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Gestational diabetes mellitus (GDM) poses a significant global health concern,

impacting both maternal and fetal well-being. Early detection and treatment are

imperative to mitigate adverse outcomes during pregnancy. This review delves

into the pivotal role of insulin function and the influence of genetic variants,

including SLC30A8, CDKAL1, TCF7L2, IRS1, and GCK, in GDM development.

These genetic variations affect beta-cell function and insulin activity in crucial

tissues, such as muscle, disrupting glucose regulation during pregnancy. We

propose a hypothesis that this variation may disrupt zinc transport, consequently

impairing insulin production and secretion, thereby contributing to GDM onset.

Furthermore, we discussed the involvement of inflammatory pathways, such as

TNF-alpha and IL-6, in predisposing individuals to GDM. Genetic modulation of

these pathways may exacerbate glucose metabolism dysregulation observed in

GDM patients. We also discussed how GDM affects cardiovascular disease (CVD)

through a direct correlation between pregnancy and cardiometabolic function,

increasing atherosclerosis, decreased vascular function, dyslipidemia, and

hypertension in women with GDM history. However, further research is

imperative to unravel the intricate interplay between inflammatory pathways,

genetics, and GDM. This understanding is pivotal for devising targeted gene

therapies and pharmacological interventions to rectify genetic variations in

SLC30A8, CDKAL1, TCF7L2, IRS1, GCK, and other pertinent genes. Ultimately,

this review offers insights into the pathophysiological mechanisms of GDM,

providing a foundation for developing strategies to mitigate its impact.
KEYWORDS

beta-cell dysfunction, genetic factors, gestational diabetes mellitus (GDM), genetic
variations, glucose metabolism, inflammatory pathways
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1 Introduction

Gestational diabetes mellitus (GDM) presents a formidable

challenge in maternal healthcare, affecting millions of pregnancies

worldwide annually. This metabolic disorder, characterized by

elevated glucose levels during pregnancy, poses significant risks to

both maternal and fetal health (1–4). Recent epidemiological data

suggests a staggering impact, with over 21.1 million live births

affected globally in 2021 alone, underscoring its prevalence and

urgency for attention (2, 5, 6).

Furthermore, emerging scientific insights indicate a substantial

rise in GDM incidence, particularly in regions such as Asia, Africa,

Europe, and Latin America. Notably, South and Southeast Asia bear

the brunt, with over 90% of cases occurring in these regions,

followed by the Middle East and North Africa region with 11.7%

(2). Interestingly, South American countries also report a high

prevalence of GDM, with approximately 15% of pregnant women in

Chile and Peru being diagnosed with the disorder over the past two

decades (7–9). Contrastingly, advanced economies exhibit

comparatively lower prevalence rates, with countries like

Australia, Canada, the United States, and the United Kingdom

reporting less than 6% of pregnancies affected (10).

The multifactorial nature of GDM is increasingly evident, with

genetic predispositions playing a pivotal role in GDM susceptibility,

with links to type 2 diabetes mellitus (T2DM) becoming

increasingly evident (11). A comprehensive analysis of potential

genes associated with GDM has revealed the involvement of crucial

genetic markers in GDM susceptibility. Notably, genes such as

SLC30A8, CDKAL1, TCF7L2, IRS1, and GCK exhibit

polymorphisms that are strongly linked to an increased risk of

GDM (11–13). Furthermore, it is imperative to consider histone

alterations and other epigenetic changes, including DNA

methylation, as they are pivotal in regulating gene expression

throughout pregnancy. These mechanisms are essential for

maintaining the delicate balance for a healthy gestational period.

The implications of these genetic mutations extend beyond the

mother’s health, potentially posing risks to the well-being of the

fetus as well. Consequently, it becomes crucial to acknowledge the

potential impact of these mutations on the offspring’s overall health.

During pregnancy, women with GMD may experience

heightened inflammation in their bodies. This inflammatory

response is triggered by the increased levels of glucose in the

blood characteristic of GDM, leading to elevated levels of

cytokines and other inflammatory markers (14). Inflammation

plays a crucial role in the pathogenesis of GDM, as it can impair

insulin sensitivity and lead to complications such as pre-eclampsia

and preterm birth (14). Managing inflammation in pregnant

women with GDM is essential for optimizing their outcomes and

preventing adverse maternal and fetal health effects. It is crucial to

acknowledge the various dimensions of the relationship between

genetics, inflammatory pathways, and GDM. Alongside genetic

factors, lifestyle choices and other non-genetic variables play a

significant role in determining the overall risk and progression of

GDM. A more comprehensive understanding of GDM can be
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gained by examining how genetics influence inflammatory

pathways within the context of the condition.

However, despite advancements, gaps persist in our

understanding of the precise genetic and inflammatory pathways

underpinnings of GDM, warranting further exploration (15). This

review seeks to elucidate the roles of key genes, including SLC30A8,

CDKAL1, TCF7L2, IRS1, and GCK, in GDM etiology. Delving into

molecular inflammatory pathways and genetics aims to provide

comprehensive insights that pave the way for tailored interventions

and improved maternal-fetal outcomes. It also discusses the

SLC30A8 expression and mechanism in regulating placental tissue.
2 Genetic basis of gestational
diabetes mellitus

Genetic and environmental factors are pivotal in the etiology of

gestational diabetes mellitus (GDM), a multifaceted disorder

affecting pregnancy. Research indicates a genetic underpinning

influenced by various factors, including SLC30A8, CDKAL1,

TCF7L2, IRS1, and GCK (16, 17). The intricate relationship

between genetics and GDM onset is striking, with a plethora of

genes identified as contributors, underscoring the complexity of

disease progression (18). Notably, susceptibility to GDM has been

linked to genetic variations impacting insulin sensitivity,

exemplified by SLC30A8, CDKAL1, TCF7L2, IRS1, and GCK.

Ongoing research continues to probe the genetic landscape of

GDM, exploring the significant impacts of these genetic factors

on pregnancy-associated glucose dysregulation (17). Such insights

offer a valuable understanding of GDM’s pathogenesis and avenues

for targeted interventions to mitigate its risks.
3 Genetic markers and risk prediction

Understanding genetic markers in predicting the risk of

developing Gestational Diabetes Mellitus (GDM) has made

significant advancements in genetics in recent years. Moreover,

during postpartum follow-up, the incidence of type 2 diabetes

(T2DM) in women with GDM can range from 50% to 70%.

According to (19), GDM in middle-aged women is a major cause

of type 2 diabetes. Specific differences in DNA sequences, known as

genetic markers, have been identified as potential predictors of

GDM risk. Numerous studies have explored the relationship

between genetic markers and the likelihood of developing GDM,

shedding light on the underlying genetic factors contributing to this

condition (19). (20, 21) have conducted research in this area. For

instance, these studies have discovered that specific gene variants,

such as TCF7L2 and KCNJ11, are associated with a higher risk of

GDM (20–22). These results pave the way for the development of

personalized risk prediction models and provide valuable insights

into the genetic basis of GDM. Incorporating genetic markers into

risk prediction models holds excellent potential for early detection

and treatment of GDM cases. By integrating genetic data with
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conventional risk factors like maternal age, body mass index, and

family history of diabetes (41), clinicians can enhance the accuracy

of risk assessment. This approach enables the implementation of

targeted interventions, such as dietary modifications and careful

monitoring, to mitigate the risks associated with GDM.
4 Diagnosis of gestational
diabetes mellitus

The importance of early detection of gestational diabetes mellitus

(GDM) cannot be overstated, as it allows for timely intervention and

management strategies. According to (23), the prevalence of GDM

among pregnant women can range from 15% to 70%, underlining the

critical need for robust screening protocols. Early identification of

GDM empowers medical providers to implement tailored

interventions, such as dietary adjustments, exercise regimens, and,

when necessary, insulin therapy (23). A study conducted by (24)

found that early diagnosis and management of GDM significantly

reduced the risk of adverse perinatal outcomes, such as macrosomia

and neonatal hypoglycemia. By mitigating risks such as pre-

eclampsia, macrosomia, and neonatal hypoglycemia, early diagnosis

serves as a protective shield for both maternal and fetal health. The

ramifications of accurate diagnosis extend beyond immediate

management; they pave the way for optimal outcomes throughout

the pregnancy journey.

In the field of GDM diagnosis, two prominent criteria endorsed

by reputable bodies stand out: the International Association of

Diabetes and Pregnancy Study Groups (IADPSG) and the

American Diabetes Association (ADA) criteria (25, 26). Both rely

on oral glucose tolerance tests (OGTT) to assess glucose metabolism

during pregnancy, but they offer distinct approaches to diagnosis.

The IADPSG criteria advocate a streamlined, one-step approach,

with a 75g OGTT at 24-28 weeks of gestation. A fasting plasma

glucose level of ≥92 mg/dL (5.1 mmol/L) or a 2-hour plasma glucose

level of ≥180 mg/dL (10.0 mmol/L) signals GDM (25). Notably,

studies by (27, 28) have validated the effectiveness of these criteria,

particularly in Asian populations like China, underscoring their
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global relevance. Furthermore, the International Federation of

Gynecology and Obstetrics (FIGO) endorsed the use of the

International Association of Diabetes and Pregnancy Study

Groups (IADPSG) criteria due to its global applicability and

ability to identify women at risk more accurately (29).

On the other hand, the ADA criteria, predominant in the United

States, favor a two-step approach. This involves a 50g glucose

challenge test (GCT) followed by OGTT if the former yields

elevated glucose levels (30). However, discrepancies in diagnostic

thresholds and approaches among healthcare professionals

underscore the need for standardization. In response, the ADA has

proposed adjustments, advocating for a lower fasting plasma glucose

level as the primary diagnostic test (31). Furthermore, emerging

evidence suggests seasonal variations in GDM prevalence,

emphasizing the multifactorial nature of its diagnosis (32). GDM’s

complex landscape demands a unified approach to diagnosis and

management. The IADPSG criteria offer a comprehensive, global

framework, while the ADA criteria cater specifically to the U.S.

context. Yet, harmonizing these approaches and implementing

standardized diagnostic protocols remain imperative.

Accurate and timely diagnosis of GDM is pivotal for ensuring

the well-being of both mother and child. By embracing evidence-

based recommendations and fostering collaboration among

healthcare providers, we can refine diagnostic practices, enhance

patient care, and ultimately, safeguard the health outcomes of

pregnant individuals and their offspring. The proposed diagnostic

process in Figure 1 serves as a visual reminder of the journey toward

effective GDM identification and management on a global scale.
4.1 Guidelines for screening the gestational
diabetes mellitus during early pregnancy

It is widely recommended that women who have a high risk of

pre-existing diabetes undergo screening for this condition during

the first trimester of their pregnancy or at the onset of antenatal

treatment (33). To better understand the populations that should be

screened, Table 1 offers a comprehensive overview based on the
FIGURE 1

General diagnostics process of GDM identification. Source.
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recommendations of national guideline organizations. Recent

research studies have identified various genes that are associated

with gestational diabetes mellitus (GDM). These genes play a crucial

role in the development and progression of GDM during

pregnancy. The Table 2 below provides a list of these genes and

their significance in GDM research.
Frontiers in Endocrinology 04
5 The role of genetic factors in the
development of gestational diabetes

Gestational Diabetes Mellitus (GDM) is a critical condition

during pregnancy characterized by specific glucose level thresholds

outlined by the (31). These thresholds, including fasting glucose
TABLE 2 Various genes associated with gestational diabetes mellitus (GDM) in recent research studies.

Genes Sample size Gene function References

CDKAL1; CDK5
regulatory
subunit
associated
protein 1 like 1

GDM n = 10336;
Control n = 17,445

The gene CDKAL1 encodes a member of the methylthiotransferase family. While the exact function of
CDKAL1 remains unclear, it has been associated with both risk variants that are linked to decreased
insulin secretory capacity and glucose-stimulated insulin secretion [51]. This gene locus has also been
linked to type 2 diabetes (T2D) Cho, Y. M., 2009; Ohara-Imaizumi, Mica, 2010

(38)

GCK;
glucokinase

29 studies The gene encodes the hexokinase GCK, which plays a crucial role in the pancreas’s response to glucose.
It is responsible for the secretion of insulin and also influences the liver’s absorption of glucose and its
conversion into glycogen. This gene locus has been linked to Type 2 Diabetes (T2D).

(17)

TCF7L2;
transcription
factor 7-like 2

GDM patients =
5485; Healthy
control = 347,856

The gene encodes a transcription factor that contains a specific box, which plays a crucial role in the
Wnt signaling pathway. This transcription factor belongs to the high mobility group and is also involved
in the synthesis and processing of insulin Zhou, Yuedan, 2014. Furthermore, this gene locus is linked to
Type 2 Diabetes (T2D).

(39)

CDKAL1 GDM patients 835
and Healthy
Control 870

Beta-cell dysfunction and reduced insulin secretion (12)

IRS1 213 GDM patients
including fetuses and
191 Healthy control
including fetuses

Insulin-stimulated signaling pathways regulate insulin receptor substrate (IRS) activity in various tissues,
including muscle and pancreatic beta cells, and have been identified as a pathogenic factor in diabetes
onset (Yiannakouris, 202).

(40)

SLC30A8 500 patients with
GDM and 502
control subjects.

The SLC30A8 gene, encoding a crucial zinc transporter, may be affected by mutations that affect
pancreatic beta cell function, potentially increasing gestational diabetes mellitus susceptibility.

(41)
Gestational Diabetes Mellitus= GDM; Sample size= n.
TABLE 1 Guidelines for Screening the Gestational Diabetes Mellitus during Early Pregnancy.

Organization Recommended Populace References

World Health
Organisation
(WHO)

Depending on available resources, conflicting priorities, and the prevalence of glucose intolerance within the local population, it
is imperative for each country or health service to make a well-informed decision regarding the patients who should
undergo screening.

(33)

American College
of Obstetricians
and
Gynaecologists
(ACOG)

Women who are overweight or obese (with a BMI of ≥25 kg/m2 or ≥23 kg/m2 in Asian Americans) and have one or more
additional risk factors should be identified for further evaluation. These risk factors include physical inactivity, belonging to a
high-risk race or ethnicity, having a history of delivering a baby weighing ≥4 kg, having a history of gestational diabetes
mellitus, having hypertension (with a blood pressure reading of 140/90 mmHg or taking antihypertensive therapy), having low
levels of high-density lipoprotein (HDL) cholesterol (<35 mg/dl or 0.9 mmol/l) and triglycerides, having polycystic ovary
syndrome (PCOS), having a hemoglobin A1c (HbA1c) level of ≥5.7%, having impaired glucose tolerance or impaired fasting
glucose on previous testing, cardiovascular disease.

(34)

International
Association of
Diabetes and
Pregnancy Study
Groups (IADPSG)

The decision is made considering the prevalence of impaired glucose tolerance in the local community, as well as the individual
circumstances of each woman, particularly those who are at a higher risk

(35)

Diabetes Canada Identification of Women at High Risk for Undetected Type 2 Diabetes (T2D) (36)

American
Diabetes
Association
(ADA)

Women who have one or more risk factors for diabetes mellitus (DM) should be aware of the following: belonging to a high-
risk race or background, experiencing hypertension (with a blood pressure reading of 140/90 mmHg or taking antihypertensive
therapy), having a first-degree family with DM, being diagnosed with polycystic ovarian syndrome (PCOS), having a history of
cardiovascular disease, women who have previously experienced gestational diabetes mellitus (GDM) should undergo regular
screening for DM, at least once every three years. having low levels of high-density lipoprotein (HDL) cholesterol (<35 mg/dl or
0.9 mmol/l) and increased levels of triglycerides, leading a physically inactive lifestyle,

(37)
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levels, oral glucose tolerance test (OGTT) results, and symptomatic

hyperglycemia, serve as crucial indicators for diagnosing and

managing GDM. The research underscores the profound impact

of GDM on maternal and fetal health. The excessive presence of

glucose, fatty acids, and amino acids in maternal circulation can

lead to the development of larger-than-average fetuses, posing risks

during delivery and increasing the likelihood of cesarean sections

(42). Moreover, the metabolic dysregulation associated with GDM,

marked by hyperglycemia and insulin resistance, can instigate a

cascade of adverse effects (42). This metabolic upheaval not only

heightens the oxygen demand but also induces chronic hypoxia and

inflammation, contributing to further complications.

Moreover, the repercussions of GDM extend far beyond

pregnancy. Both mothers who experience GDM and their offspring

face an elevated risk of developing type 2 diabetes, obesity, and

cardiovascular conditions later in life (42). While genetic factors

undoubtedly play a role, it’s crucial to recognize the multifaceted

nature of GDM’s etiology. Recent studies have delved into the

intricate interplay between genetics, epigenetics, environmental

factors, and the body’s microbiota in predisposing individuals to

GDM (43, 44). (42) demonstrated that the surplus of glucose, fatty

acids, and amino acids characteristic of GDM contributes to fetal

macrosomia, chronic hypoxia, and inflammation, underscoring the

multifactorial nature of its pathogenesis. Moreover, investigation by

(10) has highlighted the role of epigenetic mechanisms and

environmental factors in predisposing individuals to GDM, further

reinforcing the complexity of its etiology.

The emergence of epigenetic signatures and their association

with GDM highlights the need for a comprehensive understanding

of the condition. Moreover, investigations into common genetic

variants linked to type 2 diabetes, such as TCF7L2, SLC30A8, and

CDKAL1, underscore the interconnectedness of GDM and

metabolic disorders (45). A striking finding from these studies is

the overlap of specific genetic variants associated with diabetes in

non-pregnant populations with those prevalent in women with

GDM (46–48). Variants in genes like CDKN2A-CDKNA2B,

TCF7L2, KCNQ1, MTNR1B, and FTO have been consistently

observed in women with GDM across diverse populations (46–

49). Emerging research focuses on genes associated with b-cell
function and insulin secretion, with TCF7L2, SLC30A8, and GCK

among the implicated candidates (45). These findings underscore

the importance of understanding the molecular mechanisms

underlying GDM for targeted intervention and management

strategies. This convergence reinforces the notion that GDM

shares genetic underpinnings with type 2 diabetes, emphasizing

the importance of targeted interventions and preventive measures.
5.1 Role of SLC30A8 in the development
of GDM

SLC30A8, also known as zinc transporter 8 (ZnT8), is a pivotal

gene implicated in the pathogenesis of Gestational Diabetes

Mellitus (GDM) (50). This gene regulates zinc homeostasis by

facilitating zinc transport into pancreatic beta cells, which is

crucial for insulin synthesis and secretion (51). Several studies
Frontiers in Endocrinology 05
have indicated that variations in the SLC30A8 gene influence

susceptibility to GDM (52–54). Variations in SLC30A8 have been

associated with an increased risk of GDM development. Specific

single nucleotide polymorphisms (SNPs) within the gene alter

protein structure and function, impairing zinc transportation and,

subsequently insulin secretion (55, 56). Consequently, disrupted

insulin production leads to elevated glucose levels during gestation,

contributing to GDM diagnosis.

The research underscores the critical role of SLC30A8 in

maintaining beta cell function and mass (55). Beta cells rely

heavily on zinc as a cofactor for insulin synthesis (57, 58).

Dysfunctional SLC30A8 results in zinc depletion within beta cells,

causing impaired function and decreased survival. This dysfunction

further disrupts glucose regulation, exacerbating GDM

susceptibility. ZnT8, the protein encoded by SLC30A8, facilitates

the movement of zinc ions from the cytoplasm to insulin granules

within pancreatic beta cells. Insulin granules contain high zinc

concentrations, and the co-secretion of zinc with insulin impacts

neighboring endocrine cells (59, 60). Studies reveal the complex role

of zinc in glucose-stimulated insulin secretion (GSIS), with ZnT8

influencing this process significantly (61, 62).

While some studies demonstrate the stimulatory effect of zinc on

insulin secretion, others suggest an inhibitory role (59, 63). The

intricate relationship between zinc and insulin secretion remains a

subject of ongoing research. Nonetheless, the critical involvement of

SLC30A8 and ZnT8 in insulin secretion underscores their potential

influence on GDM susceptibility. Additionally, a study in animal

models highlights the potential therapeutic benefits of zinc

supplementation in restoring beta cell function and mitigating GDM

risk (51). Intraperitoneal zinc supplementation in rats restored ZnT8

levels and improved beta cell function, emphasizing the therapeutic

potential of targeting SLC30A8 in GDM management (51).

5.1.1 Link between altered SLC30A8 expression in
placental tissue and gestational diabetes mellitus

The SLC30A8 gene on chromosome 8q24.11 has garnered

significant attention in the study of type 2 diabetes (T2D). Recent

research has highlighted its relevance to GDM, as certain variations

in the SLC30A8 gene may impact a mother’s ability to metabolize

glucose during pregnancy (41). The placenta, a vital organ for fetal

development, undergoes dynamic changes in gene expression

throughout pregnancy. It serves as a gateway, controlling the flow

of nutrients between the mother and the developing fetus (64).

Understanding the intricate mechanisms involved in placental

function is crucial for comprehending the complexities of fetal

development and maternal health.

Placental zinc transporters play a vital role in maintaining the

delicate balance of zinc levels in the developing fetus. These

transporters are regulated as part of complex processes that are

not yet fully understood. Zinc, a crucial element, serves as a catalyst

or structural component in hundreds of proteins, making it

essential for various physiological functions. Insufficient zinc

levels can lead to a range of symptoms, including skin lesions,

compromised immune function, growth retardation, and GDM in

pregnant women (65). Research has shown that the amount of zinc

influences the expression of zinc transporters in mouse placentas in
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their diet (66, 67). However, even with moderate dietary zinc

restriction, this modulation of expression is insufficient to

support optimal fetal nutrition. The SLC30A8 gene encodes

ZnT8, a protein that regulates zinc transport across cellular

membranes. Zinc is crucial for healthy trophoblast differentiation,

fetal growth, and protection against oxidative stress in the placenta.

Altered expression of SLC30A8 can disrupt these processes,

contributing to the development of GDM (66).

Research findings indicate that the expression of SLC30A8

varies in the placental tissue of patients with GDM compared to

pregnancies with normal blood sugar levels (66, 68). This variation

in SLC30A8 expression suggests a potential disruption in zinc

homeostasis and its impact on fetal development and metabolic

programming. Moreover, a decrease in insulin function leads to an

upregulation of genes associated with placental fatty acid b-
oxidation and transport (69). This upregulation results in a

higher transfer of long-chain polyunsaturated fatty acids

(LCPUFA) to the developing fetus. However, elevated lipid levels

directed toward the fetus have the potential to cause obesity and

metabolic disturbances later in life (69).

Abnormalities in placental function have been closely

associated with unfavorable pregnancy outcomes such as

macrosomia, premature birth, and neonatal problems. Therefore,

examining the relationship between modified SLC30A8 expression

and GDM provides a novel insight into the potential effects of

placental disruptions on fetal development and metabolic

programming. As research continues to unravel the intricate

molecular landscape of GDM, the link between altered SLC30A8

expression in placental tissue and the development of GDM

emerges as a promising area of investigation. Further studies are

warranted to elucidate the precise mechanisms underlying this

association and to explore therapeutic intervention interventions

that could positively influence pregnancy outcomes in women at

risk for GDM.
5.2 Role of insulin receptor substrate gene
in the development of GDM

Insulin resistance (IR) serves as the fundamental pathogenesis

of Gestational Diabetes Mellitus (GDM), initiating its onset (70).

While the precise mechanism remains elusive, inflammation is a

critical contributor to insulin resistance and pancreatic beta-cell

dysfunction. Studies have highlighted the significance of the IRS1

gene in insulin signaling, with genetic variations linked to insulin

resistance, a pivotal factor in GDM development (71, 72). The IRS1

gene encodes the IRS1 protein, crucial for transmitting insulin

signals and regulating glucose metabolism (73, 74). However,

mutations or variations in IRS1 can disrupt these signaling

pathways, leading to impaired insulin action (73).

Furthermore, IRS1 governs insulin activity in various tissues,

including muscle, adipose tissue, and pancreatic beta cells,

underscoring its role in glucose regulation (75). Notably, the IRS1

rs2943641 polymorphism, located downstream of the IRS1 gene,

has been associated with increased fasting hyperinsulinemia and

reduced insulin sensitivity (76, 77). This polymorphism has also
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been linked to elevated risk of type 2 diabetes and higher fasting

glucose levels in women with GDM (78). Additionally, research

suggests a correlation between IRS1 gene expression in the placenta

of pregnant women with GDM and increased body mass index,

further highlighting its significance in GDM pathogenesis (79).

Studies in mice have shown that IRS1 or IRS2 signals regulate

hepatic gene expression, which is crucial for glucose homeostasis

and systemic growth (80). Therefore, pregnant women with genetic

variations in the IRS1 gene may struggle to maintain optimal sugar

levels during pregnancy, heightening their risk of GDM (80).

Alongside IRS1, the SLC30A8 gene also significantly influences

GDM development through its role in zinc homeostasis regulation

and insulin and beta cell function (41). Variations in both SLC30A8

and IRS1 genes can impair zinc transportation and subsequent

insulin secretion in beta cells, increasing GDM risk. Studying the

mechanisms underlying SLC30A8 ’s influence on GDM

development holds promise for early detection, targeted

intervention, and personalized treatment strategies for pregnant

women at higher risk of GDM. However, the genetic bases of GDM

remain incompletely understood, urging future studies to identify

various genetic markers, mechanism genes, and environmental

factors contributing to GDM development.
5.3 Role of TCF7L2 in the development
of GDM

TCF7L2 is an extensively studied genetic factor implicated in

reduced insulin secretion and an increased risk of developing

gestational diabetes mellitus (GDM). It was the first locus firmly

identified through genomic linkage studies and is considered the

most influential locus for the risk of type 2 diabetes (T2D) (11). As

one of the key transcription factors in the Wnt signaling pathway,

TCF7L2’s functional domains closely relate to highly conserved

sequence regions within the gene. Its consistent replication across

diverse populations with various genetic backgrounds underscores

its significance as one of the strongest genetic associations with

complex diseases found in research studies.

A meta-analysis of genetic associations observed in different

populations revealed that TCF7L2 variants linked with type 2

diabetes operate through a multiplicative genetic model. It was

estimated that TCF7L2 contributes to nearly 20% of T2D cases (81).

However, the specific mechanisms through which TCF7L2

influences GDM and T2D remain not fully understood (11).

Therefore, further research is necessary in this field to gain a

deeper understanding of the role played by TCF7L2 in the

development of GDM.
5.4 Role of glucose kinase in the
development of GDM

One crucial enzyme involved in regulating glucose uptake and

storage is glucose kinase (GCK) (82). Additionally, GCKR, or

glucokinase regulatory protein, has been identified as the rate-

limiting factor for GCK, as highlighted by (83). GCK and GCKR
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work in tandem to maintain glucose homeostasis. Notably, these

genes have been linked to an increased susceptibility to type 2

diabetes through genome-wide association studies (GWAS) (84).

Significant differences were observed in age, pre-gestational BMI,

education level, and family history of diabetes when comparing the

case and control groups (P < 0.05) (85). Despite accounting for

these confounding factors, GCK rs1799884 remained significantly

associated with gestational diabetes mellitus (GDM) (P < 0.05).

However, no significant associations were found between GDM

odds and the polymorphisms rs4607517, rs10278336, rs2268574,

rs780094, and rs1260326 (P > 0.05) (85).

Furthermore (85), discovered that pregnant women with the

rs4607517 TT genotype exhibited significantly higher fasting

glucose levels compared to those with the CC genotype (P <

0.05). The Chinese population, in particular, faces an elevated risk

of developing GDM due to the GCK rs1799884 mutation. Further

extensive research is warranted to understand better the

relationship between GCK and GCKR polymorphisms and

susceptibility to GDM.
5.5 Role of CDKAL1 in the development
of GDM

Beta-cell dysfunction and reduced insulin secretion have been

found to be associated with CDKAL1, as stated by (86). These

genetic variations can lead to disruptions in glucose homeostasis

during pregnancy, potentially resulting in elevated sugar levels. The

CDKAL1 gene encodes Cyclin-dependent kinase 5 regulatory

subunit-associated protein 1 (CDK5RAP1)-like 1. CDK5, a serine/

threonine protein kinase, plays a critical role in the pathophysiology

of b-cell dysfunction and the predisposition to type 2 diabetes

(T2DM) by regulating insulin secretion in a glucose-dependent
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manner, as highlighted by (87). However, further studies are

necessary to comprehend the complete genetic landscape fully.

Future research is crucial in enhancing risk prediction and

developing more effective preventive strategies and personalized

care for pregnant individuals at risk for gestational diabetes

mellitus (GDM).

Figure 2 illustrates a visual representation of various genes that

could potentially be linked to gestational diabetes mellitus (GDM), a

condition characterized by glucose intolerance during pregnancy.

The diagram features a central image of a pregnant woman, with

multiple gene acronyms connected by arrows indicating potential

interactions, functions, and regulatory pathways. These genes may

influence an individual’s susceptibility to or progression of GDM,

highlighting the significant role of heredity in the development of

this disease.
6 Impacts of environmental factors
and the lifestyle modification that
could impact GDM

Epigenetic research has demonstrated that pregnancies affected

by GDM exhibit distinct gene methylation statuses compared to

those without GDM (88). This growing body of evidence indicates

that GDM not only affects the duration of pregnancy but also

impacts the development of the offspring. Consequently, these

effects can lead to long-term consequences and unfavorable health

outcomes for the offspring. Epigenetic modifications can occur

through three mechanisms: histone modification, DNA

methylation, and impaired function of non-coding ribonucleic

acids (ncRNAs), including microRNAs (miRNAs) (89). These

findings shed light on the complex interplay between epigenetic

factors and the development of GDM.
FIGURE 2

Different genetic factors responsible for GDM.
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In addition, environmental factors and the lifestyle of the

mother can give rise to epigenetic modifications that influence the

likelihood of the offspring developing GDM. Stress, inadequate diet,

and exposure to environmental pollutants during pregnancy can all

induce epigenetic alterations that impact the expression of genes

involved in glucose metabolism. These genetic and epigenetic

factors may affect the functioning of beta cells and insulin

resistance, thereby playing a role in the development of GDM. In

recent years, molecular biomarkers have garnered significant

attention in the field of GDM prognosis, diagnosis, and screening.

We propose that genetic and epigenetic modifications contribute to

the underlying mechanisms of GDM. By exploring the interplay

between environmental variables, maternal lifestyle, and epigenetic

changes, we can gain a deeper understanding of the

pathophysiology of GDM. This knowledge can pave the way for

improved prognosis, diagnosis, and screening methods for

this condition.
7 The role of single nucleotide
polymorphisms in gestational diabetes
mellitus susceptibility

Single Nucleotide Polymorphisms (SNPs) represent the most

prevalent form of genetic variation observed in human DNA (90).

These subtle alterations in a single nucleotide base can have

profound implications for an individual’s vulnerability to various

diseases, including GDM (Gestational Diabetes Mellitus) (90). SNPs

are nucleotide variations occurring at single positions in the DNA

sequence (91). Thanks to current genotyping technologies such as

SNPscan™, TaqMan SNP genotyping, nucleic-acid-modifying

enzymes, and PCR, we can now identify disease-related SNPs (41,

52, 92), including those linked to metabolic disorders such as

obesity, TDM2 (Type 2 Diabetes Mellitus), cardiovascular disease,

and GDM (93, 94). These SNPs may be associated with a higher or

lower risk of developing GDM in different populations worldwide

(49, 95–99).

Numerous studies have identified specific SNPs significantly

associated with GDM susceptibility (100–102). These genetic

variants are often found in genes involved in insulin secretion,

insulin resistance, and glucose metabolism pathways. A study

conducted by (100, 102–104) revealed that SNPs associated with

T2DM also confer a significant risk for GDM in a multi-ethnic

cohort comprising individuals from Hawaii, Korea, and China. In

these studies, the researchers gathered information from 291

women with GDM diagnoses and 734 matched non-diabetic

controls (197 non-diabetic controls; Filipinos: 162 GDM,

Japanese: 58 GDM, Pacific Islanders: 71 GDM, 395 controls; 142

controls). Twenty-five different SNPs linked to 18 different loci were

genotyped, and their allele frequencies were calculated using

maternal DNA (100, 103, 104).

After adjusting for various factors such as age, body mass index

(BMI), parity, and gravidity through multivariable logistic

regression, the researchers identified several SNPs that exhibited

significant associations with GDM, with these associations being
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specific to different ethnicities (103, 105). Additionally, substantial

correlations with GDM were found among Filipinos for the SNPs

rs2237895 (KCNQ1), rs1113132 (EXT2), rs2237892 (KCNQ1),

rs1111875 (HHEX), rs10830963 (MTNR1B), and rs13266634

(SLC30A8). SNPs rs4402960 (IGFBP2) and rs2237892 (KCNQ1),

on the other hand, were discovered to be strongly related to GDM in

Japanese people (100, 103, 104). Finally, SNPs rs10830963

(MTNR1B) and rs13266634 (SLC30A8) showed substantial

correlations with GDM among Pacific Islanders (100, 101, 103).

These studies highlight the potential of SNPs as biomarkers and

deepen our understanding of the molecular mechanisms underlying

beta-cell activity and the etiology of GDM for assessment.
8 Gene-environment interactions
in GDM

Within gestational diabetes mellitus (GDM), the intricate

interplay between genetic and environmental factors sparks a

thought-provoking discourse. Research indicates that while

genetic predispositions may heighten an individual’s susceptibility

to GDM, environmental influences often interact with the

condition, triggering the manifestation of symptoms (15). The

prevalence of GDM has surged, emerging as a significant global

health concern with far-reaching implications for public health,

particularly in light of the escalating rates of maternal obesity. In

addition to immediate adverse effects such as fetal macrosomia

and hypertensive pregnancy complications, GDM has been

associated with long-term consequences, including heightened

cardiometabolic morbidity in both the mother and child (106).

Furthermore, extensive research has unveiled specific genetic

variations that are linked to the risk of GDM, offering valuable

insights into the hereditary component of the condition (15). It is

crucial to comprehend that genes do not always contain all the

necessary information. Environmental factors such as maternal

stress, physical activity, and nutrition significantly influence the

development of GDM. In a study conducted by (107), a gene-

lifestyle relationship was discovered between the onset of GDM and

the TCF7L2 rs7903146 polymorphism, specifically in relation to

adherence to a Mediterranean diet. The study revealed that dietary

intervention only alters the risk of developing GDM in individuals

carrying the T-risk allele. Women who exhibited moderate to high

adherence to the Mediterranean diet demonstrated a lower risk of

acquiring GDM than those with low adherence (107).

In a subsequent study conducted by (108), it was observed that

women with a history of GDM and a specific MC4R genotype,

which increases the risk of developing diabetes and obesity, may

derive more incredible benefits from a lifestyle intervention aimed

at reducing insulin resistance compared to women with a non-risk

genotype. To illustrate, if a woman finds herself in an environment

that aligns with her genetic predisposition, she may be able to avoid

acquiring GDM. The interplay between genes and lifestyle has been

shown to indicate that individuals who are genetically more prone

to GDM may experience more tremendous advantages by adhering

to a nutritious diet or engaging in physical exercise, as suggested by
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(15). Conversely, an individual with a lower genetic predisposition

could still develop GDM despite unfavorable environmental

circumstances. This dynamic exchange underscores the

importance of adopting a comprehensive strategy to comprehend

and prevent GDM. Personalized therapies could potentially be

facilitated through further research into the intricate interaction

between genes and the environment. In terms of managing and

preventing GDM, tailored interventions based on an individual’s

genetic profile and environmental circumstances may yield superior

outcomes. However, within the scientific and medical communities,

thorough investigation and deliberation are imperative due to

ethical concerns and the intricate nature of these associations.
9 Mechanisms underlying
genetic predisposition

Gestational diabetes mellitus (GDM) is a condition that arises due

to a combination of genetic and environmental factors. Extensive

research has shown that specific genes related to glucose metabolism,

beta-cell function, and insulin resistance play a crucial role in

predisposing individuals to GDM (109). Additionally, epigenetic

changes occurring during pregnancy, influenced by factors such as

maternal nutrition and lifestyle, can further increase the risk of

developing GDM. During pregnancy, the body undergoes various

adaptations to ensure optimal nutrient delivery to the developing

fetus. One key aspect is the regulation of glucose levels. Studies

conducted on thin and healthy women using a hyperinsulinemic-

euglycemic clamp technique have revealed significant changes in

glucose management during the third trimester compared to pre-

pregnancy (110, 111). Specifically, basal endogenous glucose

production increases by 30%, while insulin sensitivity decreases by

56%. In individuals with normal glucose tolerance, the pancreatic beta

cells adapt to these changes by producing higher levels of insulin,

which helps maintain normal glucose levels (112). To illustrate, a small

study involving normal controls found that the first- and second-

phase insulin response to an intravenous glucose tolerance test

increased approximately threefold during late pregnancy compared

to pre-pregnancy (113–115). Furthermore, postpartum glucose clamp

studies have shown that the insulin resistance associated with normal

pregnancy resolves within days after delivery, indicating that placental

factors play a role in these changes (116).
10 Inflammatory pathways
in pregnancy

The physiological state of pregnancy is a complex process that

necessitates significant changes in the mother’s body, including

alterations to the immune system. Throughout pregnancy, the

immune system plays a crucial role in maintaining a delicate

balance between the fetus’s tolerance and protection from

external pathogens. Inflammation is a key component of this

immune response, contributing to various processes such as

placental development, implantation, and the initiation of labor.
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Disruption of inflammatory pathways can lead to adverse

pregnancy outcomes, underscoring the importance of

understanding these mechanisms. The mother’s immune system

undergoes substantial changes during pregnancy to establish

tolerance to the semi-allogeneic fetus while also preserving the

ability to combat infections. These adaptations involve

modifications to tissue remodeling processes, cellular responses,

and cytokine profiles. Pro-inflammatory cytokines like Interleukin

(IL)-6, tumor necrosis factor-alpha (TNF-a), and IL-1b play pivotal

roles in initiating and regulating inflammatory responses crucial for

implantation, placentation, and the onset of labor (117).

Inflammatory reactions related to pregnancy serve a dual

purpose, supporting both the healthy progression of pregnancy

and contributing to pathology in cases of dysregulation. Controlled

inflammation is vital for the formation of the placenta and embryo

implantation early in pregnancy. Immune cells release cytokines

and chemokines that facilitate trophoblast cell invasion and the

remodeling of the mother’s spiral arteries, both of which are

essential for proper placental perfusion (118). During pregnancy,

a regulatory environment is established to protect the fetus from an

exaggerated response by the mother’s immune system. However, an

imbalance in pro- and anti-inflammatory factors can lead to

complications such as preterm labor, gestational diabetes, and

eclampsia (119). For instance, oxidative stress resulting from

excessive inflammation is a key feature of preeclampsia, a

condition characterized by high blood pressure and damage to

organ systems.

The nuclear factor kappa B (NF-kB) pathway, a transcription

factor, regulates the expression of genes involved in immune and

inflammatory responses (120). This pathway plays a critical role in

immune responses during pregnancy by stimulating the release of

pro-inflammatory cytokines, chemokines, and adhesion molecules.

Ligands for interleukins I (IL-1) and II (IL-6) play a critical role in

fever and the acute phase response as key mediators of

inflammatory reactions (121). Elevated levels of IL-6 have been

associated with preterm birth and other pregnancy complications

(121). Toll-like receptors (TLRs) are responsible for initiating

inflammatory responses by recognizing molecular patterns

associated with pathogens. The TLR signaling in the placenta is

vital for protecting the fetus against infections, but it must be

carefully regulated to prevent excessive inflammation (122, 123).

The development of therapeutic strategies to modulate these

pathways is gaining traction in an effort to improve pregnancy

outcomes. For instance, there is ongoing research on therapies

targeting TLRs or specific cytokines for the treatment or prevention

of pregnancy and cancer complications (124, 125).

Moreover, the placenta serves as a crucial interface for the

exchange of nutrients and gases between the mother and the fetus,

while also playing a key role in modulating the fetal immune

system. It secretes various hormones, growth factors, and

cytokines that regulate the mother’s immune system and promote

fetal tolerance. The unique cellular composition and structure of the

placenta, including trophoblast cells, are essential for its

immunomodulatory functions (126).

Furthermore, it is important to recognize that inflammatory

pathways during pregnancy can be significantly influenced by
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various environmental and lifestyle factors. These factors can

ultimately affect the health of both the mother and the fetus. For

instance, environmental pollutants such as particulate matter and

endocrine-disrupting chemicals have the potential to trigger

systemic inflammation and disrupt placental function, leading to

adverse pregnancy outcomes (127). Similarly, lifestyle choices such

as nutrition, exercise, and stress management can also play a crucial

role in modifying a mother’s inflammatory responses and

influencing the progression of pregnancy. Research has shown

that adhering to a well-balanced diet rich in anti-inflammatory

nutrients and engaging in regular, moderate exercise can lower the

risk of pregnancy complications (128). It is evident that both

environmental and lifestyle factors can significantly impact

inflammatory pathways during pregnancy, highlighting the

importance of maintaining a healthy lifestyle and minimizing

exposure to harmful pollutants for the well-being of both the

mother and the developing fetus.
11 Inflammatory pathways and their
genetic regulation in relation to GDM

Inflammation plays a crucial role in the immune system’s

defense against infections and tissue damage. However, immune

responses can also lead to septic shock, hypersensitivity reactions

(such as atopy, anaphylaxis, delayed-type hypersensitivity, and

contact hypersensitivity), and the rejection of tissue or organ

transplants. Chronic inflammation can occur when immune

responses become abnormal or uncontrolled (129). The interplay

between inflammatory responses and genetic factors significantly

influences the development and progression of gestational diabetes

mellitus (GDM).

Research studies have indicated that changes in genes associated

with inflammatory pathways may influence an individual’s

susceptibility to GDM (130, 131). This research sheds light on a

potential cause and target for GDM by establishing a correlation

between inflammation and the development of GDM (132). For

instance, alterations in inflammatory responses have been found to

be associated with variations in genes involved in the production

and regulation of cytokines, such as TNF-alpha and IL-6, in

pregnant women with GDM (130, 131, 133). Furthermore, it has

been observed that the body undergoes a gradual onset of low-grade

systemic inflammation following conception (134).

Multiple studies have consistently shown that the development

of insulin resistance (IR) is triggered by inflammatory factors (88,

131). The placental tissue possesses robust endocrine functions,

capable of producing and releasing a wide array of inflammatory

cytokines that exacerbate maternal IR and the chronic

inflammatory response. Among these inflammatory factors are

TNF-a, IL-6, IL-8, NK-kB, and IL-1b, which are secreted by the

placental tissue. IL-1b, as a pro-inflammatory cytokine, induces

apoptosis in islet b cells and activates the NK-kB pathway, leading

to the release of IL-6, IL-8, and other inflammatory factors (133,

135). IL-6 and IL-8, in turn, stimulate various lymphoid and

inflammatory cells, further intensifying the inflammatory
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response. Additionally, TNF-a is recognized as an independent

risk factor for GDM due to its ability to impede insulin signal

transmission and glucose transport (133, 135, 136).

The genetic regulation of these pathways may influence the

dysregulation of glucose metabolism observed in GDM patients.

However, it is crucial to acknowledge that the relationship among

inflammatory pathways, genetics, and GDM encompasses multiple

dimensions. Apart from genetic factors, lifestyle choices, and other

non-genetic determinants play a pivotal role in determining the

overall risk and progression of GDM. By delving into the genetic

regulation of inflammatory pathways within the context of this

disease, a more intricate understanding of GDM emerges.
12 Adipokines and inflammation in
pregnancies with gestational
diabetes mellitus

In pregnancies affected by gestational diabetes mellitus (GDM),

inflammation and adipokines play crucial roles in the

pathophysiology of the illness. Recent research has shed light on

the intricate pathways through which these factors impact the

development of GDM. One of the primary contributors to the

development of GDM is inflammation, which not only leads to

insulin resistance but also hampers glucose metabolism (137).

Women diagnosed with GDM often exhibit elevated levels of pro-

inflammatory cytokines such as C-reactive protein (CRP),

interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-a)
(138). These inflammatory mediators disrupt insulin signaling

pathways, resulting in insulin resistance and hyperglycemia.

Moreover, inflammation exacerbates oxidative stress and

endothelial dysfunction, posing additional risks to the health of

both the mother and the fetus (139).

Adipose tissue secretes bioactive chemicals known as

adipokines, which play a crucial role in regulating inflammation

and metabolic balance in GDM. The anti-inflammatory adipokine

adiponectin, for instance, enhances glucose absorption and fatty

acid oxidation, thereby offering protection against GDM and

exhibiting insulin-sensitizing properties (140). Conversely, high

levels of pro-inflammatory adipokines like resistin and leptin in

women with GDM are associated with insulin resistance and

adverse pregnancy outcomes (141). These fat-soluble hormones

influence immune responses, trigger inflammatory processes, and

contribute to the disruption of glucose metabolism during

pregnancy. Numerous research studies have delved into the

intricate relationship between adipokines, inflammation, and the

pathophysiology of GDM (142, 143). A study conducted by Lain

et al. revealed a significant correlation between the onset of GDM

and elevated maternal levels of TNF-a and IL-6 (144). Furthermore,

research by Catalano et al. showcased the disruption of adipokine

profiles, indicating that individuals with GDM exhibited heightened

levels of leptin and diminished levels of adiponectin compared to

healthy pregnant women (145).

These findings emphasize the importance of understanding the

role of adipokines and inflammation in GDM to identify potential
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treatment targets and improve pregnancy outcomes. Adipokines

and inflammation play pivotal roles in the pathophysiology of

pregnancies complicated by GDM. Elevated levels of pro-

inflammatory cytokines and imbalanced adipokine profiles are

associated with insulin resistance, impaired glucose metabolism,

and adverse consequences for both the mother and the fetus. To

develop innovative therapeutic strategies aimed at mitigating the

inflammatory response and restoring metabolic equilibrium in

women with GDM, further research is imperative to elucidate the

underlying mechanisms.
13 Clinical implications and
applications of GDM

The clinical implications of gestational diabetes mellitus (GDM)

are significant and demand attention from medical professionals

worldwide. It is crucial to develop effective screening techniques for

early detection and treatment. GDM increases the risk of

complications for maternal health, including pre-eclampsia and

cesarean sections, emphasizing the need for close observation

during pregnancy (146, 147). Furthermore, the long-term

consequences for mothers, such as an elevated risk of type 2

diabetes, underscore the importance of postpartum care. GDM is

also associated with macrosomia and neonatal hypoglycemia in the

fetus, necessitating careful glycemic management to mitigate

these risks.

Recent epidemiological studies have indicated that the offspring

of women with GDM may have a heightened susceptibility to

adverse cardiometabolic outcomes later in life (148). Notably, a

comprehensive Danish population-based cohort study (n =

2,432,000) has revealed a significant association between maternal

diabetes and an increased incidence of early-onset cardiovascular

disease (CVD) in offspring, particularly those aged ≤40 years (149).

To shed light on the underlying mechanisms (150), has proposed a

potential link between insulin resistance and the activation of

inflammatory pathways. Furthermore, in vitro research has

demonstrated that elevated glucose concentrations impede

trophoblast invasiveness by inhibiting uterine plasminogen

activator activity (151).

In light of the significant impact of type 2 diabetes and

cardiovascular disease on the worldwide prevalence of

intergenerational cardiometabolic disease, it is of utmost

importance to acknowledge GDM as an early risk factor for these

conditions. Moreover, it is crucial to expand the current clinical

approach to encompass long-term complications for both mothers

and their offspring following a diagnosis of GDM (152). The

management of GDM can be further enhanced by integrating

technological advancements, such as telehealth services and

continuous glucose monitoring, into clinical practice. These

innovations enable real-time sugar level monitoring, facilitating

prompt treatment plan adjustments. Given the global epidemic of

diabetes, obesity, and cardiovascular disease, the conventional focus
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on achieving normal obstetric and neonatal outcomes through

short-term antenatal maternal glucose management should now

shift towards early postnatal prevention strategies. This shift aims to

reduce the progression from GDM to type 2 diabetes and address

the long-term metabolic risks faced by both mothers and their

offspring (152). Figure 3 depicts the diagram illustrating the impact

of GDM on both mothers and their offspring.
14 Implications of gestational diabetes
mellitus on the influence of
cardiovascular disorders

Pregnancy-related Gestational Diabetes Mellitus (GDM) poses

a significant health risk, impacting both the short- and long-term

health of both mothers and their children. According to the

American Heart Association, GDM increases the likelihood of

developing cardiovascular disease (CVD) in women (153–155).

Research consistently links GDM to future hypertension,

dys l ip idemia (156 , 157) , va scu lar dys func t ion , and

atherosclerosis (158–160), and other cardiometabolic risk

markers (161).

Recent studies, such as by (154, 162), have shed light on the

potential impact of GDM on cardiovascular disorders post-

childbirth. Research suggests that women with a history of GDM

may have an increased susceptibility to CVD, indicating a possible

lifelong continuum of metabolic abnormalities (160, 163). For

instance, a study conducted by (164) on a large cohort of US

women revealed a strong association between a history of GDM and

a heightened long-term risk of cardiovascular disease. Additionally

(165), found that mothers with GDM had higher rates of pediatric

obesity and maternal glucose metabolism abnormalities,

underscoring the intricate relationship between pregnancy-related

metabolic disruptions and cardiovascular health outcomes. These

findings highlight the importance of comprehensive screening,

monitoring, and care plans for women affected by GDM to

mitigate their long-term risk of cardiovascular disease.

GDM influences CVD through a mechanism of action that may

stem from a direct correlation between experiencing a GD

pregnancy and cardiometabolic function. Previous prospective

and cross-sectional studies have shown that women with a history

of GD are more likely to develop atherosclerosis, experience

decreased vascular function, and have a higher likelihood of

developing dyslipidemia and hypertension compared to women

without gestational diabetes (160, 161, 166, 167). Variations in these

intermediate phenotypes are observed before the onset of type 2

diabetes, and in some studies, they become apparent shortly after

the index pregnancy. It is also suggested that the cardiovascular

effects of GD may persist even if type 2 diabetes does not develop,

which is a known risk factor for CVD (168).

While few studies have thoroughly examined the prospective

link between GDM and eventual CVD while controlling for

common risk factors and lifestyle features, a study by (164) found
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that women with healthier behavior profiles did not have a higher

risk of CVD when they had GDM. This association could

potentially be explained by controlling for updated lifestyle risk

factors for CVD, such as diet, physical activity, smoking status, and

weight management. To further investigate whether GDM induces

adverse cardiovascular changes, acts as a marker for underlying

high risk, or a combination of both, prospective studies with

carefully phenotyped CVD markers before and after pregnancy

are needed. These studies will help clarify the relationship between

GDM and CVD and potentially aid in lowering the risk of

developing cardiovascular disease in women with a history of

gestational diabetes.
15 Conclusion and recommendations

This narrative review explores the involvement of several genes,

including SLC30A8, CDKAL1, TCF7L2, IRS1, and GCK, in GDM,

along with the adverse effects of stress on insulin function. These

factors collectively contribute to the onset of diabetes and the

subsequent development of GDM, impacting both the mother

and offspring negatively throughout their lives. These genetic

variants notably influence beta-cell function and regulate insulin

activity in various tissues, disrupting glucose regulation during

pregnancy. It is suggested that these variants may disrupt zinc

transport, leading to impaired insulin synthesis and secretion, thus

contributing to GDM development. Additionally, inflammatory

pathways like TNF-alpha and IL-6 can influence susceptibility to

GDM by affecting cytokine production and regulation genes.

Inflammatory factors such as TNF-a trigger insulin resistance
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(IR), further complicating glucose metabolism in GDM patients.

Furthermore, women with a history of GDMmay have an increased

susceptibility to CVD, indicating a possible lifelong continuum of

metabolic abnormalities. The complex relationship between

inflammatory pathways, genetics, CVD and GDM necessitates

further research to develop targeted gene therapy and therapeutic

drugs aimed at addressing genetic variations in SLC30A8, CDKAL1,

TCF7L2, IRS1, GCK, and related genes.
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DIAGNóSTICOS Y SUS IMPLICANCIAS CLıŃICAS. Rev Chil Obstet Ginecol.
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