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This paper explores the significant role of epigenetics in women’s reproductive

health, focusing on the impact of environmental factors. It highlights the crucial

link between epigenetic modifications—such as DNA methylation and histones

post-translational modifications—and reproductive health issues, including

infertility and pregnancy complications. The paper reviews the influence of

pollutants like PM2.5, heavy metals, and endocrine disruptors on gene

expression through epigenetic mechanisms, emphasizing the need for

understanding how dietary, lifestyle choices, and exposure to chemicals affect

gene expression and reproductive health. Future research directions include

deeper investigation into epigenetics in female reproductive health and

leveraging gene editing to mitigate epigenetic changes for improving IVF

success rates and managing reproductive disorders.
KEYWORDS
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1 Introduction

The World Health Organization (WHO) identifies Sexual and Reproductive Health

(SRH) as integral to achieving the highest standard of health. Women’s reproductive health

remains a significant global concern, impacting not only physical well-being but also

societal development, economic growth, and public health. Women’s unique physiological

structures and responses, including the glandular folds of their internal and external

genitalia in a moist environment, create conditions conducive to pathogen survival. The

presence of androgens in the body may promote the growth and proliferation of pathogens,

significantly increasing the risk of tumor development (1). During menstruation, the

disruption of the endometrial lining and the increased susceptibility to various infections
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during sexual intercourse further exacerbate women’s reproductive

health challenges (2). According to WHO data, 40% of Chinese

women suffer from various degrees of reproductive tract infections,

with the prevalence among married women reaching up to 70%.

This indicates that approximately 300 million women in China face

reproductive health issues, a figure significantly higher than the

incidence rate of common colds. The repercussions of reproductive

health issues on women’s lives and careers are profound, causing

immense distress and suffering. Common gynecological conditions

include endometriosis, uterine fibroids, ovarian cysts, vaginitis,

cervicitis, cervical erosion, pelvic inflammatory disease, adnexitis,

functional uterine bleeding, breast diseases, infertility, and

menstrual disorders. Notably, endometriosis affects 10% (190

million) of women of reproductive age worldwide (3). The

majority of gynecological diseases, along with psychological

factors such as work stress and environmental conditions, can

adversely affect ovarian function. This leads to metabolic

disorders, endocrine disruptions, and imbalances in estrogen and

progesterone levels, triggering conditions such as melasma,

wrinkles, constipation, acne, obesity, hyperlipidemia, and even

carcinogenesis, accompanied by mental lethargy (4, 5). Hence,

reproductive system issues directly impact human health.

Over the past decade, notable progress has been made in the

prevention and treatment strategies for common diseases of the

female reproductive system. However, current research on the

impact of environmental factors through epigenetic mediation on

women’s reproductive health remains fragmented. In this review,

we summarize the latest findings on the influence of environmental

factors on epigenetics and, consequently, on women’s reproductive

health. This includes an overview of several common types of

epigenetics and the potential cellular and molecular mechanisms

involved. Furthermore, we discuss the impact of both internal and

external environmental factors on the female reproductive system.

Therefore, our aim is to gain a more comprehensive understanding

of the pathophysiological processes and potential mechanisms

related to female infertility diseases, with the goal of enhancing

fertility and pregnancy outcomes in women of childbearing age.
2 An introduction to epigenetics

Epigenetics refers to the transmission of genetic information that

does not involve changes to the DNA sequence. It operates through

chemical modifications on the genome, such as histones post-

translational modifications, DNA methylation, and hydroxy

methylation, thereby altering the way genes are expressed. The

mechanism by which DNA methylation leads to gene silencing is

not yet fully understood; however, three main forms are commonly

considered. First, DNA methylation affects the transcriptional activity

of genes. It can directly hinder the recognition and binding of

transcription factors to specific DNA sequences, thus inhibiting gene

transcription (6). Second, the mechanism by which methylation leads

to gene silencing involves the methylation of CpG islands located in

promoters or other regulatory regions playing a role in gene repression.
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Methylation of CpG islands in non-coding promoter regions recruits

sequence-specific methylated DNA binding proteins and histone

deacetylases (HDACs), forming complexes that suppress

transcription by obstructing the binding of transcription factors to

their target sequences, thereby affecting transcription (7, 8). Finally,

DNA methylation can alter chromatin structure to suppress gene

expression, where highly methylated promoters cause chromatin to

condense, further affecting transcription (9).

Epigenetic modifications can regulate the splicing and

expression patterns of genes (10). For instance, numerous studies

have shown that histones post-translational modifications can

regulate the binding and activity of splicing factors, thus

influencing gene splicing. Results obtained from real-time

quantitative Polymerase Chain Reaction(PCR) analysis of 16

epigenetic remodeling markers in the epidermal cells of 14

patients after in vitro amplification compared to freshly isolated

epidermal cells (ISO), indicated a significant reduction in the

transcription levels of genes involved in DNA methylation and

histones post-translational modifications in cells cultured to the

second generation of keratinocyte formation.

Beyond the aforementioned effects, epigenetic modifications

can also regulate genomic stability and genetic memory, enabling

cells to stably express specific phenotypes (11). Further research and

understanding of the mechanisms of epigenetics are crucial for

unraveling important processes in organism development,

environmental adaptation, and disease onset.
3 The potential impact of
environmental factors on women’s
reproductive health

Infertility is commonly defined as “a disease of the male or

female reproductive system characterized by the failure to achieve a

successful pregnancy after more than one year of regular,

unprotected sexual intercourse.” External harmful environmental

factors can impair women’s fertility. Non-gaseous pollutants, such

as PM2.5, have a certain impact on female reproduction(12, 13).

Gaseous pollutants (such as ozone (O3), sulfur dioxide (SO2), and

nitrogen oxides (NOx)) can affect the endocrine system of women

of childbearing age, leading to infertility and pregnancy

complications, including reduced ovarian reserve (14, 15), uterine

fibroids (16), and preeclampsia (17, 18).

Harmful chemicals also impact women’s reproductive health

(19). Polycyclic aromatic hydrocarbons have been shown to interact

with estrogen receptors, activating the aryl hydrocarbon receptor

leading to changes in steroid functionality and anti-estrogenic

activity, resulting in adverse pregnancy outcomes such as preterm

birth, miscarriage, and embryonic developmental arrest (20).Studies

indicate that the widespread use of the heavy metal cadmium can

cause endocrine disruption in women, potentially directly affecting

the development of oocytes, the development of the uterus, and

ovarian function, leading to decreased fertility, spontaneous

miscarriage, and other reproductive issues (21).
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4 Defining the purpose and scope of a
literature review

In recent years, a growing body of evidence suggests that

environmental exposures can leave epigenetic marks on genes,

with various environmental factors proven to induce global or

specific epigenetic changes (266). In this review, we discuss the

interactions between environmental factors related to women’s

reproductive health risks and epigenetics. This includes more

common epigenetic processes such as DNA methylation, histones

post-translational modifications, and non-coding RNA. Key roles in

genetic regulation are played by external environmental factors like

heavy metals (cadmium), polycyclic aromatic hydrocarbons, air

pollutants, and internal factors such as dietary and nutritional

elements, as well as the influence of parental care and climate

factors on epigenetics. Moreover, we comment on the regulation of

female reproductive functions through epigenetics, such as the

pathogenesis and regulatory processes related to Polycystic Ovary

Syndrome (PCOS), Premature Ovarian Insufficiency (POI), and

endometriosis mediated by epigenetics, elucidating the function of

epigenetics as a mediator, bridging environmental factors and

female reproduction. Besides the adverse effects on female

reproductive functions, epigenetic processes and abnormal

epigenetic marks can also impact offspring health. Therefore,

understanding how maternal environmental factors can affect

offspring health through epigenetic mechanisms is crucial for

preventing and managing environmentally related women’s

reproductive health issues and accelerating the application of

epigenetics in reproductive medicine.
5 The fundamentals of epigenetics

Epigenetics, also referred to as character genetics, exogenetics,

paragenetics, postgenetics, or topogenetics, such as DNA

methylation and histone modifications. DNA methylation is

termed a carrier of epigenetic information, whereas variations and

modifications of histones can directly or indirectly impact the

structure of local chromatin. These chemical modifications to

chromatin are both inheritable and reversible.
5.1 Epigenetic mechanisms

5.1.1 DNA methylation
DNA methylation is the most prevalent epigenetic regulatory

mechanism, where methyl groups are covalently bonded to cytosine

residues in DNA sequences through enzyme-mediated reactions

catalyzed by specific methyltransferases. In vertebrates, three

methylation states of DNA are recognized: a persistent

hypomethylation state (22), an induced demethylation state, and

a hypermethylation state, which is notably observed in the

methylation modifications of the inactivated X chromosome (23).

Recent studies have demonstrated that genome-wide

hypermethylation can impede the epithelial-to-mesenchymal
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transition, thereby further inhibiting the healing of chronic

wounds (24).

In mammals, DNA methylation involves the covalent transfer

of a methyl group to the C-5 position of the cytosine ring in CpG

dinucleotides. As a form of chemical modification, DNA

methylation alters the structure of the cytosine residues, creating

the “fifth base” - 5-methylcytosine (5mC), which is the most

significant form of DNA methylation in mammals. DNA

methylation is essential for the organism’s normal growth and

development, including the formation of genetic imprints(11

) and the promotion of dispersed chromatin to become

condensed. DNA methylation also impacts the normal expression

of genes (25), leading to a decrease in gene transcriptional activity.

The mechanism by which DNA methylation impedes gene

transcription is complex: it interferes with the binding of

transcription factors to promoters, thus blocking transcription

(1). Moreover, transcription factors can recognize methylated

DNA and reactivate gene transcription (26). DNA methylation is

catalyzed by DNA methyltransferases (DNMTs), with DNMT1 and

DNMT3 being the active enzymes responsible for establishing and

maintaining DNA methylation (27). DNA methyltransferases add

methyl groups to CpG islands using S-adenosyl methionine (SAM)

as a substrate. Zhu Bing was the first to use the methylation profile

of mouse oocytes to confirm that DNMT1 indeed functions as an

initiating DNA methyltransferase (28).

De novo methylation refers to the addition of methyl groups to

previously unmethylated cytosines under the action of DNMT3

methyltransferases. DNMT3A and DNMT3B are the primary

enzymes for mammalian DNA methylation, known as de novo

methyltransferases (29). DNMT3A-mediated DNA methylation

plays an indispensable role in the spermatogenesis of male germ

cells (30),Mutations in DNMT3A render it insensitive to the

inhibition of H3K4me3, resulting in the aberrant methylation of

promoter subgroups marked by H3K4me3 in mouse embryonic

stem cells (ESCs). This aberrant methylation leads to the

downregulation of associated genes (31).While the ectopic

expression of DNMT3B can enhance the genome-wide

methylation level of haploid embryonic stem cells, shorten the

transition from the G2 phase to the M phase of cell mitosis,

alleviate spontaneous diploidization of haploid cells, and extend

the survival time of semiclone mice (32).Weinberg et al. (33)

demonstrated that H3K36me2 is essential for the recruitment and

maintenance of DNA methylation in intergenic regions by

DNMT3A. In contrast, Shirane et al. (34) showed that

H3K36me2, deposited by NSD1, plays a crucial role in de novo

methylation in germ cells. Typically, de novo methyltransferases

preferentially bind to CpG-rich regions that are not protected by

H3K4 methylation. These enzymes with methyltransferase activity

prioritize the methylation of unmethylated CpG dinucleotides. For

instance, the flexible N-terminal guides DNMT3AA1 to its bivalent

target catalytic methyltransferase domain, thereby regulating DNA

methylation and gene expression (35). DNMT3L, while having no

catalytic activity, can interact with DNMT3A and DNMT3B to

regulate their activity (36) and is expressed only in specific rodents

like mice, rats, gerbils, and hamsters (37). In human oocytes, it is

transcriptionally silent and involved in the regulation of repetitive
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elements and imprinting in germ cells. Although DNMT3L cannot

bind the methyl donor S-adenosyl-L-methionine (SAM), it

facilitates the interaction of SAM with DNMT3A2, aiding the de

novo methyltransferases (38).

DNMT1 is the key enzyme for maintaining DNA methylation

(39), preserving the methylation pattern from the parental DNA

strand to the daughter strand through cell division and DNA

replication (40). The C-terminal domain of DNMT1 consists of two

subdomains: the Target Recognition Domain (TRD), which identifies

hemimethylated cytosines, and the methyltransferase domain.

DNMT1 preferentially methylates hemimethylated DNA, a

process primarily facilitated by the TRD domain recognizing

cytosines within hemimethylated DNA. Once the DNA

methylation pattern is established, the DNA methyltransferase

DNMT1 maintains this pattern during DNA replication. The

faithful replication of the DNA methylation pattern during cell

division makes it an ideal mechanism for preserving

epigenetic memory.

A recent review on DNA methylation proposed a regulatory

model for DNMTs, where de novo methyltransferases adopt an

autoinhibitory conformation until they are locally activated upon

binding to the N-terminal tail of histone H3. Additional research

indicates that this regulatory principle is applicable not only to

classical de novomethyltransferases but also to DNMT1 (41). In this

context, the replication foci targeting sequence (RFT) domain

interacts with conformational activators, such as UHRF1, thereby

exposing the catalytic site (42, 43).

DNA methylation can suppress the activity of certain genes,

while DNA demethylation induces the reactivation and expression

of genes (267). TET enzymes play a key role in the DNA

demethylation process (44), including TET1, TET2, and TET3.

These enzymes convert 5-methylcytosine (5mC) into 5-

hydroxymethylcytosine (5hmC) (45), which can be further

oxidized to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC).

Subsequently, the TET and base excision repair (BER) pathways

intervene in the repair process, converting these modified bases

back to unmethylated cytosine, thereby achieving DNA

demethylation. Although the BER pathway is commonly

considered the final step in DNA demethylation, there remains

controversy regarding the specific enzymes and chemical

intermediates formed during this process (46). The implications

of DNA demethylation are increasingly recognized; for instance,

aberrant DNA hypermethylation has been detected in the leptotene

spermatocytes of some patients with non-obstructive azoospermia,

suggesting that DNA demethylation can influence male meiotic

recombination and fertility (47).

5.1.2 Histone post-translational modification
Histones are primarily composed of a globular domain (48) and

tails that protrude outside the nucleosome, made up of basic amino

acids forming a fundamental structural protein. Two H2A-H2B

dimers and one H3-H4 tetramer assemble into a histone octamer.

Histones and DNA are the basic components of the nucleosome,

providing appropriate sites for DNA winding when nuclear DNA is

in a highly condensed state. Timothy J. Richmond and others

determined the crystal structure of the chromatin nucleosome
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core particle, with a 2.8A high-resolution X-ray structure

detailing the internal binding mode of the histone octamer and

the superhelical organization of its surrounding 146 base pairs of

DNA (49). Unmethylated nucleosome DNA spontaneously

extends, forming four superhelical turns (50), a phenomenon that

strongly evidences the crucial role of histone tails in maintaining the

overall nucleosome structure (51).As illustrated in Figure 1, the

diagram represents the spectrum of histones post-translational

modifications. histones post-translational modifications mainly

include methylation, acetylation, ubiquitination, sumoylation,

and citrullination.

Methylation of histones that wrap DNA in eukaryotic

chromosomes can have significant implications for human health.

It occurs on all basic residues, including arginine (52), lysine (53), and

histidine (54). Protein methylation can occur at the N-, O-, and S-

centers of amino acid residues, with arginine and lysine residues

being the most common sites of histone methylation. The effects of

methylation on gene activity vary (55), depending on the modified

amino residue (56), the genetic context of methylation, its level and

pattern. Amino acid methylation primarily changes chromatin

structure by increasing or decreasing DNA-histone interactions,

leading to the activation or suppression of gene transcription. The

core histone H3 plays a key role in nucleosome structure and gene

expression regulation, being a primary site of histone methylation,

along with other core histones like H2A, H2B, and H4, which are

central components of the nucleosome and participate in histone

methylation (57). During histone methylation, S-adenosylmethionine

(SAM) (58) serves as the substrate, and under the catalysis of histone

methyltransferases (HMTs, also known as “writers”), it transfers its

methyl group to the lysine residues of histones (59). On the e-amino

group of lysine, it can be monomethylated, dimethylated, or

trimethylated (60–62), referred to as me1, me2, and me3 (63).

Currently, extensive research has been conducted on methylated

histones, including H3K4, H3K9, H3K27, H3K36, H3K79, and

H4K20 (64). Studies show that H3K4, H3K36, and H3K79 are

mainly found in transcriptionally active regions of chromatin,

playing a role in activating gene transcription. Conversely, H3K9,

H3K27, and H4K20 often act as markers for gene transcription

repression, closely associated with gene silencing (65–68).

Histone acetylation is a reversible process where acetyl groups

are transferred by histone acetyltransferases (HATs), with lysine

acetylation being a common form of histone acetylation. Simply

put, this process involves adding an acetyl group to the positively

charged lysine residues. Histone acetylation decreases the

electrostatic affinity between histones and negatively charged

DNA, loosening chromatin structure and activating open

chromatin regions (69), making it easier for transcription factors

and RNA polymerase to access DNA, thereby promoting

transcription (70). Histone 1 is the most commonly acetylated

protein, and H2A, H2B, H3, and H4 form the core of the

nucleosome, referred to as core histones. Acetylation

modifications within these core histones affect the dynamics of

the nucleosome core particle (71), with the acetylation of H2B, H3,

and H4 having minimal impact on the dynamics of the nucleosome

core particle. In contrast, H2A shows significantly increased

dynamics after acetylation modification (72). Histone acetylation
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primarily occurs at the amino-terminal lysine sites of H3 and H4,

including H3K9ac, H3K14ac, H3K18ac, H3K23ac, H3K27ac,

H3K56ac, H4K5ac, H4K8ac, H4K16ac, and H4K20ac (73),

catalyzed by HATs such as CBP/p300, MOF, HBO1, or KAT6A

(74). Previous extensive research has revealed a link between

histone acetylation levels and the expression of pro-inflammatory

cytokines and other antimicrobial products (75), with acetylases

playing an indispensable role.

Acetyl-CoA is the donor of the acetyl group, produced by

metabolic enzymes in the nucleus and having a direct effect on

histone acetylation (76, 77). To date, studies have shown that three

enzymes are crucial for maintaining acetyl-CoA levels: the Acyl-

CoA Synthetase Short-Chain Family Member 2 (ACSS2) (78–80).

Extensive research indicates that ACSS2 catalyzes the synthesis of

acetyl-CoA from acetate, recruited to neuronal sites associated with

organismal memory, crucial for memory consolidation (81).

Furthermore, ACSS2 is an enzyme required for alcohol-induced

neuron-specific gene expression and alcohol-associated associative

learning (82). In summary, extensive research highlights the key

role of ACSS2 in enhancing spatial memory and regulating

histone acetylation.

Zhang et al. (83) were the first to discover histone lactylation,

where lactate-derived histone lysine lactylation emerged as a novel

epigenetic modification and demonstrated that histone lactylation

directly stimulates chromatin gene transcription. Wan et al.

reported the formation of cyclic immonium ions of lactylated

lysine during tandem mass spectrometry analysis, enabling the

identification of protein lactylation. Their findings highlighted

that lactylation is common on glycolytic enzymes and is
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conserved on Aldolase A. Additionally, widespread lactylation

was identified on Reductase SDR Family Member 7(DHRS7) in a

draft of the human tissue proteome (84).

5.1.3 Non-coding RNA
In eukaryotes, approximately 90% of genes are transcribed, of

which only 1%-2% are responsible for encoding proteins, with the

majority being transcribed into non-coding RNAs (ncRNAs).

ncRNAs refer to RNA molecules transcribed from genes that do

not have the capacity to encode proteins.

ncRNAs can be primarily classified into two forms: small

ncRNAs (SncRNAs, 18-200 bp) and long ncRNAs (lncRNAs,

>200 bp), neither of which can be translated into proteins.

SncRNAs include small nucleolar RNAs (snoRNAs), PIWI-

interacting RNAs (piRNAs), small interfering RNAs (siRNAs),

microRNAs (miRNAs), circular RNAs (circRNAs), and

extracellular RNAs (exRNAs) (85, 86). Extensive research on

ncRNA biology has demonstrated that ncRNAs play a critical

regulatory role in shaping cellular activity. ncRNAs include

molecules that act as oncogenes or tumor suppressors, and their

aberrant expression has been linked to carcinogenesis and

metastasis regulated by epigenetic mechanisms (87–89). ncRNAs

can regulate the transcription of individual genes or entire

transcriptional programs, affecting the expression of hundreds to

thousands of genes (90–92).

MicroRNA (miRNA) is one of the most extensively studied

ncRNAs, consisting of single-stranded molecules approximately 20-

24 bp in length. Thousands of miRNAs can function as tumor

suppressors or oncogenes by base-pairing with complementary
FIGURE 1

Histones post-translational modifications Map. The left panel describes the patterns of histones post-translational modifications, while the right panel
lists the potential impacts of histones post-translational modifications on the pregnancy process, such as embryonic development (Draw by figdraw.).
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sequences in the 3’UTR of target mRNAs, inhibiting gene

translation and leading to gene silencing (93). Competitive

endogenous RNAs (ceRNAs) are common post-transcriptional

regulators. Notably, long non-coding RNAs (lncRNAs) and

circular RNAs (circRNAs) within the ceRNA category can induce

gene silencing, affecting gene expression and thereby influencing

tumor progression (94). lncRNAs regulate various physiological

processes such as tumor cell invasion, migration, proliferation, and

tumor microenvironment (TME) remodeling by modulating

mRNA processes and gene transcription (95, 96). The unique

circular structure of circRNAs, resulting from the back-splicing of

pre-mRNA, confers them with exceptional stability. CircRNAs, as

endogenous ncRNAs with their linear transcriptional 3’ and 5’ ends

removed, are implicated in biological processes related to tumor

suppression and carcinogenesis (97, 98).
5.2 Advances in research methods and
techniques in epigenetics

Current research in epigenetics primarily focuses on three

aspects: DNA methylation, histones post-translational

modifications, and non-coding RNA. The methodologies for

studying DNA methylation (99) are categorized into two main

types. The first type examines the overall level of DNA methylation,

including techniques such as whole-genome bisulfite sequencing

(WGBs), methylation 450K array, and immunoprecipitation

techniques (MeDIP). The second type investigates DNA

methylation at specific sites; after bisulfite treatment,

unmethylated cytosines are converted into uracil, followed by

detection methods such as methylation-specific PCR (MSP),

reduced representation bisulfite sequencing (RRBS), and

methylation-sensitive high-resolution melting (MS-HRM).

Classic methods for detecting histones post-translational

modifications (100) include chromatin immunoprecipitation

followed by sequencing (ChIP-seq), Cut&Tag, and Edman

degradation. Edman degradation, a low-throughput sequencing

method, is generally limited to analyzing the N-terminal 50

amino acids of proteins and cannot detect multiple proteins

simultaneously; it is used for analyzing chemically unmodified N-

terminal a-amino acids. Immunosequencing methods cannot

detect unknown modification sites. More widely used methods for

histones post-translational modifications detection now include

mass spectrometry (MS) and ELISA techniques.

Research methods for non-coding RNA mainly include

transcriptome sequencing (RNA-seq), Northern blotting,

fluorescence in situ hybridization (FISH), and RNA-binding

protein immunoprecipitation (RIP-seq). Currently, Solexa high-

throughput sequencing (101) is extensively used. This method can

simultaneously analyze hundreds of millions of nucleotide

fragments, offering low cost, high precision, and requires a small

sample volume. Additionally, ACAT-seq, as a crucial tool for

understanding chromatin states and epigenetic regulation, aids

researchers in analyzing chromatin accessibility, chromatin

structure and three-dimensional organization, and the association

between epigenetic changes and diseases. An overview of these
Frontiers in Endocrinology 06
common epigenetic research methods, including their advantages,

disadvantages, and applicability, is summarized in Table 1.
5.2.1 Environmental chemical substances
Heavy metal pollution has become a significant and

widespread environmental issue that poses multiple hazards to

human health. Cadmium, a typical heavy metal, exerts its

reproductive toxicity, carcinogenicity, and other toxic effects by

mediating changes in epigenetic modifications to regulate gene

expression (268). Cadmium exposure can affect the overall level of

genomic methylation. It leads to abnormal expression of

DNMTs enzymes, with significant reductions observed in

the mRNA and protein levels of DNMT1, DNMT3A, and

DNMT3B, thereby inducing global DNA hypomethylation in

vitro (124). Similarly, cadmium exposure can also cause DNA

hypermethylation to regulate gene expression. Aigner GP et al.

(125), using earthworms as a model organism, revealed cadmium-

induced hypermethylation of adenine and cytosine in spot

imprinting, thus elucidating the time- and dose-dependent

effects of Cd on global and gene-specific DNA methylation and

its potential mechanisms.

Research has shown that continuous exposure of Drosophila

melanogaster to cadmium during growth results in a significant

increase in H3K4me3 levels and a significant decrease in H3K9me3

and H3K27me3 levels in third-instar larvae of the offspring. The

expression of histone methylation-related genes dSet-1, ash1, and

Lsd1 is significantly increased. Cadmium-induced wing phenotypic

defects can be inherited by offspring, suggesting a potential

transgenerational effect related to histone methylation’s epigenetic

regulation (126).

Chen et al. (127)studied 31-week-old Hy-Line Brown hens fed

with dietary cadmium chloride (150 mg/kg) and found a close

association between miR-33 and cadmium toxicity. Cadmium

toxicity significantly inhibited the expression of miR-33 and

significantly increased the mRNA and protein levels of AMP-

activated protein kinase(AMPK), altering the expression pattern

of the miR-33-AMPK axis in the spleen and causing dysregulation

of the miRNA-33-AMPK axis.

Mercury (Hg) is also a heavy metal that, due to its toxicity and

widespread human exposure, has become a significant public health

concern. Mercury is found in a variety of sources including seafood,

household products, medical devices, and cosmetics, making it a

common occupational hazard. Mercury pollution and volcanic

eruptions are significant sources of its presence in soil, water, and

the atmosphere. High doses of mercury are widely recognized as

neurotoxic substances that negatively affect the female reproductive

system (128).

Studies have shown that whole-body exposure to 2.5 mg/m³ of

mercury for 6 hours per day over 6-8 weeks leads to prolonged

estrous cycles in treated female rats and increased mortality rates in

offspring (129). Davis et al. (130) found immature corpora lutea in

rats exposed to mercury vapor. Lamperti et al. (131) observed

inhibition of follicle maturation after injecting HgCl2 into

hamsters. Dansereau et al. directly demonstrated that female

minks exposed to a dietary concentration of 1.0 microgram/gram
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of mercury had fewer births compared to those exposed to 0.5

micrograms/gram and 0.1 micrograms/gram (132).

The theory of endocrine disruptors was initially proposed in the

1990s, identifying certain exogenous chemicals that interfere with

the endogenous hormonal axis (133). These chemicals can interact

in various ways within the body and affect different physiological

areas. They include a variety of substances found in the

environment, such as various pesticides, industrial chemicals (like

Bisphenol A and phthalates), and dioxins. The presence and

persistence of endocrine-disrupting chemicals (EDCs) in the
Frontiers in Endocrinology 07
environment impact organisms, and increasing evidence suggests

that EDCs may be etiologically linked to the development and

severity of diseases. The reproductive system is a primary target for

most endocrine disruptors (134). Universal exposure during early

development has been linked to the incidence of female cancers,

especially reproductive organ cancers such as breast and ovarian

cancer (135). In particular, in utero exposure might affect processes

that initiate tumor growth years later. Additionally, some

gynecological diseases are associated with exposure to various

environmental toxins, particularly during critical developmental
TABLE 1 Comparative summary of epigenetic research methods.

Serial
Number

Method
Applicable
Epigenetic

Type
Advantages Disadvantages References

1 WGBs
DNA

Methylation

Whole genome coverage; high resolution;
quantitative and precise analysis of methylation

levels and patterns at each CpG site

High cost; complex data processing; not
suitable for time-sensitive studies

(102, 103)

2 MeDIP
DNA

Methylation

High throughput; high specificity; low cost;
suitable for various species and sample types,
especially for CpG-rich (methylation) or

specific methylation

Low resolution; presence of affinity bias; not
suitable for other types of DNA modifications

(e.g., hydroxymethylation) or
specific methylation

(104, 105)

3 450k Chip
DNA

Methylation

High throughput; high resolution; accuracy;
covers most functional regions and key genes of

the genome

Lacks coverage of unknown or specific
regulatory regions; high cost; strict sample

processing requirements
(106)

4 MSP
DNA

Methylation
High specificity; high sensitivity; simple and fast

PCR bias; not suitable for unknown
methylation sites or large-scale

methylation analysis
(107)

5 RRBS
DNA

Methylation
High resolution; low initial DNA amount

requirement; low cost
PCR bias; complex data processing (108, 109)

6 MS-HRM
DNA

Methylation
High resolution; simple and fast; no primer

design required
PCR bias; limited by methylation range;

semi-quantitative
(110)

7 ChIP-seq
Protein

Modification
Whole genome coverage; high resolution;
discovery of new gene regulatory elements

High sample requirements; presence of
enrichment bias

(111, 112)

8 Cut&Tag
Protein

Modification
High resolution; simple, low cost; initial cell

number can be as low as 50
Antibody specificity requirements; potential

for background noise and non-specific binding
(113)

9 MS
Protein

Modification
Comprehensive; high resolution Limited by enzyme cleavage; expensive (114)

10 ELISA
Protein

Modification
High sensitivity; high throughput; simple,

low cost

Risk of cross-reactivity; limited dynamic range;
not suitable for small molecule analysis;

requires high-quality antibodies
(115, 116)

11
Edman

Degradation
Protein

Modification

Efficiently determines the N-terminal sequence of
proteins, suitable for small samples or high

precision sequence information
Low throughput; time-consuming (117)

12 RNA-seq
Non-

coding RNA
Whole genome coverage; high throughput;

detection of new genes and variants
Complex data analysis; high cost; high

requirements for RNA integrity
(118, 119)

13
Northern

Blot
Non-

coding RNA

Can measure RNA size and relative abundance;
shows RNA expression patterns and differential

expression; quantitative

Low throughput; time-consuming; does not
provide comprehensive

transcriptome information
(120)

14 RIP-seq
Non-

coding RNA
High throughput; high sensitivity; full

transcriptome coverage
Relies on antibody specificity; not suitable for

all RNA
(121)

15 FISH
Non-

coding RNA
High resolution; can detect multiple targets
simultaneously; maintains sample structure

Limited to static analysis; limited to
known sequences

(122)

16
Solexa

Sequencing
Non-

coding RNA
High throughput; high sensitivity and accuracy;

short time requirement
Complex data processing; relies on

reference genome
(123)
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stages. Bisphenol A (BPA) was the first synthetic chemical found to

cause selective estrogen receptor modulation, particularly as a

hormone-like pollutant. Recent studies have shown that prenatal

exposure to BPA might cause a phenotype similar to endometriosis

in mice (136). Phthalates and BPA are chemicals widely present in

many products, such as food packaging and household items. They

are typical endocrine disruptors present in various substances and

are frequently exposed to the public. Inhalation, ingestion, and skin

contact are all possible exposure pathways (137). Urine analysis is a

feasible method to confirm human exposure to these chemicals.

Studies have shown that endometriosis is associated with elevated

levels of phthalate metabolites and BPA metabolites in bodily

fluids (138).

In the environment, pesticides are also endocrine disruptors.

Current data indicate that approximately 2.5 million tons of

pesticides enter the environment annually (139). Pesticides tend

to accumulate in the environment due to their lipophilicity, long

half-lives, and long mobility, causing significant environmental

pollution (140). Pesticides can enter the human body through

inhalation or skin penetration, but the highest toxicity is from

ingesting contaminated food or water, including fish, meat and

dairy products (especially the high-fat parts), drinking water,

indoor and environmental air, and dust and soil (141, 142).

Dichloro-Diphenyl-Trichloroethane(DDT), one of the most

widely used pesticides, can bind with lipids and accumulate in

adipose tissue (143). Long-term presence of pesticides in the human

body can affect fertility and alter the levels of male and female

reproductive hormones. These chemicals have anti-androgenic and

estrogen-like properties (144), which may lead to stillbirth, birth

defects, spontaneous abortions, and infertility. Animal studies

suggest that daily exposure to DDT during prenatal and postnatal

development could cause gender differences in steroid levels,

possibly through direct interference by DDT and its impact on

the hypothalamic-pituitary system (144). Research has also found

that the disruptive effects of DDT involve competition with

testosterone and damage to androgen receptor binding and signal

transduction, as well as an association with increased estrogen

synthesis (145). These changes in hormone secretion may be

related to reproductive problems and physical diseases in later

life, as excessive estrogen secretion and an imbalanced

testosterone/estradiol ratio are associated with increased risks of

feminization, metabolic disorders, estrogen-related cancers, and

cardiovascular diseases (146).

Among the environmental pollutants that have been confirmed

to promote transgenerational inheritance of epigenetic phenotypes,

endocrine disruptors constitute a heterogeneous group of

substances capable of interfering with hormone signaling

pathways, directly altering germ cell epigenetic modifications, and

changing metabolism and reproductive function (147). For

instance, exposure to BPA increases DNA methylation and

histone acetylation in zebrafish testicular cells (148). Male

zebrafish exposed to BPA early in spermatogenesis and analyzed

for F1 embryos showed increased histone acetylation induced by

BPA, resulting in cardiac toxicity (149). Interestingly, research has

identified three pairs of miRNA-mRNA involved in hypoxia-

induced reproductive disorders, including novel miRNA-525-
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DIAPH2, novel miRNA-525-myocardium, and novel miRNA-

525-RAI14, indicating for the first time that miRNAs may

participate in hypoxia-induced reproductive disorders through

transgenerational inheritance (147).

Furthermore, exposure to other endocrine disruptors such as

organic compounds like benzo[a]pyrene (150) and air pollution

particulate matter like CO2 (151) is associated with epigenetic

changes, mediating DNA methylation, histones post-translational

modifications, RNA expression alterations, and inducing human

cancers and other diseases. These changes can be transgenerationally

inherited and manifest as alterations in fertility, metabolic function, or

behavioral traits.

Environmental pollution’s impact on human health is

becoming increasingly apparent, with particulate matter (PM)

pollution now recognized as one of the most critical public health

risks. Particulate matter pollution encompasses various airborne

particles, ranging in size from a few micrometers to visible particles

up to 100 micrometers. Long-term exposure to environmental

particulate matter can lead to cardiac and pulmonary diseases.

Most studies focus on particulate matter with an aerodynamic

diameter less than 10 micrometers (PM10) or less than 2.5

micrometers (PM2.5), which may adversely affect fetal

development, the normal course of pregnancy, and lead to

premature birth (152).

Research indicates that high concentrations of PM10 are closely

associated with an increased risk of pregnancy complications

throughout the gestation period and its various stages.

Particularly during the late stages of pregnancy, exposure to high

levels of PM2.5 significantly increases the risk of pregnancy

complications. In the middle stage of pregnancy and throughout

the entire gestational period, every 10 mg/m³ increase in PM10

concentration increases the risk of preterm birth (PTB) by 24% and

27%, respectively. Additionally, exposure to high concentrations of

PM10 during the mid-pregnancy stage increases the risk of

gestational diabetes mellitus (GDM) by 30%. For PM2.5, every 5

mg/m³ increase in concentration raises the risk of GDM by 15% in

the mid-pregnancy stage and 25% throughout the entire pregnancy.

In the first three months of pregnancy, exposure to high

concentrations of PM10 and PM2.5 increases the risk of having a

small for gestational age (SGA) infant by 96% and 26%,

respectively (153).

5.2.2 Other factors
There are reports indicating a positive correlation between the

highly prevalent sexually transmitted protozoan parasite

richomonas vaginalis and vaginal and cervical neoplasms in

women, as well as prostate cancer in men (154). Infection with T.

vaginalis significantly alters the structure of the vaginal

microbiome, shifting from a lactobacilli-dominated community to

one that favors the widespread transmission of bacterial vaginosis

(155). This parasite releases metabolites, such as indoles, which aid

in the survival of intracellular spreading bacteria like Chlamydia

trachomatis, which has been independently associated with cancer

(156). Given the positive correlation between bacterial vaginosis

and precancerous lesions of the cervix (157), it is necessary to

conduct research to clarify the role of the microbiome in T. vaginalis
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-associated vaginal carcinogenesis, whether as a cofactor or a

necessary factor.

Climate factors such as global warming (158) can also lead to

transgenerational transmission of specific histones post-

translational modifications, DNA methylation modifications, and

other epigenetic marks. This article provides a concise summary of

common environmental factors along with their epigenetic impacts

and mechanisms of action, as presented in Table 2 and Figure 2.
5.3 The regulation of female reproductive
function by epigenetics

5.3.1 Ovarian function and epigenetic regulation
PCOS, as a heterogeneous disease leading to reproductive and

metabolic disorders in women, is the most common cause of

infertility in women of childbearing age (171). A study (172)

analyzed the DNA methylation in ovarian tissues of PCOS-like

mice, and these findings suggest that PCOS can be transmitted to

offspring through changes in DNA methylation in epigenetics,

proposing that methylation biomarkers may serve as potential

diagnostic indicators for this disease. Another study indicated

that the histone deacetylase inhibitor valproic acid can reduce

metabolic dysfunction in the skeletal muscles of PCOS rats by

inhibiting PDK4/NLRP3 inflammasome (173). Therefore,

inhibiting histone acetylation may aid in the diagnosis and

treatment of PCOS. Additionally, alterations in non-coding RNAs

(ncRNAs) are one of the mechanisms of PCOS (174). In recent

years, numerous studies have shown significant abnormalities in the

expression of ncRNAs in follicular fluid, serum, ovarian granulosa

cells (175), and other tissues of women with PCOS. Therefore,

analyzing the abnormal expression of ncRNAs in PCOS patients
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can serve as diagnostic biomarkers and play crucial roles as

therapeutic targets in the treatment of PCOS.

As shown in Figure 3, premature ovarian insufficiency depicts

common ovarian dysfunctions and their epigenetic mechanisms.

POI refers to the ovarian function decline characterized by elevated

gonadotropins and estrogen deficiency in women before the age of

40, mainly manifested as menstrual abnormalities, ultimately

progressing to premature ovarian failure (POF) with varying

degrees of perimenopausal symptoms (176), affecting the fertility

and quality of life of women of reproductive age. N6-

methyladenosine (m6A) modification can effectively regulate the

epigenetics of mammalian transcriptome. A case-control study

(177) measured the m6A content in the RNA of POI patients and

controls. Compared with the control group, the m6A content in the

granulosa cells of POI patients was significantly increased,

accompanied by a significant decrease in FTO mRNA and protein

expression levels. The results indicate a strong association between

m6A content and the risk of POI, which may impair ovarian

function and further lead to complications of POI.

5.3.2 Fertility capability
In non-disease conditions, epigenetics can influence the female

reproductive environment, thus affecting fertility. The proper

development and maturation of oocytes not only directly impact

fertility but also relate to embryo health and the likelihood of

successful pregnancy. Appropriate methylation of oocytes is crucial

for coordinating gene expression patterns, driving oocyte

developmental programs, and ensuring oocyte quality. N6-

methyladenosine (m6A) is the most common internal

modification of mRNA (178), playing a role in oocyte maturation.

Specific knockout of METTL3 in Gdf9-Cre mouse oocytes disrupts

normal mRNA methylation, leading to DNA damage, follicular
TABLE 2 Environmental factors that can induce epigenetic changes affecting female reproduction.

Environmental Factors Reproductive Impact
Involved Epigenetic

Mechanism
References

Heavy Metals
Cadmium

Endometriosis, uterine
fibroids, miscarriage

Activates certain cellular signals,
suppresses DNA methylation,
increases miR-146a expression

(159)

Lead Breast cancer, heart disease Gene-specific hypomethylation (160, 161)

Endocrine
Disruptors

Bisphenol A
Breast cancer, oocyte
development defects

Induces DNA hypomethylation,
increases miR-146a overexpression

(162, 163)

Phthalates
Uterine fibroids,

endometrial hyperplasia
Induces DNA hypermethylation (164, 165)

Pesticides

DDT
Ovarian tumors, polycystic ovary
syndrome, endometriosis, infertility

Affects DNA methylation (166)

Atrazine
Pregnancy complications, anemia,

breast cancer

Gene-specific CpG methylation
changes, affects gene expression,
chromatin remodeling, and

DNA methylation

(167)

Environmental
Pollutants

PM10, PM containing heavy metals
Gestational diabetes, preterm birth,

low birth weight, stillbirth,
birth defects

Induces gene expression changes,
rapid changes in miR-21 and miR-

222 expression
(168, 169)

Chemicals
Infertility, decreased ovarian reserve,

uterine fibroids, ovarian cancer
Affects microRNA expression

and regulation
(170)
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development defects, and ovulation abnormalities. It has been

shown that the methyltransferase METTL3 may enhance the

stability of m6A modifications on Itsn2, affecting oocyte meiosis

(179, 180). Similarly, studies have found that the negative mutant

H3.3-K4M specifically expressed in mouse oocytes reduces H3K4

methylation levels, leading to decreased transcriptional activity and
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increased DNA methylation in oocytes, disrupting oocyte

development and female mouse fertility. Early embryos from

H3.3-K4M oocytes exhibit developmental arrest and reduced

activation of the zygotic genome (181).

Epigenetics also influences the role of hormones in the

reproductive system by regulating gene expression, including
FIGURE 3

Epigenetic mechanisms regulate female reproductive capacity, leading to ovarian dysfunction. Dysregulation of DNA methylation, histones post-
translational modifications, and ncRNAs can result in polycystic ovary syndrome (PCOS), while alterations in m6A, FTO, and mRNA levels contribute
to premature ovarian insufficiency (POI). (Draw by figdraw.).
FIGURE 2

The epigenetic impact of environmental factors on reproductive health. This figure elucidates the influence of environmental factors on reproductive health
from three aspects: ovarian function, epigenetic modifications, germ cell function, and other examples are given to illustrate the impact of environmental
factors on reproductive health. For example, the negative effects of PM10 and pesticides on women’s reproductive health. (Draw by figdraw.).
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hormone synthesis, secretion, and receptor sensitivity, thus affecting

ovarian function, the uterine environment, and cyclic changes.

Research has shown that the estrogen receptor a (ERa) can

recruit various coregulators (such as histone modifiers,

transcription factors, or other auxiliary proteins), where histone

modifiers alter the chromatin structure and organization, regulate

gene accessibility and transcriptional activity, and promote

chromatin opening, facilitating the binding of ERa and

transcription mechanisms to estrogen response elements (ERE)

(182). SMYD2 is a proven negative regulator of ERa, primarily

inhibiting the activation of estrogen receptor target genes by aiding

methylation of ERa protein at the K266 site (183). An epigenetic

axis exists between TET2 and ERa, with endogenous TET2

occupying active enhancers and promoting proper recruitment of

ERa. DNA demethylation activates enhancers to coordinate

transcription programs, enhancing estrogen response (184).

Besides influencing reproductive hormone receptors, epigenetics

can cause changes in reproductive hormone synthesis.

Endometriosis or adenomyosis cells often exhibit aberrant

epigenetic programming mechanisms. Binding of NR5A1 to the

proximal promoter of the CYP19A1 gene may promote

demethylation of the NR5A1 gene promoter region, leading to

overexpression of estrogen receptor-b (ESR2), excessive estrogen

formation, abnormal interaction of estrogen with ESR2, and

progesterone resistance (185). In regulating the internal hormonal

environment in women, the hypothalamus serves as a key hub of

the endocrine system, regulating the secretion of multiple

hormones. By secreting gonadotropin-releasing hormone

(GnRH), it controls the anterior pituitary secretion of follicle-

stimulating hormone (FSH) and luteinizing hormone (LH) (186).

Epigenetic mechanisms regulate the expression of related

hypothalamic genes, affecting the synthesis and secretion of

GnRH, thereby controlling the release of FSH and LH,

stimulating follicular development and ovulation, thus

maintaining a normal reproductive cycle (187). A study showed

that perinatal exposure to EDCs can reprogram DNA methylation

and steroid hormone receptor expression through epigenetic

mechanisms to regulate female fertility (188).

When embryos develop to the blastocyst stage, they can enter

the uterine cavity and interact with the endometrium, a process

regulated by epigenetics. During this process, the miRNA

processing enzyme Dicer is upregulated, and microRNA Let-7a is

downregulated, enabling the blastocyst to acquire the ability to

implant in the uterus (189). During embryo implantation, DNA

methylation can regulate the expression of HOXA10. Abnormal

DNA methylation can downregulate HOXA10 expression (190),

affecting endometrial receptivity. Targeted destruction of HOXA10

in female mice can lead to embryo death and implantation failure

(191). Endometrial angiogenesis is a necessary condition for good

endometrial receptivity, and a study showed that the KLF4

(Krüppel-like factor 4)-VEGFA (vascular endothelial growth

factor A) positive feedback loop is regulated by epigenetics,

promoting proliferation and migration of human endometrial

microvascular endothelial cells (HEMECs), inhibiting apoptosis,

thus enhancing endometrial receptivity (192). Abnormal expression

of non-coding RNA miRNAs can lead to defects in human
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endometrial receptivity. Patients with recurrent implantation

failure (RIF) in IVF exhibit lower mRNA levels of cell adhesion

molecules, Wnt signaling components, and cell cycle pathways,

including N-cadherin, H2AFX, netrin-4, and secreted frizzled-

related protein-4 (193).

Endometriosis is a common benign inflammatory gynecological

disease characterized by the presence and growth of endometrial-

like glands and stroma outside the uterus, leading to pelvic pain and

reduced fertility in reproductive-aged women, significantly

impacting the quality of life of affected women 194. Epigenetic

processes can regulate gene expression during endometrial

development throughout the menstrual cycle through various

mechanisms, altering the function and morphology of the

endometrium. Epigenetic dysregulation plays an important role in

the pathogenesis and pathophysiology of endometriosis, with

aberrant expression of epigenetic processes found in the

endometrium of affected women, holding great potential as

therapeutic targets, diagnostic, and prognostic markers (195).

DNA methylation is one of the most common epigenetic

modifications in endometrial biology, with changes in DNA

methylation occurring during different stages of the menstrual

cycle (196). As a representative example, high methylation of the

HOXA10 gene promoter in the endometrium of women with

endometriosis leads to gene silencing, resulting in decreased levels

of HOXA10 in the ectopic endometrium, potentially impairing

female fertility (197). Similarly, histones post-translational

modifications are associated with endometrial function. Reduced

protein levels of histone deacetylase 3 (HDAC3) in the ectopic

endometrium of infertile women with endometriosis may impair

fertility, as HDAC3 is crucial for endometrial receptivity and

decidualization. As a typical example, studies by Samartzis, E.P.

et al. on the impact of Hdac3 deletion in mouse uteri on fertility

demonstrated that Hdac3 deficiency can lead to aberrant

transcriptional activation of two direct targets of mouse and

human HDAC3, COL1A1 and COL1A2(COL1A1 and COL1A2,

genes that encodes the human collagen Iachain), resulting in

implantation and decidualization abnormalities and consequent

loss of fertility (198). Thus, aberrant expression of HDACs can

better explain the causes and mechanisms of endometriosis. A study

evaluating differential expression of microRNAs in serum cultures

of severe endometriosis patients and controls found significant

dysregulation of six microRNAs. This study confirmed the role of

miRNAs in the pathogenesis of endometriosis, demonstrating that

serum-derived eMSCs from severe endometriosis patients can

induce abnormal expression of miRNAs and their target genes,

leading to the development of endometriosis (199). Figure 4

illustrates the common epigenetic mechanisms and associated

genes involved in endometriosis.

Pre-eclampsia is a multisystem disease broadly affecting

pregnancy, annually responsible for over 60,000 maternal deaths

globally and causing more than 500,000 cases of preterm birth

(200). Studies have established an association between the ACVR2A

gene and pre-ec lampsia . Although single nuc leot ide

polymorphisms (SNPs) related to the ACVR2A gene do not

reside within its coding region, and thus do not directly alter the

coding sequence of the ACVR2A protein, they may still influence
frontiersin.org

https://doi.org/10.3389/fendo.2024.1399757
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yu et al. 10.3389/fendo.2024.1399757
the transcription of the ACVR2A gene by affecting the binding of

transcription factors or the regulation by microRNAs. ACVR2A is

located on chromosome 2q22, and its encoded type II activin

receptor binds the activin A ligand (201). In maternal tissues,

activin A promotes decidualization of the endometrial stroma

cells and regulates the invasion process of the trophoblast (202);

in fetal tissues, it is essential for trophoblast differentiation,

placental development, and the functional regulation of the

trophoblast (203).

Adenomyosis, a common gynecological disorder in women of

reproductive age, is characterized by the aberrant invasion of

endometrial tissue into the myometrium and is closely associated

with infertility (204). Studies on the expression and localization of

DNMT in healthy females and those with adenomyosis revealed

heightened immunoreactivity to DNMT1 and DNMT3B in ectopic

endometrium (265), whereas DNMT3A staining levels significantly

decreased in both eutopic and ectopic endometrium. Beyond DNA

methylation, abnormal expression and localization of class I histone

deacetylases (HDACs) in the endometrium have also been

confirmed (205). Additionally, lower total m6A levels in the

myometrium of patients with adenomyosis have been linked to

differential expression of METTL3 and ZC3H13 (206), suggesting

that m6A RNA methylation regulatory factors may participate in

the pathogenesis of adenomyosis through aberrant expression in

the endometrium.

Furthermore, improper maintenance of heritable epigenetic

markers can result in aberrantly activated or suppressed signaling

pathways, leading to malignant tumors in the reproductive system

(207). Research has shown that epigenetic modifications like DNA

methylation can influence TMB and play an indispensable role in

tumor onset, as proposed by Liu B et al., where DNAmethylation in

the tumor microenvironment (TME) affects the expression levels of
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certain cervical cancer genes, further influencing the immune

response in the TME, thereby inducing cervical cancer (208).

Moreover, other reproductive system cancers such as endometrial

cancer, ovarian cancer, and uterine fibroids can also arise due to

epigenetic induction, leading to infertility and life-threatening

conditions for the patient.

Uterine fibroids (also known as leiomyomas), the most

common benign gynecological tumors among women of

reproductive age worldwide, can cause severe anemia, pelvic pain,

and infertility by affecting the overall function of the endometrium

(209). Compared to normal myometrial layers, uterine fibroids

exhibit altered levels of DNA methylation, increased estrogen

receptor mRNA, and DNA methyltransferase levels. The

activation of the PANKL gene plays a crucial role in the

development of uterine fibroids by activating stem cells in

the myometrial layer (210), while DNA methylation and MED12

gene mutations form a complex regulatory network affecting the

expression of the PANKL gene mediated by progesterone and its

receptors. Furthermore, post-translational modifications of histones

in uterine fibroid tissues have changed, particularly through

genomic activation-related histone acetylation; acetylated histone

H3K27 is involved in regulating genes related to cell signaling,

transport, angiogenesis, and extracellular matrix formation,

promoting the development of uterine fibroids (211). The miR-29

family is associated with the deposition of the extracellular matrix,

and the miR-3 family can regulate cyclins, also interacting with long

non-coding RNAs (lncRNAs) to promote the production and

deposition of the extracellular matrix, providing a physical

platform for tumor cell growth, migration, and spread.

Overproduction of extracellular matrix components not only

increases the hardness and volume of the fibroids but also

regulates the TGF-b signaling pathway through miRNA
FIGURE 4

Endometriosis is associated with epigenetic mechanisms related to gene regulation, DNA methylation (HOXA10), histones post-translational
modifications (HDAC3), and non-coding RNAs (ncRNAs). (Draw by figdraw.).
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expression, thereby affecting the normal biological functions of the

uterine wall, such as menstrual bleeding, fertility, and embryo

implantation. In this context, research by Włodarczyk et al. (212)

further indicates that abnormal changes in TET protein and 5hmC

levels may be key factors leading to the formation of uterine

fibroids. Additionally, lncRNAs can directly activate the Wnt/b-
catenin pathway through the estrogen receptor, promoting the

proliferation of uterine fibroid cells (213).

Ovarian cancer poses a serious threat to female reproductive

health, with miRNAs playing a critical role in the pathogenesis and

progression of the disease (214). Studies have found that certain

miRNAs are aberrantly expressed in ovarian cancer tissues, showing

upregulation or downregulation, directly affecting multiple key

biological processes including cell proliferation, apoptosis,

metastasis, and invasion capabilities (215). For instance, the

significant downregulation of miR-126-3p in ovarian cancer cells

is closely related to tumor cell proliferation and invasion (216). In

the treatment process, aberrant miRNA expression is also

associated with resistance of ovarian cancer cells to chemotherapy

drugs, potentially leading to disease relapse and progression (217).

Additionally, single-gene methylation biomarkers such as RASSF1A

and BRCA1 are significant factors in the onset and progression of

ovarian cancer. Studies have shown that high methylation levels of

BRCA1 and RASSF1A are prevalent in ovarian cancer patients, with

82% of patients exhibiting the same high methylation pattern in

serum or plasma BRCA1 and RASSF1A (218). Methylation of these

genes is highly correlated with clinical features of ovarian cancer

such as FIGO stage, plasma CA-125 levels, and histological

type (219).

In the development of cervical cancer (CC), persistent HR-HPV

infection, aberrant methylation of the host cell genome and HPV

genome DNA in cervical squamous epithelial cells can lead to

dysfunction of various tumor suppressor genes, promoting the

development of CC (220). The cervix, a critical gateway for

nurturing life, is highly sensitive to estrogens, and research in an

HPV transgenic mouse model has shown that estrogens and their

nuclear receptors, in conjunction with HPV oncogenes, promote

the onset of cervical cancer (221). Highly methylated and lowly

expressed genes (Hyper-LGs) are significantly enriched in estrogen

receptor pathways and the Wnt/b-catenin signaling pathway,

affecting estrogen expression (222). Current research on post-

translational modifications of CC proteins has focused on histone

acetylation. One study showed that histone H3 and H4 acetylation

is associated with the activation of HPV16 gene expression levels in

CC cells, with histone acetylation levels increasing as HPV16 gene

expression increases, thereby advancing the development of CC

(223). Moreover, extensive research has demonstrated that

lncRNAs are involved in the malignant transformation of cervical

epithelial cells. For example, lncRNAMIR210HG is overexpressed

in CC tissues and promotes cell proliferation and invasion through

hypoxia-inducible factor-1a (HIF-1a) (224).
The endometrium, a hormone-sensitive tissue, undergoes

numerous biochemical and morphological changes during the

normal menstrual cycle under the control of steroid hormone

levels, while abnormal exposure to estrogens can significantly

increase the risk of endometrial cancer (225). DNA methylation
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can affect the functional changes of endometrial tissue, for instance,

overall DNA methylation status and progesterone receptor levels

are significantly increased during the proliferative phase and

decrease at the end of the secretory phase (226). Apoptotic cell

death mediated elimination of senescent cells in the functional layer

of the endometrium helps maintain cellular homeostasis, thus

avoiding apoptosis remains a major issue in the successful

treatment of late-stage endometrial cancer. Abnormal changes in

DNA methylation can lead to the deregulation of key apoptotic

proteins during the development of endometrial cancer, resulting in

the development of apoptosis resistance (227).

5.3.3 Specific studies
Women exposed to various chemical, biological, physical, and

sociopsychological factors may experience impacts on their

reproductive systems. These effects can manifest as changes in sex

hormone levels, sexual dysfunction, menstrual disorders, early

menopause, delayed menarche, impaired ovarian function,

reduced fertility, and adverse pregnancy outcomes. During

pregnancy, maternal exposure can disrupt normal fetal

development, such as intrauterine growth retardation, preterm

birth, birth defects, and impacts on cognitive development and

immune function (228). Thakur et al.’s study showed that in areas

affected by heavy metals and pesticides, the rate of spontaneous

abortions is 20.6 per 1000 live births, and the rate of preterm births

is 6.7 per 1000 live births, significantly higher than in non-polluted

areas. Petrelli et al. (229) found that the abortion/pregnancy ratio

for pesticide applicators was 0.27, compared to 0.07 for food

retailers. In a multivariable logistic regression model, after

adjusting for the wife’s age and parents’ smoking habits, the odds

ratio for spontaneous abortion was 3.8 times higher compared to

the control group; considering interaction effects, this ratio

increased to 7.6 times. Both men and women exposed to certain

pesticides face increased risks of abnormal sperm, reduced fertility,

increased spontaneous abortions, male birth defects, birth defects,

or fetal growth retardation (230). Logan and Chen (231) noted that

exposure to bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT)

might reduce the rate of preterm births, thereby lowering infant

mortality in malaria control. Additionally, Salazar-Garcıá et al.

(232) reported that occupational exposure to DDT is associated

with an increased risk of birth defects. It has been reported that

levels of DDT metabolites (p, p’-DDE) are higher in 100% of

infertile women. Furthermore, studies (233) have also found that

pesticide exposure can lead to reduced fertility. Moreover, parents

working in agriculture may increase the risk of congenital

anomalies in their children, such as hemangiomas, orofacial clefts,

neurological damage, and musculoskeletal defects.

In conclusion, environmental factors can induce epigenetic

changes that affect female reproductive function. Epigenetics

serves as a bridge and mediator, establishing a connection

between environmental factors and female reproductive function.

Below are specific research examples. A cross-sectional study based

on 1647 American women aged 20-54 with endometriosis from

1999 to 2006 showed a positive correlation between urinary

cadmium levels and the prevalence of endometriosis (234).

Additionally, research exposed fruit flies to cadmium during egg
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development to adulthood, then cultured the offspring in a

cadmium-free environment. Under cadmium exposure, the

expression of histone methylation-related genes significantly

increased in the ovaries of third instar larvae and adult flies, with

a marked increase in histone H3K4me3 post-translational

modification and a decrease in H3K9me3 and H3K27me3 levels.

These changes could be transmitted to the offspring’s ovaries,

leading to changes in reproductive ability (126). Female

reproductive capacity begins in fetal ovaries, and early steps in

folliculogenesis are sensitive to environmental factors. The quality

of oocytes is closely linked to the process of folliculogenesis, with a

long window of susceptibility to environmental damage. After

fertilization, fertilized eggs and pre-implantation embryos

undergo extensive epigenetic reprogramming. The FEDEXPO

project studied potential transgenerational inheritance based on

epigenetic markers in F1 offspring gametes, demonstrating that

early and perinatal environments can have adverse effects on female

reproductive capacity. Abnormalities in epigenetic processes and

imprints may affect the health of future generations (235).

Therefore, it is crucial to closely monitor and assess the toxicity

and risks of environmental factors, avoid inducing epigenetic

changes that may harm female reproductive capacity, and

consider the adaptability of future generations.
5.4 The role of epigenetics in female
reproductive health

In the field of female reproductive health, epigenetic processes

such as DNA methylation and histones post-translational

modifications play a pivotal role. These changes are crucial in the

transition from the maternal environment of the oocyte to the

embryo-driven developmental expression program (236), thereby

significantly influencing the regulation of ovarian function, oocyte

maturation, and embryo development.

DNA methylation, particularly in the regulation of ovarian

function, plays a key role. Alterations in DNA methylation can

affect the activity of specific genes, thereby regulating the levels of

hormones in the ovaries, which are vital for fertility. For instance,

methylation changes in genes that affect oocyte maturation and the

ovulatory cycle may lead to fertility-related issues.

Taking m6A as an example, N6-methyladenosine, also known

as m6A, is a widely occurring base modification on mRNA and

represents the most prevalent form of RNA modification in the

human body. Due to the dynamic and reversible regulation of

various biological processes by m6A (237), abnormal increases or

decreases in its levels can lead to the occurrence of different diseases,

including many female reproductive endocrine disorders such as

endometriosis, polycystic ovary syndrome, and malignancies of the

female reproductive system like endometrial cancer and cervical

cancer (172, 198, 238).

In the development of these diseases, DNA methylation and

m6A modifications may exert their effects through pathways such

as influencing the expression of specific genes or regulating

hormone levels in the ovaries. These findings underscore the

importance of in-depth research into the role of epigenetics in
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female reproductive health to better understand, prevent, and treat

related diseases.

5.4.1 The epigenetic impact of environmental
factors on reproductive health

Environmental factors such as diet, lifestyle, psychological

stress, and exposure to chemicals play a significant role in female

reproductive health. These factors can alter patterns of DNA

methylation and histones post-translational modifications,

affecting gene expression and thereby significantly impacting

reproductive health.

For instance, long-term exposure to certain environmental

pollutants, such as heavy metals, organic pollutants, and

endocrine-disrupting chemicals, may lead to changes in the

epigenetic markers of eggs and sperm (239, 240). These changes

can affect the functionality of reproductive cells, such as the

maturation of oocytes and the vitality of sperm, thereby

impacting the healthy development of embryos and fertility.

Studies have shown that environmental endocrine disruptors

may affect epigenetic modifications, interfering with the

development of reproductive cells (241).

Increasing evidence suggests that widely prevalent

environmental pollutants known as endocrine-disrupting

chemicals (EDCs), such as BPA, polychlorinated biphenyls

(PCBs), and phthalates, negatively impact reproductive health in

animals and humans and are associated with various diseases,

including infertility. EDCs can exhibit estrogen-like activity,

mimicking or blocking the actions of endogenous hormones and

affecting related genes, thus altering phenotypes. Hormones cause

developmental changes in offspring through embryonic

methylation and maintain these changes in germ cells. Evidence

indicates that exposure to EDCs impacts female reproductive

potential, as measured by ovarian reserve and outcomes of

assisted reproductive technologies (ART) (242).

In addition to natural pregnancies, women undergoing ART are

also susceptible to environmental influences. Studies have examined

women who underwent ART and were closely monitored during

early pregnancy to explore the association between exposure to

types of environmental air pollution and the timing of miscarriages.

It was found that higher NO2 exposure was associated with an

increased risk of miscarriage within 30 days after a positive Human

Chorionic Gonadotropin(HCG) test (243). Beyond miscarriages,

immediate maternal complications related to ART are among the

more apparent and recognizable issues, such as ovarian

hyperstimulation syndrome (OHSS), and risks associated with

ART procedures including egg retrieval, embryo transfer, and

fetal reduction surgeries (244). Additionally, a range of derived

issues such as risks associated with operative anesthesia,

endometrial biopsy, and hysteroscopy can impact the individual

and potentially affect the offspring.

Despite ART being a core technology for treating infertility in

contemporary settings, a woman’s reproductive potential still

largely depends on the quality of her oocytes and the maternal

environment that supports embryo implantation and development.

The influence of the perinatal environment on the epigenetics of

developing embryos has become a focal point in research into the
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effects of the environment, nutrition, and assisted reproductive

technologies on human development and health (245).

These findings indicate that environmental factors and lifestyle

choices are crucial for maintaining reproductive health, especially in

preventing and managing reproductive issues related to the

environment. Therefore, understanding how environmental

factors influence reproductive health through epigenetic

mechanisms is essential for developing effective prevention and

intervention strategies.

5.4.2 Epigenetics and female fertility
Moreover, the impact of epigenetic changes on female fertility is a

significant area of research. As age increases, the quantity and quality

of eggs in the ovaries gradually decline, a phenomenon that may be

related to changes in the methylation patterns of specific genes. Age-

related changes in the methylation patterns of genes in eggs may

affect their maturation process and fertilization capability. The

decline in egg quality is not only related to epigenetic changes but

also involves abnormalities in mitochondrial function, mutations in

nuclear DNA, shortening of telomeres, misalignment of

chromosomes, and inactivation of the spindle checkpoint. These

changes may lead to early pregnancy loss, neonatal death, or

chromosomal aneuploidy genetic diseases such as Down syndrome

(246). In terms of epigenetic regulation, METTL3 is a key factor.

Knocking out METTL3 severely inhibits the maturation of oocytes,

affecting the transition from oocyte to zygote (247). Although the

pathogenesis of most patients with ovarian dysfunction is not entirely

clear, related experiments indicate (248) that the development of

oocytes in Zmettl3m/m zebrafish (a zygotic defect mutant line

targeting METTL3 exons) is delayed, with most remaining at an

early stage. The m6A modification evidently affects the maturation

rate of follicles; the experiment also pointed out that due to the

significant reduction in m6A content in the oocytes of Zmettl3m/m

zebrafish, the key factors related to in vivo sex hormone synthesis and

gonadotropin signaling cannot be normally expressed. Consequently,

this leads to a decrease in the secretion of 11-ketotestosterone and

17b-estradiol in the offspring embryos, ultimately causing gamete

maturation disorders and reduced fertility. Additionally, the

methylation status of some genes may affect the cell cycle

regulation and aging of the oocyte (249), thereby impacting its

maturation and quality.

5.4.3 The role of epigenetics in pregnancy and
embryonic development

During pregnancy and embryonic development, epigenetics

plays a crucial role. The nutritional status of pregnant women,

environmental exposure, and psychological state can influence the

development of the embryo by altering its epigenetic status (250).

These factors not only have a significant impact on embryonic

development during pregnancy but may also have a profound effect

on the long-term health of the offspring, including their metabolic

status and disease susceptibility in adulthood.

Epigenetics plays a vital role at every stage of embryonic

development. For example, during the early stages of embryonic

development (251), the nutrition and environmental factors
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provided by the mother can regulate the gene expression and

development of the embryo by affecting gene methylation and

histones post-translational modifications. This epigenetic

regulation is not only crucial for the normal development of the

embryo but may also affect the long-term health and disease

susceptibility of the embryo.

Moreover, the regulation of gene expression during the early

stages of embryonic development is highly complex and dynamically

ordered, supported by various factors, including transcription factors

and epigenetic information such as chromatin accessibility, DNA

methylation, and histones post-translational modifications.

Transcription factors and epigenetic information (such as

chromatin accessibility, DNA methylation, histones post-

translational modifications, etc.) are important factors in the

regulation of gene expression during early embryonic development

(252, 253). These factors work together to ensure the smooth

progression and transition of important biological processes at

various stages of early embryonic development.

Therefore, in-depth research into the role of epigenetics in

pregnancy and embryonic development is of great significance for

understanding the mechanisms of normal embryonic development,

predicting and preventing developmental abnormalities, and

improving the health of offspring.
5.4.4 The epigenetic effects of environmental
factors on offspring health

Embryonic development and infancy are two critical periods

that are particularly sensitive to environmental factors. During

these stages, epigenetic programming is highly susceptible to

various environmental factors such as diet, temperature,

environmental toxins, maternal behavioral habits, and even

childhood experiences of abuse. The epigenetic modifications of

imprinted genes induced by these factors may lead to poor

development of multiple organs in the fetus and may increase the

risk of various diseases in adulthood (254). For instance, Professor

Li Jingwen from Fujian Medical University has pointed out that

exposure to cadmium during pregnancy in rats has shown effects on

the regulation of miRNA and DNA methylation patterns in the

offspring’s ovarian granulosa cells, revealing the potential for

epigenetic changes to be inherited across generations. This cross-

generational impact highlights the significance of environmental

factors in affecting the health of offspring, especially how exposure

to harmful substances during early pregnancy can have long-lasting

effects on the health of the offspring.

The intrauterine environment and the early environment of

newborns can provoke permanent responses in fetuses and

newborns, thereby increasing their susceptibility to diseases later

in life (255). Today, the mode of conception (such as in vitro

fertilization), maternal metabolic conditions (such as malnutrition,

overnutrition, diabetes), and pregnancy complications (such as

preeclampsia and intrauterine growth restriction) are suspected to

be negative predictors of long-term health in offspring.

Moreover, as ART become more widespread, while they

compensate for familial deficiencies, they also bring subsequent

health risks to offspring. During ART, significant epigenetic
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reprogramming occurs, which is crucial for the normal destiny of

the embryo. This epigenetic reprogramming is highly susceptible to

changes in environmental conditions, such as those inherent in in

vitro fertilization, including in vitro culture, nutrients, lighting,

temperature, oxygen tension, embryo-maternal signaling, and the

general lack of protection against exogenous elements that could

destabilize this process (256). Professor Zhuan Ning Xia of

Shanghai Jiao Tong University, using the Shanghai area as an

example, found that exposure to pesticides affects not only the

reproductive health of women undergoing ART but also adversely

affects their offspring. As more infants are born, some involving

embryo culture and exposure to potentially inappropriate

environmental factors, this could alter the phenotype of the

offspring, such as Large Offspring Syndrome in cattle (257).

Like in cattle, ART can facilitate the development of human

congenital overgrowth conditions, known as Beckwith-Wiedemann

syndrome (BWS), which may later lead to molar pregnancies and

embryonal tumor formation. BWS is an overgrowth and embryonal

tumor susceptibility disorder linked to genetic or epigenetic

abnormalities in the chromosome 11p15.5 region, causing abnormal

expression of parental alleles. ART disrupts the DNA methylation of

imprinting sites, supporting the notion that ART could lead to

imprinting disorders, including BWS. Children conceived through

ART are at a 4 to 10 times higher risk of developing BWS compared

to those conceived naturally (258). Furthermore, long-term exposure to

inappropriate environmental factors aligns with the “DOHaD theory”

– that in addition to adult lifestyle and genetic inheritance, early life

environmental factors, including nutrition, influence the risk of some

non-communicable diseases in adulthood, such as obesity, diabetes,

and cardiovascular diseases.

These studies indicate that the environmental and behavioral

choices of mothers during pregnancy not only affect their own

health but can also have profound effects on the health of their

offspring. Therefore, understanding how maternal environmental

factors influence the health of offspring through epigenetic

mechanisms is of significant importance for the prevention and

management of environment-related health issues.

5.4.5 The application of epigenetics in
reproductive medicine

The application of epigenetics in the field of reproductive

medicine has significantly enhanced our understanding of the

fertility process and provided new therapeutic strategies for treating

infertility. According to a 2021 study published in “The Lancet,” the

current global live birth rate for ART, such as in vitro fertilization

(IVF), is below 30%. Epigenetics plays a crucial role in the

development of embryos and the trophoblast layer. The use of

ART during this critical period introduces a potential window of

vulnerability where epigenetic changes can occur. This susceptibility

is due to the significant epigenetic reprogramming that embryos

undergo during early development, which can be influenced by the

ART procedures. These procedures may include culture conditions,

media composition, and handling techniques, all of which could

potentially impact the epigenetic landscape of developing embryos,

leading to lasting effects on gene expression and function. By

regulating the methylation status of specific genes in ovarian cells,
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the success rate of IVF can be effectively improved (259), and the

yield of high-quality embryos can be increased. This method

increases the chances of fertilization and healthy pregnancy by

optimizing the quality of oocytes and the early development

of embryos.

Furthermore, research in epigenetics provides a solid scientific

foundation for future reproductive health intervention strategies.

These interventions could address the issue of declining fertility due

to ovarian aging as age increases (260) and may play a role in

treating reproductive endocrine diseases. For example, treatments

for reproductive endocrine disorders like PCOS might find new

directions from an epigenetic perspective.

In the realm of female reproductive health, studies in

epigenetics have not only revealed the crucial roles of DNA

methylation and histones post-translational modifications in

ovarian function, oocyte maturation, and embryonic development

but also emphasized the significant impact of environmental factors

such as diet, lifestyle, and chemical exposures on gene expression.

These impacts may extend to the pregnancy process and the long-

term health of offspring.

On the other hand, epigenetic changes are reversible, and

understanding the pathogenesis of epigenetic diseases could allow

for therapeutic interventions by targeting these modifications. In-

depth studies on epigenetics help elucidate the mechanisms of

human reproduction and related diseases and offer potential

therapeutic approaches. For example, abnormal DNA methylation

plays a crucial role in the initiation and progression of endometrial

cancer, leading to the silencing of Estrogen Receptor(ER) and

Progesterone Receptor(PR) expression, increased genomic DNA

instability, activation of oncogenes, and inactivation of tumor

suppressor genes. Yanokura et al. (261) found that the abnormal

hypermethylation of the CHFR mitotic checkpoint gene in

endometrial cancer tumor cells is closely related to the sensitivity

to taxane-based drugs, providing new intervention targets and

guidance for tumor treatment.

As basic and clinical research advances, epigenetic regulation has

been found to be significant in the pathogenesis, diagnosis, treatment,

and prognosis assessment of various malignancies. Recent studies

have shown that DNMT inhibitors, which competitively inhibit

DNMT activity and block methylation reactions, have been

effective in treating endometrial cancer in clinical settings (262).

Clinical trials indicate that DNA demethylating agents can reverse

platinum resistance in ovarian cancer patients, suggesting that

epigenetic drug therapy has clinical benefits in treating

chemotherapy-resistant or recurrent advanced ovarian cancer (263).

Exploring the epigenetic molecular regulatory mechanisms of

human germ cell development not only provides a theoretical basis

for inquiries into issues like epigenetic reprogramming of human germ

cells, the establishment of pluripotency in early embryos, directed

differentiation of stem cells into gametes, and transgenerational

inheritance of DNA methylation but also holds significant

implications for assessing the safety of assisted reproductive

technologies, determining whether reproductive disorders will be

inherited by offspring or across generations, researching recurrent

miscarriages and embryonic arrest, and studying diseases related to

abnormal development of reproductive cells in clinical settings.
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In summary, research and applications of epigenetics in the field

of reproductive medicine have provided new insights and

therapeutic strategies, especially showing great potential in

improving IVF and embryo quality.
6 Conclusion and future perspectives

Epigenetics plays a crucial role in women’s reproductive health,

and environmental factors also have a potential impact on it by

inducing epigenetic changes that affect female reproductive functions.

External harmful environmental factors, such as PM2.5 and gaseous

pollutants, can impact the female reproductive system, leading to

infertility, pregnancy complications, and other issues. Additionally,

harmful chemicals such as polycyclic aromatic hydrocarbons and the

heavy metal cadmium can affect women’s reproductive health,

potentially leading to preterm birth, miscarriage, and halted

embryonic development among other adverse pregnancy outcomes.

Long-term exposure to these environmental pollutants may lead to

changes in the epigenetic markers of eggs and sperm, affecting the

function of reproductive cells and thereby impacting the development

of the embryo and fertility. Furthermore, environmental endocrine

disruptors may affect epigenetic modifications, thereby interfering with

the development of reproductive cells. Therefore, environmental

factors and lifestyle choices are crucial for maintaining

reproductive health.

The revelation of the impact of epigenetics and environmental

factors on women’s reproductive health provides new approaches

for treating infertility, pregnancy complications, and other diseases.

By regulating the methylation status of specific genes in ovarian

cells, the success rate of in vitro fertilization can be effectively

increased and embryo quality improved. Meanwhile, studying how

environmental factors influence reproductive health through

epigenetic mechanisms is important for predicting and preventing

developmental anomalies and improving offspring health.

Future research directions may include more in-depth studies on

the role of epigenetics in women’s reproductive health and intervening

in epigenetic changes through gene editing. Technologically,

researchers might utilize epigenetics to address issues such as

infertility and might also reduce the risk of embryos developing
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other diseases in adulthood by altering methylation in ovarian cells.

For instance, the preconception period, pregnancy, and prebirth are

becoming recognized as sensitive periods to the epigenetic impacts of

environmental factors, which may increase the risk of chronic

diseases in adulthood (including neurodegenerative diseases) (264).

Additionally, future research will delve deeper into how environmental

factors such as diet, lifestyle, and chemical exposure affect gene

expression, and how these impacts, through epigenetic mechanisms,

influence the health of offspring, thereby preventing and intervening in

women’s reproductive health issues.
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