pivotal role in the pathophysiology

of DFUs by disrupting normal wound healing through several

signaling pathways. In DFUs, hyperglycemia-induced oxidative

stress and chronic inflammation lead to the accumulation of

senescent cells, particularly in the vascular endothelium and

dermal fibroblasts, which are critical for tissue repair. Studies

have revealed that the proliferation of resident cells is slowed

down in the wound bed of diabetic wounds (110–112). Several

studies have demonstrated that epidermal fibroblasts exhibit

dysfunction and reduced migration through impaired cell

adhesion and integrin subunit function under HG conditions

(113, 114). The p38 MAPK pathway is significantly upregulated

in senescent cells within DFUs, responding to the sustained

oxidative damage and contributing to the secretion of pro-

inflammatory cytokines and MMPs, which degrade the ECM and

impair wound healing. Additionally, oxidative stress is recognized

as one of the main factors contributing to the delayed healing of

diabetic wounds. The excessive accumulation of ROS resulting from

the increase in serum glucose and the accumulation of advanced

glycation end products in diabetes is known to be one of the key
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factors inducing cellular senescence (115). Diabetes is typically

characterized by long-term chronic inflammation. It is well

established that inflammatory factors, such as TNF and IL-6, can

induce cellular senescence.
4.2 Venous leg ulcers

4.2.1 The definition and discovery of VLUs
It is widely recognized that many “venous ulcers” commonly

known as “Laolan leg” in China, are the most serious and difficult-

to-treat complication caused by chronic venous insufficiency of the

lower extremities, as reported in 1868. This is mainly due to the

stasis of blood in the distal limbs and the hypoxia of tissues, which

leads to skin nutrient disorders and ultimately results in tissue

necrosis and the formation of chronic non-healing ulcers. Recent

research suggests that microcirculatory abnormalities and

inflammatory responses are the underlying mechanisms of VLUs.

4.2.2 Characteristics of VLUs and pathways
involved in senescence

VLUs have an increasing incidence 0.3 - 1.33% (116) and

prevalence 0.12 - 1.69% (117) in the elderly aged 65 and above

(118), resulting in 60% of VLUs developing into chronic wounds

(119). Currently, there are four theories related to the pathogenesis

of VLUs. Firstly, Falanga and Eaglstrin et al. suggest that the

microenvironment of venous ulcers is not conducive to wound

healing (120). They found that endothelial cell decompensation
FIGURE 6

The relationship of cellular senescence and chronic wounds. Cellular senescence in chronic wound cases such as DFUs, chronic wounds of the
elderly, PUs and Arterial wounds. Senescent cells accumulate induced by stressors at the wound site, promoting prolonged inflammation and
impaired healing, thereby delaying recovery and increasing complications.
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leads to the secretion of macromolecules, which further inhibits the

activity of TGF-b and undermines tissue integrity and wound

recovery. Wound fluid collected from VLUs inhibits the

proliferation of fibroblasts, venous endothelial cells, and

keratinocytes in vitro. Secondly, Claudy et al. propose that the

increased activity of leukocytes leads to the secretion of ROS and

TNF-a, which increases vascular permeability and induces the

deposition of pericapillary fibrin. Thirdly, in 1982, Browse and

Burnand et al. suggested that venous hypertension causes the

dilation of endothelial pores, al lowing the escape of

macromolecules (primarily fibrinogen) into the interstitial fluid.

Insoluble fibrin complexes form deposits and create a barrier

around the capillaries, promoting cell death and ulceration (121).

Fourthly, in 1988, Coleridge Smith et al. proposed that the increased

pressure in the venous system leads to a decrease in capillary

perfusion pressure, and the decrease in capillary flux is sufficient

to cause the trapping of leukocytes. Leukocytes then release toxic

oxygen metabolites and proteolytic enzymes, which cause capillary

damage and make the capil laries more permeable to

macromolecules. Increased permeability may lead to the

extravasation of fibrinogen and other plasma proteins, resulting

in the formation of a fibrin cuff (122). The downstream signaling

pathways of venous ulcer fibroblasts are altered, involving MAPK

and the early SMAD pathway, by reducing the expression of Type II

receptors, which decreases cellular proliferation (123).
4.3 Chronic wounds of the elderly

4.3.1 The definition and discovery of chronic
wounds in the elderly

Chronic wounds in the elderly are currently poorly characterized.

Many factors can influence wound healing in older individuals. A study

in the UK using the General Practice Research Database revealed that

the incidence of VLUs is three to four times higher after 80 years of age

compared to 65–70 years of age (117). According to the latest census

data from the United Nations Population Division, there are over 720

million people aged 65 and above, accounting for more than 9% of the

world’s population, and these numbers are expected to increase even

more rapidly in the next decade (124). The National Institutes of

Health reports that aging skin heals more slowly than younger skin,

with wounds sometimes taking up to four times longer to heal in the

elderly (125). Thinning of the outer skin and more fragile blood vessels

are a normal part of the aging process, leading to bruising and bleeding

beneath the skin. The subcutaneous fat layer also thins, providing less

padding to prevent injury. In a diabetic burn model, aged mice exhibit

delayed wound healing due to decreased expression of HIF-1 (126).

The capacity for wound healing diminishes with age in many tissue

types and organs (127, 128).

4.3.2 Characteristics and pathways of cellular
senescence involved in chronic wounds in
the elderly

The process of wound healing is compromised in the elderly,

increasing susceptibility to infections, which puts the elderly at a high

risk of developing chronic wounds. Alterations in growth factors,
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nutritional status, dysfunction of ECM remodeling, and persistent

inflammatory response are considered important pathological factors

affecting the wound healing of the elderly. In aged individuals,

senescent cells accumulate in the skin and vasculature due to

repeated exposure to stressors like oxidative damage and

diminished regenerative capacity. This accumulation of senescent

cells contributes to the chronicity of wounds through several key

signaling pathways. Inflammation is a low-grade inflammatory state

associated with aging and is considered a biomarker of biological

aging and accelerated aging (129, 130). Resident cells within the tissue

bed show reduced proliferation and a morphology resembling that of

senescent cells (Figure 6). Moreover, previous studies have found that

the expression and activity of proteases increase in aged individuals,

which is consistent with the in vitro experimental findings of

increased matrix metalloproteinase (MMP) activity in rat wound

tissue beds (131, 132). These factors result in exacerbated

inflammatory situation and poor microenvironment in the skin

wound that is not conducive to healing. Additionally, the properties

of the ECM of the skin change dramatically over time (133).

Hormone has good prospects in the field of anti-aging (134). A

systematic review published in JAMA in 2017 and 2022 demonstrated

the use of hormone therapy for the primary prevention of chronic

conditions in postmenopausal women (135, 136). Studies have shown

that hormonal status plays a critical role in cutaneous wound healing

associated with an increase in TGF-b1 levels (137).
4.4 Pressure ulcers

4.4.1 The features and discovery of PUs
PUs, also called pressure sores, are localized injuries to the skin

and underlying tissues caused by prolonged pressure, typically over

bony prominences. Affecting approximately 2 - 3% of hospitalized

patients, with even higher rates in long-term care settings, these

ulcers are characterized by well-defined lesions ranging from

superficial redness to deep tissue damage, often with necrosis and

minimal exudate (6). Pathologically, they result from sustained

pressure that leads to ischemia, tissue necrosis, and impaired blood

flow, primarily due to pressure-induced occlusion of blood vessels,

which disrupts oxygen and nutrient delivery. Treatment of pressure

ulcers includes: management of local and distant infections,

removal of dead tissue, maintenance of a moist environment to

promote wound healing, and possible surgery. Although there are

many surgical procedures available to treat PUs, surgical flap

coverage has not been established as the gold standard for the

treatment of PUs (138). Current treatments focus on relieving

pressure through regular repositioning, specialized mattresses,

and cushions, alongside wound management with advanced

dressings and debridement. However, these methods have notable

limitations: repositioning is labor-intensive and not always effective

in preventing ulcer formation; specialized equipment is costly and

not universally accessible; and existing wound care products often

fail to address the underlying mechanisms, leading to high

recurrence rates and prolonged healing. Therefore, more effective

and accessible solutions are urgently needed to improve outcomes

for patients at risk of or suffering from PUs.
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4.4.2 Characteristics and pathways of cellular
senescence involved in PUs

Emerging evidence suggests that the progression of PUs is

intricately linked to cellular senescence, particularly through the

activation of specific signaling pathways that modulate

inflammatory responses and tissue repair (139). The mTOR

pathway, a master regulator of cellular metabolism and growth,

has been implicated in the promotion of SASP factors in PUs

pathology. Inhibition of mTOR has been shown to enhance

autophagy, reducing the accumulation of damaged organelles and

proteins, thereby mitigating cellular senescence and improving

wound healing outcomes (140). Another critical pathway is the

p38 MAPK pathway, which is activated in response to various stress

signals, including oxidative stress and DNA damage, common in

chronic wounds (141). Activation of p38 MAPK contributes to the

stabilization of SASP factors and perpetuates the inflammatory

environment, leading to impaired healing and tissue degradation

(142). Additionally, the NF-ΚB pathway is a key mediator of

inflammation in PUs, with persistent activation resulting from

SASP factors further exacerbating tissue damage and delaying

wound closure (143). Targeting these pathways, particularly

through the use of mTOR inhibitors, p38 MAPK inhibitors, and

NF-ΚB modulators, holds promise for therapeutic strategies aimed

at mitigating the effects of cellular senescence and improving

outcomes in patients with PUs.
4.5 Arterial wounds

4.5.1 The features and discovery of
arterial wounds

Arterial wounds, also known as ischemic ulcers, are chronic

lesions caused by inadequate blood supply due to arterial occlusion

or stenosis. These wounds are prevalent among individuals with

peripheral arterial disease, affecting approximately 1 - 2% of the

population, particularly older adults and those with diabetes.

Clinically, arterial wounds are characterized by a well-defined,

punched-out appearance with necrotic tissue and minimal

exudate, typically located on the lower extremities. Pathologically,

they result from chronic ischemia due to impaired arterial blood

flow, leading to tissue hypoxia and necrosis. The prevailing

hypothesis suggests that insufficient oxygen and nutrients not

only impair tissue repair but also increase susceptibility to

infection. Current treatments focus on improving blood flow

through surgical interventions such as angioplasty or bypass

surgery, alongside wound management with advanced dressings

and debridement. However, these treatments face significant

challenges: surgical procedures may not always restore adequate

blood flow, wound care methods often fail to address underlying

vascular issues, and the risk of recurrence remains high. Therefore,

more effective strategies that simultaneously improve vascular

health and enhance wound healing are critically needed to better

manage arterial wounds.
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4.5.2 Characteristics and pathways of cellular
senescence involved in arterial wounds

The development of arterial wounds, often associated with

peripheral artery disease (PAD), is increasingly linked to cellular

senescence, which disrupts normal tissue repair processes through

various signaling pathways. In arterial wounds, senescent

endothelial cells accumulate due to chronic oxidative stress and

reduced blood flow, leading to impaired angiogenesis and wound

healing. The p38 MAPK pathway, a key responder to stress signals

such as hypoxia and oxidative damage, is activated in senescent cells

within arterial wounds. This activation promotes the secretion of

pro-inflammatory cytokines and matrix metalloproteinases

(MMPs), contributing to extracellular matrix degradation and

chronic inflammation (144). Furthermore, the TGF-b/SMAD

pathway, which is involved in fibrosis and tissue remodeling, is

upregulated in senescent cells, leading to excessive extracellular

matrix deposition and fibrosis, further hindering wound healing

(145, 146). The NF-ΚB pathway, similarly to its role in other

chronic wounds, perpetuates inflammation in arterial wounds by

sustaining the SASP, thereby exacerbating tissue damage and

delaying repair (147). In summary, therapeutic strategies that

target these pathways, such as p38 MAPK inhibitors, TGF-b
antagonists, and NF-ΚB modulators, might potentially mitigate

the effects of cellular senescence and promote healing in

arterial wounds.
5 Treatment strategy for
chronic wounds

Debridement therapy is the basic local treatment method for

DFUs, including sharp instrument debridement, surgical

debridement, ultrasonic debridement, and other methods to

improve the wound status of DFUs. Timely debridement

according to the gangrene condition, removal of necrotic,

ischemic, and infected gangrene, and leaving a clean and viable

tissue bed to support the healing process. The principle of

debridement is that dry gangrene should not be removed

prematurely, and infected gangrene should be removed

immediately. Debridement is beneficial to the formation of

granulation tissue, reducing the healing time and the bacterial

load on the wound surface.
5.1 Anti-aging drugs and chronic wounds

Cutaneous wounds are one of the most common soft tissue

injuries and are particularly difficult to heal in aging. Zhao et al.

found that chronic topical administration of metformin and

resveratrol can accelerate wound healing with improved

epidermis, hair follicles, and collagen deposition in young

rodents, and metformin has a more profound effect (148).

Mahendra et al. extracted bioactive compounds from the sky fruit

of Swietenia macrophylla, which can absorb the UVB range and
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some parts of the UVB wavelength (149). In vitro scratch

experiments found that sky fruit can significantly improve cellular

proliferation, migration, and wound closure. Rapamycin has been

widely used for decades to treat cancer and prevent organ transplant

rejection. However, in recent years, it has gained attention for its

potential to extend life. Experimental results on various animal

models indicate that administering rapamycin can enhance the

health of older animals, particularly females, achieving a more

substantial life-extending effect. The latest clinical data reveal that

short-term use of rapamycin can activate the type 1 interferon

pathway and enhance immune function in the elderly. Partridge

et al. employed Drosophila and mice as models to elucidate the

function of S6 protein kinase in the process of rapamycin regulating

lifespan and immune system aging, and identified the

endolysosome system as a novel cellular mechanism in the aging

process, which plays a significant role (58).
5.2 Growth factor and stem cell therapy

Cellular senescence refers to as irreversible growth arrest that

occurs after exposure to stress, which contributes to tissue

dysfunction by inducing paracrine senescence, stem cell

dysfunction and chronic inflammation. Growth factors and

cytokines play a vital role in cell proliferation, migration,

differentiation, and metabolism. Both in vivo and in vitro

experiments have found that there are disorders of GFs in both

acute and chronic non-healing wounds (150–152). A study has

found that EGF accelerates the proliferation and migration of many

types of cells, including fibroblasts, keratinocytes, and endothelial

cells (153). Chen et al. reported therapeutic effects of conditioned

medium from human umbilical cord mesenchymal stem cells

(uMSC-CM) (154). They found that uMSC-CM was effective in

mitigating the progression of radiation ulcers by inhibiting cellular

senescence. Studies have found that the reduction of growth factors

in wound tissue bed is a key factor affecting the healing process of

diabetic wounds, and local application of exogenous recombinant

growth factors can improve the efficiency of wound closure, such as

such as EGF, PDGF, FGF, VEGF, TGF-b (155, 156). However, it

also has certain limitations. The continuous exudation environment

is not conducive to the residence of the drug, and the exudate

contains various proteases and polypeptide enzymes, which can

easily make the drug ineffective. Patients with DFUs exceeding 50%

are not sensitive to growth factor treatment (157, 158). In addition,

there is still some controversy about its safety. In the current clinical

treatment, growth factors are advocated as adjuvant therapy on the

basis of debridement.
5.3 Anti-inflammatory and chronic wounds

Infection is one of the main factors in the difficult healing of

DFU wounds. Patients have a very limited ability to clear

pathogenic bacteria through autoimmunity, resulting in an

increased amputation rate and mortality of affected limbs. The

current systemic antibiotic treatment has a positive effect on DFU
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co-infection, but the damage to the microcirculation leads to the

drug’s inability to fully penetrate into the infected wound, which

reduces its efficacy. Long-term use is likely to cause acquired drug

resistance. According to the “Antibiotic Resistance Threat Report”

(http://www.cdc.gov/) published in the United States in 2019, about

2.8 million people in the United States have developed drug

resistance due to overdoses of antibiotics causing infection. In

addition, nano-silver particles are currently used clinically for

anti-infection treatment, but their biocompatibility is poor, and

there is a tissue accumulation effect, causing toxicity in the digestive

system (159), respiratory system (160) and central nervous system

(161). Therefore, it is necessary to develop next-generation

antibacterial drugs or strategies to solve the problem of DFU

wound infection.
5.4 ROS scavenging and chronic wounds

There are different reasons for the formation of chronic, non-

healing wounds. However, current research believes that they all

have one of the same characteristics: excessive ROS are produced in

the wound microenvironment, which sequesters the wound’s

healing. Therefore, ROS scavenging is an effective strategy for

chronic wounds.
5.5 Advanced wound dressings and
chronic wounds

For cutaneous wounds, aberrant inflammation, elevated ROS

levels, and reduced growth factor expression collectively contribute

to impaired neovascularization and cell proliferation, increased

cellular senescence, and heightened apoptosis, ultimately leading

to delayed wound healing. Thus, identifying an effective medical

dressing to enhance chronic wound healing has become an urgent

and significant medical challenge. Wound dressings are classified

into four primary categories: passive, interactive, advanced, and

bioactive. It is estimated that the global market for wound dressing

materials will reach $20.4 billion by 2021 (162). The treatment of

chronic wounds has long been problematic, with existing dressings

often proving ineffective. However, advancements in biomaterials

have led to the development of wound dressings that show

promising results (162, 163). Mohamed. A et al. found a

polyelectrolyte wound dressing consisting of chitosan,

hyaluronan, and phosphatidylcholine dihydroquercetin, which

exert antioxidant and antibacterial activity (164). He et al. found a

functional chitosan-based hydrogel that serves as a drug delivery

system and as a wound dressing to deliver growth factor and

antibacterial agents, accelerating wound healing, revascularization,

and collagen deposition (165, 166). Compared with the control

group, the experimental group has a structure almost the same as

the original skin and the largest number of newly formed blood

vessels and hair follicles.

Tissue-engineered products have been applied to chronic or

non-healing wounds and achieved good results in recent years.

They accelerate wound closure by providing growth factors and
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ECM to the wound microenvironment. The relationship between

chronic wounds and prematurely senescent fibroblasts remains to

be elucidated. A satisfying wound dressing can provide an optimal

biological environment for wound healing. MMP9, a gelatinase

abundantly expressed in the dermis after wounding, plays a pivotal

role in ECM degradation and tissue remodeling during wound

healing (167, 168).

Long-term infection is one of the important factors that make

DFUs difficult to heal. In the field of anti-infectives, Wang et al.

found an engineered bioactive, self-healing antibacterial exosome

hydrogel that can promote chronic diabetic wound healing and

complete skin regeneration in a mouse model (169). Similarly, it

was also reported that a surfactin-reinforced gelatin methacrylate

hydrogel accelerates diabetic wound healing (170). Recent studies

have found that metal nanoparticle-based materials can reduce the

infection of diabetic wounds (171). Researchers found that the

combination of antibacterial nanoparticles (such as silver

nanoparticles, gold nanoparticles, or copper nanoparticles) with a

polymeric matrix could inhibit bacterial growth and speed the

healing process of a chronic wound (172, 173).
6 Summary

This review explores the link between cellular senescence and

chronic wounds. Despite significant efforts to develop effective

treatments for non-healing wounds, a definitive solution remains

elusive. The review highlights the importance of understanding

cellular senescence, senescence-associated secretomes, and their

interactions with the tissue microenvironment in the repair of

chronic wounds. Targeting senescent cells may accelerate wound

healing. It suggests that removing senescent cells from the tissue

microenvironment could be a promising approach to enhance

chronic wound healing. Nonetheless, a major limitation is the

ongoing debate about whether aging exerts a positive or negative

regulatory effect on the wound healing process. Targeting cellular

senescence holds significant promise as a strategy for improving
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chronic wound healing. However, to unlock the full potential of this

approach, it is crucial to expand research efforts in both basic

science and clinical applications. Continued exploration in these

areas is expected to bridge the gap between theoretical

understanding and practical treatment, paving the way for more

effective therapies for chronic wounds.
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