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problem beyond corticosteroids
and loss of ambulation
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Duchennemuscular dystrophy (DMD) is a progressive, fatal muscle wasting disease

caused by X-linked mutations in the dystrophin gene. Alongside the characteristic

muscle weakness, patients face a myriad of skeletal complications, including

osteoporosis/osteopenia, high susceptibility to vertebral and long bone fractures,

fat embolism post-fracture, scoliosis, and growth retardation. Those skeletal

abnormalities significantly compromise quality of life and are sometimes life-

threatening. These issues were traditionally attributed to loss of ambulation and

chronic corticosteroid use, but recent investigations have unveiled amore intricate

etiology. Factors such as vitamin D deficiency, hormonal imbalances, systemic

inflammation, myokine release from dystrophic muscle, and vascular dysfunction

are emerging as significant contributors as well. This expanded understanding

illuminates the multifaceted pathogenesis underlying skeletal issues in DMD.

Present therapeutic options are limited and lack specificity. Advancements in

understanding the pathophysiology of bone complications in DMD will offer

promising avenues for novel treatment modalities. In this review, we summarize

the current understanding of factors contributing to bone problems in DMD and

delineate contemporary and prospective multidisciplinary therapeutic approaches.
KEYWORDS

DMD, skeletal abnormality, osteoporosis, myokines, muscle and bone crosstalk
1 Introduction

Duchenne Muscular Dystrophy (DMD) is a debilitating disease characterized by

progressive muscle wasting due to X-linked recessive mutations in the dystrophin

(DMD) gene (1). While the decline in motor function is well-documented, DMD

patients face a myriad of other challenges, including intellectual disabilities, depression,
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delayed puberty, gastrointestinal complications, and skeletal

abnormalities (2). Among these, skeletal issues such as

osteoporosis, fragility fractures, scoliosis, short stature, and

fracture-associated fat embolism (3) significantly impact patients’

quality of life (1, 2).

Poor skeletal health is one of the most overlooked aspects of this

disease despite causing considerable morbidity. Low bone mineral

density (BMD) (osteoporosis/osteopenia) is prevalent in DMD

boys, especially those on glucocorticoid treatment, which poses a

significant risk of pathological fractures (2, 4). Up to 60% of patients

experience low-trauma extremity fractures (usually the distal femur,

tibia, or fibula) by age 15 (5), and vertebral fractures occur in 30% to

60% patients (6). If left untreated, vertebral fractures can lead to

chronic back pain and spine deformity, while leg fractures can cause

premature, permanent loss of ambulation (2, 7, 8). Death due to fat

embolism syndrome after long-bone fractures has also been

reported in DMD boys (1, 3, 9). Moreover, reduced growth and

short stature are also common (10, 11), further adding to the

burden of skeletal issues in DMD.

The cause of poor bone health in DMD is complicated. It was

previously thought that corticosteroid use and decreased

mechanical stimulus from loss of ambulation (12), both of which
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are well-known to independently affect bone health (13), are the

primary drivers of bone loss in DMD. These factors both

substantially contribute to osteoporosis and increased fracture

risk but do not completely explain the pathogenesis. Patients still

develop osteoporosis and experience fractures without

corticosteroid treatment and before loss of ambulation (12, 14).

Thus, poor bone health cannot be explained solely by corticosteroid

use or loss of ambulation, indicating that there are other

mechanisms contributing to these aspects of disease. Indeed,

recent evidence suggests that the pathogenesis of poor bone

health is far beyond corticosteroid usage and muscle weakness,

implicating nutritional deficiencies, hormonal imbalances, systemic

inflammation, myokine release from dystrophic muscle, and

vascular dysfunction in contributing to the deterioration of bone

health to varying degrees, as summarized in Figure 1 (15–18). These

factors, to varying degrees, disturb bone homeostasis by preventing

bone deposition by osteoblasts and promoting bone resorption by

osteoclasts, thus disrupting BMD and bone microarchitecture in

DMD patients (18–21). Further understanding of these

mechanisms will help us better understand DMD’s impact on

bone health, identify novel therapeutic targets, develop

therapeutic approaches, and better manage this debilitating issue.
FIGURE 1

Pathogenesis (contributors) of poor bone health in DMD. Multiple factors contribute to short stature and osteoporosis. Corticosteroids, loss of
ambulation, vascular dysfunction, hormone imbalance (GH and testosterone deficiencies), systemic inflammation, and dystrophic myokines all
contribute to the poor bone health in DMD. Genetic factors that may contribute to poor bone health has not been explored.
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We currently lack comprehensive guidelines for managing bone

problems in DMD. The DMDCare Considerations Working Group

(DCCWG) recommends lateral spine radiographs to detect

vertebral fractures every 2-3 years in corticosteroid-naïve patients

and every 1-2 years for those treated with corticosteroids (22).

However, monitoring of bone mineral density (BMD) via dual

energy X-ray absorptiometry (DEXA) scanning is not

recommended as routine management since there is no

established correlation between BMD and fracture risk for this

population (2, 23). Therapeutic intervention in the form of

intravenous bisphosphonates is primarily recommended after

detection of severe pathological fractures (2). Excitingly, emerging

strategies, including physical therapy (PT), innovative bone-sparing

corticosteroids, anti-resorptive agents, hormone replacement

therapy, and targeted antibodies offer promise for improving

bone health in DMD.

Despite the significant impact on patient’s lives, skeletal health

in DMD remains an understudied area. In this review, we aim to

critically analyze existing evidence, providing an up-to-date

assessment of risk factors, pathogenic mechanisms, and emerging

therapeutic avenues for addressing skeletal issues in DMD.
2 Risk factors and mechanisms of
poor bone health in DMD

2.1 Immobilization and reduced
mechanical loading

As DMD progresses, patients experience a gradual loss of

mobility, often leading to wheelchair use by the second decade of

life. Bone health is closely linked to mechanical stimulus (13), with

increased loading promoting bone deposition while chronic

unloading favors bone resorption (24). As DMD advances, there

is diminished force on the skeleton. This is especially pronounced in

the transition from the ambulatory to non-ambulatory phase, after

which there is a marked decrease in BMD (12). This reduction in

mechanical loading has long been considered a primary driver of

impaired bone health in DMD patients.
2.2 Corticosteroid side effects

Corticosteroids, namely prednisone and deflazacort, are

mainstay therapies in DMD, albeit non-curative. Their use has

revolutionized DMD treatment and significantly improved survival

rates by delaying the need for mechanical ventilation and preserving

cardiac function (6, 25–27). They prevent muscle deterioration,

which is thought to be by improving sarcolemma healing and

reducing inflammation (27–29). However, their long-term use is

associated with significant adverse effects, including osteoporosis,

pan-hormonal suppression, mood disturbances, and metabolic

dysfunction (6, 30–33). Numerous studies have demonstrated

increased fracture risk and growth retardation in corticosteroid-
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treated patients (5, 25, 30, 32, 34–37), with earlier initiation and

longer treatment durations correlating with higher risk (36, 38, 39).

Long-term corticosteroid use is known to cause osteoporosis

through both direct and indirect mechanisms. Corticosteroids

directly inhibit bone formation and increase bone resorption by

acting on osteoblasts and osteoclasts (40, 41), leading to impaired

bone microarchitecture and low BMD (19). On average, 6-12% of

BMD is lost in the first year of corticosteroid treatment and 3% is lost

every year after that (41). Beyond their direct effects on osteoblasts

and osteoclasts, corticosteroids impair intestinal calcium absorption

(42) and contribute to vitamin deficiency (4, 43), which indirectly

affect bone homeostasis.

Corticosteroids also significantly contribute to growth

retardation in DMD patients. Although growth retardation occurs

in corticosteroid-naïve DMD patients through mechanisms which

are not fully understood (10, 44), corticosteroid usage significantly

worsens this manifestation of the disease (39, 45–47).

Corticosteroids exert direct toxicity to the growth plate by

inducing chondrocyte apoptosis (48, 49). They further affect

growth plate physiology by interfering with the growth hormone

(GH) – insulin-like growth factor-1 (IGF-1) axis. Corticosteroids

inhibit endogenous GH production (42, 50) and antagonize the

peripheral action of GH and IGF-1 (51). Furthermore, GH and

testosterone act synergistically to promote bone growth during

puberty (52). Corticosteroid-induced hypogonadotropic

hypogonadism and consequent testosterone deficiency further

impair the partnership of the GH-IGF-1 axis and testosterone,

which substantially contributes to corticosteroid-induced short

stature if used before puberty (47, 52).
2.3 Vitamin D deficiency

Studies have shown that up to 84% of DMD patients have a

documented vitamin D deficiency at some point, even with

supplementation (5, 38). Multiple aspects of disease may

contribute to this phenomenon. Loss of ambulation is linked to

lower vitamin D levels, possibly due to reduced sunlight exposure

(14). Corticosteroids may be a major contributor to vitamin D

deficiency and resistance to supplementation by increasing

breakdown (4, 43). DMD patients also have elevated fat mass,

which increases vitamin D distribution into fat and reduces its

availability (53–55). Additionally, lower serum vitamin D binding

protein levels were observed in DMD patients, which reduces

vitamin D stores, further explaining resistance to supplementation

(56, 57). Despite a high prevalence of vitamin D deficiency in DMD

patients, the relative impact of vitamin D supplementation on bone

health in this patient population is still elusive. Retrospective and

cohort studies have not consistently correlated supplementation

with improved BMD or reduced fracture risk (5, 16), questioning

the importance of vitamin D deficiency as a contributor to poor

bone health in DMD. However, resistance to supplementation

demonstrates a need for more effective strategies to reach

adequate vitamin D levels in this population.
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2.4 Systemic inflammation

Muscle degeneration and systemic inflammation are

characteristic features of DMD (58, 59), leading to increased

circulating levels of pro-inflammatory cytokines, which in turn

negatively impact bone metabolism (60). Elevated levels of

inflammatory cytokines, including interleukin (IL)-1b, IL-6, tumor

necrosis factor a (TNF-a), chemokine ligand 2 (CCL2), and CXC

motif chemokine ligand 10 (CXCL10) have been reported in DMD

animal models and patients, which may contribute to bone loss in
Frontiers in Endocrinology 04
DMD (summarized in Table 1) (59, 61, 62). IL-1b, IL-6, and TNF-a
all have been shown to increase bone resorption by stimulating

osteoclast activity and differentiation (63). Likewise, CCL2 and

CXCL10 also affect osteoclastogenesis and increase bone resorption

(64–66). So far, the effects of these cytokines on bone metabolism

have been mostly studied in inflammatory, autoimmune and cancer

conditions. Only IL-6 has been directly studied in DMD, showing

increased osteoclast formation in ex vivo murine calvaria bone

cultures treated with mdx mouse serum, which was reduced

following treatment with IL-6 neutralization antibody (7).
TABLE 1 Cytokines and myokines involved in bone loss in DMD.

Cytokine/
myokine

Effects on bone Effects on muscle Levels
in DMD

Benefit of inhibition in DMD

IL-6 Increases osteoclast differentiation and
osteoblast differentiation, but with a net
resorptive effect leading to osteoporosis
(63, 67, 102)

Muscle degeneration, inflammation,
exhaustion of stem cells, fibrosis,
adipogenesis (103)

Increase
(7, 59, 62,
104, 105)

Mdx mice treated with anti-IL-6 had
increased muscle diameter, decreased
fibrosis, lower serum CK. No effects on
diaphragm or heart (104).
Calvaria explants treated with DMD
patient serum had attenuated bone
resorption when treated with anti-IL-6 (7)

TNF-a Suppresses bone formation, induces
resorption (102)

Frequently induces atrophy, but is
involved in muscle regeneration in
certain contexts (106)

Increase
(59, 62, 105)

Inhibition reduces muscle damage and
degeneration (107, 108)
Reduces fibrosis but decreases ejection
fraction and left ventricle thickness (109)

IL-1b Suppresses bone formation, induces
resorption (102)

Induces skeletal muscle
catabolism (110)

Increase
(59, 62, 105)

IL-1Ra inhibition in mdx mice improved
forelimb grip strength but did not affect
EDL function (111)

CCL2, CXCL10 Induces resorption (64–66) CCL2 stimulates regeneration at low
concentrations, but inhibits regeneration
at too high of concentrations (112, 113)
CXCL10 increases myogenic
differentiation in vitro but has no effect
in vivo (114)

Increase
(61, 62, 105)

CCL2 inhibition reduced diaphragm
inflammation (115)
CXCL10 has not been studied.

RANKL Elevated RANKL induces bone
resorption (63, 116)

Implicated in pathogenesis of
hypertrophic cardiomyopathy,
inhibition improves muscle function in
a variety of disease states (117)

Decrease
(73, 118)

Improves cardiac function (119)
Improves skeletal muscle function (72)
Treats osteoporosis (72, 120, 121) in
dystrophic mice and DMD patients

FGF21 Likely promotes resorption (76, 79,
122, 123)

Promotes muscle atrophy (75) Increase
(62, 77)

Inhibition improves osteoporosis (77)

Myostatin Induces osteoporosis (67, 87, 89, 124) Negatively regulates muscle fiber
number and size (84)

Decrease
(62)

Improved muscle strength, BMD in mdx
mice (88, 125–128)
Trend improvement in muscle and bone in
humans, trial prematurely ended due to
adverse effects (94, 129)

Irisin Increases bone growth, BMD (96) Promotes hypertrophy, prevents
atrophy (97)

Decrease
(62)

Supplementation improved muscle
strength, mass in mdx mice (130)

Lipocalin 2 Inhibits linear growth, inhibits bone
deposition, and induces bone
resorption (101)

Inhibits myogenesis (131) Increase
(62, 100)

Increased trabecular volume, improved
grip strength, reduced diaphragm
fibrosis (100)

SPARC, periostin Thought to be pro-osteogenic (132–
134), but effect as a myokine has not
been evaluated

SPARC: unclear, may be pro- or anti-
regenerative, may be dependent on
context, alters metabolism (135–137)
Periostin may inhibit myogenesis,
promote fibrosis (138, 139)

Increase (62) Has not been studied

Other elevated
myokines –
LIF, OSM

Overexpression leads to osteopetrosis,
knockout leads to smaller bones (140)

Promotes regeneration after
damage (141)

Increase (62) May improve dystrophic phenotype by
improving repair, preventing fibrosis
(142–144)
Description of what is known about effect on bone, muscle, and effect of supplementation or inhibition on DMD, if studied. All studies are preclinical animal studies unless otherwise specified.
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2.5 Myokines

Recent studies have highlighted that myokines secreted from

skeletal muscle exert regulatory effects on bone metabolism (67, 68).

While the precise composition of myokines from dystrophic muscle

remains to be fully elucidated, several myokines have been

implicated in modulating bone turnover in DMD, including

receptor activator of nuclear factor к B ligand (RANKL),

fibroblast growth factor (FGF) 21, myostatin, lipocalin 2, and

irisin (62). Understanding the roles of these myokines in DMD-

associated osteoporosis is essential for exploring them as potential

therapeutic targets. The current understanding of the roles of those

myokines is summarized in Table 1.

2.5.1 RANKL
RANKL, in conjunction with its membrane receptor RANK and

the soluble decoy receptor osteoprotegerin (OPG), plays a pivotal

role in osteoclast differentiation and bone remodeling (69). Notably,

the expression of RANK, RANKL, and OPG is not confined to bone;

all three are also expressed in muscle (70, 71). Skeletal muscle in

dystrophic mouse models has been shown to exhibit elevated

RANKL expression (62). While the precise function of this axis in

skeletal muscle remains elusive, systemic neutralization of RANKL

in dystrophic mice improved both skeletal muscle function (70) and

bone strength in mdx mice (21, 72), which suggests dual function of

RANKL on skeletal muscle and bone. Despite one study finding

paradoxically lower levels of RANKL, OPG, and RANKL/OPG ratio

in patients compared to healthy controls (73), the concept that the

RANKL/RANK/OPG system may interconnect bone and muscle in

DMD warrants further investigation.

2.5.2 FGF21
FGF21 is a member of the endocrine FGF19 subfamily, an

atypical group of FGFs secreted into systemic circulation, acting as

endocrine hormones (74, 75). While FGF21 is primarily expressed

by the liver and adipose tissue, it can also be secreted in large

quantities from muscle tissue under pathological conditions,

including mitochondrial dysfunction and muscular dystrophy

(62, 76–78). In dystrophic mice, considerable amounts of FGF21

are expressed in muscle tissue and contribute to the elevated

circulating levels of FGF21 (62). Blockade of FGF21 via

neutralizing antibodies has shown promise in improving bone

phenotype in a severe DMD mouse model (77). The impact of

FGF21 on musculoskeletal system is largely unknown, with

emerging evidence implicating that it may play important roles in

homeostasis of both skeletal muscle and bone [as reviewed recently

in (75)]. Although not fully understood, it is likely that FGF21

regulates bone homeostasis via multiple direct and indirect

mechanisms. Recent studies have demonstrated that bone is a

direct target of FGF21 since osteoclasts, bone marrow adipocytes,

and mesenchymal stem cells express the obligate FGF21 co-receptor

b-klotho (77, 79). Furthermore, FGF21 can interact with the GH/

IGF-1 signaling pathway (80), which plays a crucial role in protein

synthesis and bone homeostasis (81). FGF21 inhibits the action of

GH/IFG-1 on proliferation and differentiation of chondrocytes
Frontiers in Endocrinology 05
directly at the growth plate (82, 83), potentially implicating its

pathological role in growth retardation as well.

2.5.3 Myostatin
Myostatin, also known as growth differentiation factor 8 (GDF-

8), is a member of the transforming growth factor-beta (TGF-b)
superfamily and is known for its inhibitory effects on bothmuscle and

bone growth (84–86). Myostatin acts as a catabolic stimulus, resulting

in muscle fiber atrophy (17). In addition to its anti-myogenic effects,

it negatively regulates bone homeostasis by inducing bone resorption

(85, 87) by promoting osteoclastogenesis and inhibiting osteogenesis

(86, 88). Notably, the effect of myostatin on bone loss are potentiated

in the context of decreased mechanical loading (87, 89, 90). Despite

downregulation of myostatin in mdx mice (62) and in DMD patients

(91–93), myostatin inhibition has long been considered a promising

intervention to reverse pathology in muscle-wasting diseases,

including DMD (94). However, there has been a failure to translate

positive results of myostatin inhibition in animal models to humans

(94), which will be discussed in the treatment section (Section 3).

2.5.4 Irisin
Irisin, an exercise-induced myokine, is a cleaved product of

secreted fibronectin type II domain containing 5 (FNDC5) (95).

Unlike myostatin, irisin serves as an anabolic regulator, influencing

both muscle growth and bone health (96, 97). However, the

expression levels of irisin in dystrophic muscle, particularly in

DMD, remains unclear. While one study reported mild decreases

in serum irisin levels in Becker muscular dystrophy (98), others

have found increased levels in exercised dystrophic mice (99).

Another study noted reduced Fndc5 mRNA levels in skeletal

muscle of dystrophic mice, but increased protein levels, indicating

intricate posttranslational regulation of FNDC5/irisin in DMD (62).

The function of irisin in regulating muscle and bone homeostasis in

DMD is still unknown.

2.5.5 Lipocalin 2
Originally identified as an adipokine, elevated levels of lipocalin 2

have been reported in the muscles of mdx mice (100). Transgenic mice

overexpressing lipocalin exhibit decreased BMD and short stature due

to growth plate abnormalities (101), suggesting a potential role for

lipocalin 2 in the development of osteoporosis and short stature in

DMD. Inhibition of lipocalin in mdx mice via either Lcn2 knockout or

the administration of lipocalin monoclonal antibody has shown

increased trabecular volume, enhanced grip strength, and decreased

diaphragm fibrosis (100), indicating that it may play an important role

in both skeletal muscle and bone pathologies in DMD.

2.5.6 Other myokines
A plethora of other bone-regulating myokines have been

identified as upregulated in dystrophic muscle. In addition to the

previously mentioned myokines, leukemia inhibiting factor (LIF),

secreted protein acidic and rich in cysteine (SPARC), and periostin

have been found to be elevated at both the transcript and protein

levels (62). However, their roles in regulating bone homeostasis in

DMD or other conditions have not been studied.
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Together, these findings collectively suggest that altered levels of

multiple potent myokines contribute to the pathogenesis of DMD-

associated bone loss. Notably, increased/decreased expression of

both pro- and anti-osteogenic factors indicate a complex interplay

within the skeletal muscle and bone microenvironment. Despite the

complexity, the net effect of these factors is bone loss in DMD.

Further research is warranted to elucidate the exact effects,

underlying mechanisms, and relative contributions of these

myokines, as well as to validate their clinical relevance.

Understanding the interplay between these myokines and their

impact on muscle function and bone health is crucial for developing

targeted therapeutic interventions for DMD.
2.6 Vascular dysfunction

Bone is intricately connected to vascular function throughout

its development, growth, maintenance, and healing processes (145).

Vasculature is essential for adequate delivery of oxygen and

nutrients, thus shaping the metabolic environment. Additionally,

significant cross-talk exists between vascular endothelial cells and

adjacent bone cells, with mutual influence on osteogenesis, bone

resorption, and angiogenesis (145). Notably, impaired angiogenesis

has been associated with osteoporosis (145).

Vascular dysfunction in skeletal muscle is well-documented in

the context of DMD. Dystrophin, known for its structural role in

cytoskeletal stabilization, binds to neuronal nitric oxide synthase

(nNOS) in skeletal muscle fibers, facilitating nitric oxide (NO)

synthesis for vasorelaxation (146). In DMD, the absence of

dystrophin results in the loss of nNOS from the sarcolemma and

its significant downregulation in the cytoplasm, leading to

functional ischemia contributing to muscle damage and impaired

regeneration (147). Dystrophic muscles exhibit not only vascular

dysfunction, but also low vessel density and impaired angiogenesis

(148–152). In addition to skeletal muscle fibers, smooth muscle cells

(152–154) and endothelial cells (148, 150) also express full-length

dystrophin, suggesting its crucial role in regulating vasodilation,

vasocontraction, and angiogenesis [refer to recent review (155)].

However, little is known regarding the functional dysregulation of

dystrophin expression out of skeletal muscle fibers in DMD.

Furthermore, no studies have directly evaluated vasculature in

dystrophic bone, even though it is reasonable to hypothesize that

dystrophin mutations may affect bone vasculature via NOS. One

study evaluating fracture healing in mdx mice observed decreased

vessel density in early repair stages, correlating with delayed healing

(18). The study also noted abnormally high inflammation after

fracture (18), which brings to question whether impaired fracture

healing was due to angiogenic dysfunction, excessive inflammation,

or both. The question of whether bone exhibits vascular anomalies

in DMD remains unanswered. A deeper understanding of the role

of angiogenesis, vascular function, and NO• signaling in DMD

pathogenesis in both muscle and bone may unveil potential targets

for enhancing muscular, cardiovascular, and bone health.
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3 Treatments: current and future

Current DMD treatment is negligent to bone health. While

vitamin D is often used to prevent osteoporosis, most patients still

experience osteoporosis and pathological fractures (5).

Bisphosphonate use is typically reserved for use following

pathological fractures. Disappointing statistics regarding rates of

fracture, especially those which lead to loss of ambulation, indicate

that current management of bone health is inadequate in DMD

patients. Furthermore, patient age is important to consider in

managing bone health in DMD. In pediatric patients, growth

retardation is of great concern, while in adult patients,

osteoporosis and pathological fracture are of most concern.

Optimal timing of therapeutic intervention requires more research.

The intricate relationship between muscle and bone along with

the impact of long-term corticosteroid usage necessitate an

integrated, multi-factorial approach to the management of DMD

bone issues. Combining strategies to address multiple aspects of

disease while minimizing off-target effects of current treatment hold

the most promise. As the field gains more understanding of disease

pathogenesis, more effective and targeted therapeutic avenues can

be explored. Below, we will discuss potential therapeutics at varying

states of investigation, which are also summarized in Table 2. As

research continues to advance, a more comprehensive toolkit of

interventions is expected to emerge.
3.1 Monitoring bone health and early
detection of fractures

Due to the high incidence of bone issues in DMD patients,

frequent monitoring of bone health in this patient population is

important for early detection and intervention. Vertebral fracture

affects 30-60% of patients, many of which are asymptomatic (2).

Current guidelines emphasize early fracture detection, and thus

recommend routine lateral spine radiographs at an interval of every

1-2 years in corticosteroid-treated patients and every 2-3 years in

those who are corticosteroid-naïve (2). DEXA scans may be used as

an adjacent method of monitoring BMD but are not of particular

emphasis since there is no established cutoff for what may warrant

intervention (1, 8). Additionally, BMD Z-score may be

underestimated in DMD patients since they often have a younger

bone age than chronological age, which could alter estimation of

fracture risk (23). Early detection of fracture, however, does not

prevent fracture. Further research should be done to correlate BMD

with fracture risk to establish guidelines for when to start

prophylactic treatment.
3.2 Physical therapy

Current guidelines published by the DCCWG recommend PT

as an integral part of DMD management (22). However, there is no

consensus on protocols, leading to inconsistent recommendations
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TABLE 2 Treatments for bone comorbidities in DMD.

Conservative Treatments

Treatment Evidence for Limitations References

PT: strength training Only exercise validated for muscle growth in
other populations

Concern for exercise-induced muscle damage, ischemia,
poor regeneration, negative cardiovascular effects

(13, 161–166)

PT: Aerobic exercise Well-tolerated by DMD patients, may prolong walking Unclear if there are any positive effects on bone (99, 231, 232)

PT: Low-intensity vibration Attenuates muscle and bone loss None known (170–172)

PT: Cyclic electrical
muscle stimulation

Promising results in other immobilization conditions Potentiated bone loss in a dystrophic mouse model (168, 173)

PT: Assisted standing Lacked efficacy in a small trial (160)

Vitamin D &
calcium Supplementation

Improves BMD Unclear if vitamin D reduces fracture risk (5, 16, 202)
F
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Pharmacological Treatments

Corticosteroids: Intermittent
versus daily dosing

Believed to prevent adverse effects Not as effective as daily dosing at preventing disease
progression, unclear if it prevents bone loss

(31, 178–180)

*Vamorolone No growth suppression, equal efficacy to prednisone, no
effect on bone turnover markers

No direct evaluation of BMD or fracture risk in
clinical trials

(182–186,
188, 233)

Bisphosphonates Increases BMD No strong evidence demonstrating increased fracture
risk, concern for adverse effects (e.g. acute phase
reaction, hypocalcemia, hypophosphatemia, adrenal
insufficiency, decreased bone turnover)

(15, 34, 191,
193–197)

Denosumab Increases BMD in patients, increases muscle strength
and cardiovascular function in mice

Difficult to stop without rebound bone loss (21, 72, 119–
121, 199, 201)

GH/IGF-1 supplementation Increases growth velocity, may be more effective in
conjunction with testosterone and/or bisphosphonates

No improvement of muscle function, no effect on BMD (203–207)

Testosterone Preserves muscle mass, increases growth velocity,
prevents bone loss, induces puberty

Benefits do not persist past termination of treatment (212–216)

*Teriparatide/PTH More effective than bisphosphonates at improving
BMD, anabolic agent, decreases fracture risk

Not recommended before puberty (218–220, 222)
Preclinical therapies

Tocilizumab (anti-IL-6) Prevented bone loss in vitro, prevents muscle
degeneration in mice

Bone-protective effects have yet to be studied in vivo (7, 63, 104)

Anakinra (IL-1R antagonist) Attenuates bone loss in autoimmune conditions,
improves forelimb strength in mice

Bone-protective effects have yet to be studied in DMD (63, 111, 226)

Adalimumab (anti-TNF-a) Attenuates bone loss in autoimmune conditions,
decreases muscle degeneration in mice

May be detrimental to cardiovascular health, effect on
bone has yet to be studied in DMD

(63, 107,
109, 226)

Anti-FGF21 Improves BMD in mice Unknown effect on muscle, unknown adverse effects (77)

Anti-Lipocalin 2 Improves bone, increases strength, decreases
diaphragm degeneration

Unknown adverse effects (100, 101)

Irisin supplementation Increases muscle mass and strength, decreases
degeneration in DMD models, increases bone growth
and BMD in other mouse models

Unknown effect on bone in DMD (96, 130)

LIF supplementation Increases muscle repair, decreases fibrosis in DMD
models, overexpression mice have increased
bone deposition

Unknown adverse effects, unknown effect on bone
in DMD

(142–144)

*Myostatin inhibition Increases muscle mass, strength, and decreases fibrosis,
increases bone mass and strength in mice

Not effective in clinical trials (88, 94, 125–
128, 229, 230)
Conservative treatments, pharmacological treatments, and treatments under investigation at the preclinical or clinical stage and their outcomes and limitations. *Indicates under investigation in
clinical trials, italics indicates under investigation at the pre-clinical stage.
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between physicians and physical therapists based solely on provider

experience and anecdotal evidence (156). Moreover, the current

focus of PT is to improve or maintain muscle function and is not

focused on improving bone health. Currently, only low-intensity

and aerobic exercise are recommended (156–158). Investigation

into modalities such as low-intensity vibration and assisted standing

have been explored with some benefit but are not yet standard of

care (159, 160). All of them show some benefit to maintain muscle

function in clinical studies [A more detailed summary of these

studies can be found in a recent review by Spaulding and Selsby

(157)]. Unfortunately, no studies have evaluated any type of

exercise for improving bone health in DMD patients (156).

When discussing PT to improve bone health in healthy

populations, high-load resistance training or repetitive high-impact

movements are optimal to increase muscle mass and increase BMD

(13). However, for DMD patients, there are several concerns, including

exercise-induced muscle damage, ischemia, regenerative ability of

muscle, and effects on cardiovascular function. It is recommended to

provide sub-maximal loading to reduce the risk of muscle damage

(156). However, the scientific basis of this recommendation is not

definitive. Numerous studies have demonstrated that dystrophic

muscle is more prone to damage following exercise than healthy

muscle (161–163), and satellite cells in dystrophic muscle have

impaired regenerative capacity (164–166). However, some studies

also indicate that dystrophic muscle has a high functional

regenerative capacity and recovers function well after contractile

injury (162, 167), indicating that higher intense exercise may not

lead to a functional deficiency as we thought. There is certainly more to

investigate regarding exercise regimens and regenerative capacity of

dystrophic muscle and how that may affect bone.

In addition to exercise, some modalities, such as low-intensity

vibration, assisted standing, repetitive electrical muscle stimulation, and

high-dose compressive loading, have shown benefits in other muscle-

wasting and immobility related bone conditions (168, 169). Of these,

electrical muscle stimulation and low-intensity vibration can also

attenuate muscle loss (170–172), thus potentially addressing both

muscle and bone problems in DMD. So far, electrical muscle

stimulation has been evaluated in mice, while low-intensity vibration

and assisted standing have been evaluated in humans. One study found

that electrical muscle stimulation, which provides cyclic loading,

worsened bone loss in mdx mice, potentially by increasing release of

harmful myokines (173). This has not been evaluated in humans with

DMD, so it is unclear if this result would hold. In patients, assisted

standing, meant to return body-weight stimulus to bone, did not prevent

bone loss in four wheelchair-bound DMD patients (160). Low-intensity

vibration is FDA-approved to treat osteoporosis in adults and is thought

to increase BMD by stimulating osteocytes and mesenchymal stem cells,

although the exact mechanism is unclear (170, 171). It has also shown

some efficacy in increasing BMD inDMDpatients and in other pediatric

populations and is generally well-tolerated (13, 159, 174), warranting

further exploration of this modality.

The optimal PT protocols to promote maintenance or gain of

muscle function and bone still require much more mechanistic and

clinical exploration. The complexities of muscle damage and

regeneration, its crosstalk with bone, differences in the response

of muscle and bone to different types of exercise, and potential
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confounders of vascular dysfunction, leave many unanswered

questions. The optimal protocol may not be intuitive, and likely

should include additional modalities targeting bone.
3.3 Optimal corticosteroid treatment
and alternatives

Corticosteroids play a pivotal role in preserving muscle function

by mitigating inflammation; however, their usage is accompanied

by a range of adverse effects, such as excessive weight gain, adrenal

insufficiency, behavioral changes, Cushing’s syndrome, stunted

growth, and osteoporosis. The optimization of corticosteroid

administration including the choice of agent, dosing, timing, and

frequency remains a dynamic area of research in the field, as

recently reviewed by Biggar et al. (175).

Intermittent dosing of corticosteroids has been explored as an

alternative to daily administration with hopes of mitigating side

effects while maintaining efficacy. However, results have been

inconsistent. Studies have found that intermittent dosing is at

least better than placebo (176, 177), but it is not as effective at

slowing disease progression as daily dosing (31, 178–180). One RCT

of weekend versus daily dosing found a statistically significant

increase in growth and BMD in the weekend group compared to

the daily group, but patients’ heights and BMD were not statistically

significantly different at the end of the study (179). Despite this

being a theoretically appealing option, evidence suggests that

intermittent dosing is inferior for disease progression and does

not substantially reduce the risk of bone loss.

Ongoing efforts in treatment development focus on generating

more selective corticosteroids to balance efficacy and side effects.

Vamorolone is a synthetic corticosteroid which is more selective for

the glucocorticoid receptor while antagonizing the mineralocorticoid

receptor, which should theoretically reduce side effects, especially

bone-related side effects (181). In preclinical studies, vamorolone

improved skeletal muscle repair with minimal impact on hormonal

regulation, growth, and immune suppression (181–183). Phase III

clinical trials have shown comparable or superior efficacy to

prednisone in retaining muscle function while preventing growth

suppression (184–186). Vamorolone’s potential bone-sparing

properties are also noteworthy, as evidenced by its neglectable

effects on bone growth and trabecular thickness in mice (181, 187)

and decreased markers of bone turnover in patients (186, 188).

However, further clinical investigations are required to ascertain

whether it is truly less detrimental to bone than prednisone.
3.4 Anti-resorptive therapy

Anti-resorptive therapies, such as bisphosphonates and

denosumab, are widely used for osteoporosis treatment (189, 190).

There is currently no consensus on the use of antiresorptive therapies

tomanage osteoporosis in DMD, but bisphosphonates are commonly

used following severe fracture (2, 191). Bisphosphonates inhibit

osteoclast attachment to the bone surface and induce cell apoptosis
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(190), while denosumab, a monoclonal antibody targeting RANKL,

prevents osteoclast formation (192).

DCCWG recommends intravenous bisphosphonate treatment

following a pathological fracture (vertebral Genant grade 2 or 3 or

low-trauma long bone fracture) (2). However, it is still unclear

whether bisphosphonates are beneficial as a prophylactic treatment.

Landfeldt et al. recently published a systematic review on

bisphosphonate use in corticosteroid-treated DMD patients (191).

Notably, there is good quality evidence that bisphosphonate use

increases BMD in DMD patients, but it is unclear if this translates to

a lower fracture risk (15, 34, 191, 193, 194). Unfortunately, the rate

of adverse effects in DMD patients is high, with acute phase

reaction, hypocalcemia and hypophosphatemia, and precipitation

of adrenal insufficiency of particular concern (191, 195). Of further

concern , h i s tomorphometr i c ana lyse s ind i ca te tha t

bisphosphonates globally decrease bone turnover (1, 196, 197),

which is problematic during bone development (198). Currently,

bisphosphonates are one of the few options for treating osteoporosis

but may not be the best option for young DMD patients.

Denosumab has also been used in pediatric populations (189)

and has shown promising results in DMD. Case reports

demonstrate improved BMD without notable side effects,

indicating its relative effectiveness and tolerability in children

(120, 121, 189). Notably, denosumab and other anti-RANKL

therapies may also improve muscle strength and cardiac function,

as reported in mouse models of DMD (21, 72, 119, 199). One

consideration when starting denosumab treatment is that it cannot

be stopped abruptly; its effects on BMD decline rapidly following

termination of treatment (72, 200, 201). This is easily remedied by a

short course of bisphosphonates (72, 200, 201). Given the favorable

outcomes observed in both muscle and bone in DMD patients and

animal models, further investigation into the use of denosumab for

this population is warranted.
3.4 Vitamin D and
calcium supplementation

Calcium and vitamin D supplementation are strongly

recommended for DMD patients (22). DMD patients are

particularly susceptible to vitamin D deficiency because of

corticosteroid use, obesity, and low levels of vitamin D binding

protein, meaning supplementation needs to be aggressive (2000 IU/

day) to reach adequate levels in most patients (53). Cohort studies do

not find an association between vitamin D supplementation and

fracture risk, but an RCT found that adequate supplementation

improved BMD (5, 16, 202). Although vitamin D supplementation

alone does not fully prevent osteoporosis in DMD (5), due to its

simplicity, low risk, and possible benefit, vitamin D supplementation

should be a pillar of maintaining bone health in DMD patients.
3.5 Hormone therapy

Endocrine management is an important aspect of DMD

treatment given the hormonal imbalances induced by
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corticosteroids. GH and testosterone therapy have been

investigated to restore hormonal levels to normal ranges and

promote linear growth. Additionally, to improve bone health,

PTH therapy via teriparatide, a PTH analogue, has been explored

as a strategy specifically to improve bone quality and

prevent osteoporosis.

The role of GH in bone problems in DMD has been extensively

studied, particularly due to growth retardation observed in DMD

patients. Although there is no clear evidence of GH dysregulation in

DMD patients who are not treated with corticosteroids (44),

corticosteroid use is well-known to impair the GH axis and GH

secretion (42, 51). Both GH supplementation and inhibition have

been tested in DMD patients, but yielded controversial and

inconclusive results. Supplementation, either via recombinant

human GH (rhGH) or IGF-1, improved in growth velocity but

failed to demonstrate motor function improvement (203–205).

Moreover, there has been no documented improvement in BMD

with GH or IGF-1 treatment in mdx mice or patients, possibly due

to the short duration of these trials. GH secretagogues have been

explored in mice, including ghrelin and the synthetic secretagogues

EP80317 and JMV2894. Both studies demonstrated decreased

muscle fibrosis and inflammation, and increased muscle strength

(206, 207), but neither study evaluated the bone phenotype in these

mice. Conversely, the idea that GH inhibition might be beneficial

stemmed from the observation that a patient with DMD and GH

deficiency had no clinical evidence of muscular weakness before

initiation of GH replacement therapy; and treatment with human

GH resulted in appearance of symptoms of easy fatigability and

proximal muscle weakness, which suggest that increased growth

may worsen muscle function in DMD (208). However, clinical trials

investigating mazindol, a postulated inhibitor of growth hormone

release, have shown inconsistent effects on growth suppression and

no benefits on muscle strength (209, 210). In light of limited data

and ongoing controversy, routine use of rhGH or secretagogues in

DMD population is not recommended. Any decision to use rhGH

should be made on a case-by-case assessment with biochemical

evidence of growth hormone deficiency, weighing the risks

and benefits.

Delayed or absent pubertal development in DMD patients on

glucocorticoids is common due to hypogonadotropic

hypogonadism (211). Testosterone therapy is recommended for

pubertal induction in these individuals, typically initiated by age 14

(22, 212–214). Clinical trials have shown that testosterone therapy

not only induces puberty but also preserves muscle mass, improves

growth velocity, and prevents bone deterioration (212–216).

However, these benefits are observed only during treatment. A

recent follow up study on patients that were treated with

testosterone for 2 years demonstrated persistent lower

testosterone levels and testicular volumes than adult reference

values; muscle functional volume increased during the

intervention but declined in the years after cessation of

supplementation (214). Given the known additional advantages of

testosterone on bone health, muscle, and well-being (217), the

benefits of restoring testosterone to normal physiologic levels are

deemed to outweigh potential risks. Nevertheless, further research is

warranted to elucidate the optimal timing, duration, and regimen
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for testosterone supplementation in DMD patients and its potential

impact on bone health.

PTH administration in DMD mouse models improved or

maintained BMD in several studies (218–220). Research on

corticosteroid-induced bone loss suggests that PTH may be more

effective than bisphosphonates (221). Although its safety and

efficacy in improving bone health in DMD still need to be

validated in clinical trials, a small cohort treated with teriparatide,

a PTH analogue, demonstrated decreased fracture risk (218, 222).

As previously mentioned, multiple hormonal pathways are

affected in DMD. This complexity prompted an investigation to

evaluate the efficacy of hGH, testosterone, and zolendronic acid

(ZA, a bisphosphonate) in various combinations after vertebral

fractures (15). The study revealed that hGH and testosterone, either

alone or in conjunction with ZA, significantly delayed the

occurrence of subsequent vertebral fractures compared to ZA

treatment alone. Moreover, multivariate analysis demonstrated

that hGH was the greatest contributor in enhancing this

protective effect (15). This study highlights the intricate hormonal

imbalances contributing to osteoporosis in DMD patients, which

point out the need for a holistic management strategy that targets

these hormonal disruptions.
3.6 Novel anti-inflammatory and
immunomodulatory agents

In addition to corticosteroids, monoclonal antibodies targeting

specific immune modulators are increasingly used to treat

inflammatory conditions. Tocilizumab, an anti-IL-6 receptor

monoclonal antibody, is used to treat certain autoimmune conditions

and may attenuate bone loss (223–225). Ex vivo and in vitro

experiments found that tocilizumab rescued the anti-osteogenic/pro-

osteoclastogenic effect induced by DMD patient serum (7). In mdx

mice, tocilizumab treatment improved skeletal muscle phenotype by

improving muscle diameter, reducing fibrosis, and decreasing serum

CK, suggesting it has promise for altering disease progression (104).

Although no studies have evaluated its effect on bone in vivo, this may

be a promising avenue to treat muscle and bone degeneration. Anti-IL-

1 receptor antagonist anakinra and anti-TNF-a monoclonal antibody

adalimumab are also used to treat autoimmune diseases and may also

attenuate bone loss (63, 226). Neither has been tested for effects on

bone in DMD models, but they have been studied for their effects on

muscle. Anti-TNF-a treatment decreased muscle damage,

degeneration, and fibrosis in mdx mice, but appeared detrimental to

cardiac function (107, 109). Anti-IL-1R treatment in mdx mice

improved forelimb strength (111). The effects of these treatments on

disease progression and osteoporosis in DMD requires more

investigation, but thus far tocilizumab appears to be most promising.
3.7 Novel therapies targeting myokines

Myokines secreted from dystrophic muscle significantly

contribute to the development of bone abnormalities in DMD.

Targeting these myokines holds considerable promise for mitigating
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dystrophic bone loss. Of the myokines discussed, RANKL, FGF21,

myostatin, irisin, and lipocalin 2 have been studied in mouse

models. Only myostatin inhibition has been translated to the clinic.

In preclinical studies, inhibition of FGF21 or lipocalin 2, and

supplementation of irisin or LIF have been studied with some

promising results. Inhibition of FGF21 via neutralizing antibody

increased BMD in a severe DMD mouse model by decreasing

osteoclastogenesis (77). The effect of FGF21 inhibition on

dystrophic muscle has yet to be determined. Lipocalin 2 has been

studied in dystrophic mice by neutralizing antibody and global

knockout of lcn2, which resulted in increased trabecular volume,

grip strength, and reduced diaphragm fibrosis (100). A study by Reza

et al. (130) revealed that recombinant irisin treatment increased

muscle mass and strength in addition to reducing muscle fibrosis

and necrosis, although its effects on bone are unknown. Several

studies have also evaluated LIF supplementation, which improved

dystrophic phenotype by improving repair and preventing fibrosis

(142–144), but given its role in promoting solid tumor progression,

further research should be cautious of potential oncogenic effects

(227). With the popularity of monoclonal antibody treatments,

inhibition of FGF21 and lipocalin 2 could be promising therapeutic

targets. Irisin could be supplemented by recombinant protein or

mimetics (97, 228). While the effects of FGF21 on muscle and irisin

and LIF on bone are unstudied, their known roles in muscle and bone

pathology warrant further investigation in pre-clinical models.

In preclinical studies involving DMD animal models, myostatin

inhibition led to increased muscle mass and strength, and decreased

fibrosis (125–128, 229), as well as improved bone mass and strength

(88). However, these positive results have not translated to positive

outcomes in clinical trials (230). Three distinct myostatin inhibitors

have been developed and all have failed in clinical trials [as recently

reviewed in (94, 230)]. The discrepancy of efficacy between animal

models and humans is likely due to the differing expression levels of

myostatin between mdx mice and human patients. Myostatin levels

in mice are approximately 5 to 9-fold higher than in humans (124).

Thus, further exploring direct inhibition of myostatin is unlikely to

be fruitful. However, increased understanding of myostatin action,

such as downstream signaling pathways, may provide alternative

druggable targets.
4 Conclusions

The pathogenesis of bone abnormalities in DMD is

multifactorial, extending beyond corticosteroid usage and loss of

ambulation. While factors such as mechanical loading,

corticosteroid usage, nutritional deficiencies, hormonal

imbalances, systemic inflammation, and myokine dysregulation

contribute to bone health deterioration in DMD patients, the

precise interplay among these factors requires further elucidation.

Moreover, the management of bone health in DMD necessitates a

multidisciplinary approach that includes PT, nutritional

supplementation, hormonal therapy, anti-inflammatory

interventions, and potential myokine-targeted therapies. It is

evident that a more comprehensive clinical management plan is

imperative to address the complex pathophysiology of bone
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abnormalities in DMD and must take into account patient age.

Future research efforts should focus on unraveling the underlying

mechanisms driving bone pathology in DMD and developing

tailored therapeutic strategies to mitigate bone loss and improve

skeletal health outcomes.
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