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Objective: Gout is a common inflammatory arthritis and lipid metabolism plays a

crucial role in urate and gout. Potential associations between urate and gout and

lipid-lowering drugs have been revealed in observational studies. However, the

effects of lipid-lowering drugs on urate and gout remain controversial. The aim of

this study was to investigate the genetic association between lipid-lowering

drugs and urate and gout.

Methods: In this study, two genetic proxies were employed to approximate

lipid-lowering drug exposure: expression quantitative trait loci (eQTL)

associated with drug-target genes and genetic variations proximal to or

within genes targeted by these drugs, which are linked to low-density

lipoprotein cholesterol (LDL-C) levels. The study’s exposures encompassed

genetic variants within drug target genes (HMGCR, PCSK9, NPC1L1), each

representing distinct lipid-lowering mechanisms. Causal effects were

estimated using the inverse variance weighting (IVW) method, while the

Summary Data-based Mendelian Randomization (SMR) method, leveraging

pooled data, was applied to compute effect estimates. These estimates were

further refined through various approaches including MR-Egger, the weighted

median method, simple and weighted models, and leave-one-out analyses to

conduct sensitivity analyses.

Result: The analytical outcomes utilizing the IVW method indicated that

inhibitors of HMGCR were correlated with an elevated risk of developing gout

(IVW: OR [95%CI] = 1.25 [1.03, 1.46], p=0.0436), while PCSK9 inhibitors were

linked to heightened levels of urate (IVW: OR [95%CI] = 1.06 [1.01,1.10],

p=0.0167). Conversely, no significant correlation between NPC1L1 inhibitors

and the levels of urate or the risk of gout was established. Furthermore, the

SMR analysis failed to identify significant associations between the expression

levels of the HMGCR, PCSK9, and NPC1L1 genes and the risk of gout or elevated

urate levels (SMR method: all P values >0.05). Sensitivity analyses further

confirmed the robustness of these results, with no significant heterogeneity or

pleiotropy found.
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Conclusion: This study furnishes novel causal evidence supporting the potential

genetic correlation between the use of lipid-lowering drugs and the incidence of

gout as well as urate levels. The findings indicate that inhibitors targeting HMGCR

may elevate the risk associated with the development of gout, while inhibitors

targeting PCSK9 are likely to increase urate concentrations.
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1 Introduction

Urate, the terminal product of purine metabolism, manifests an

imbalance between its synthesis and excretion, potentially leading

to increased serum urate concentrations and the genesis of

monosodium urate crystals (1). Gout represents an inflammatory

condition, instigated by the deposition of monosodium urate

crystals within joints and soft tissues, and stands as the globally

most widespread variant of inflammatory arthritis (2).This

condition places a significant burden on individual health and the

healthcare system (3). Gout afflicts approximately 4% of the adult

population in developed nations, with over 7 million new cases

emerging globally each year (4), and its prevalence is notably

increasing alongside economic development (5). The disease is

typified by recurrent acute episodes, which may culminate in

severe pain and significant dysfunction (6). Severe gout can lead

to chronic kidney diseases or urinary tract stones, potentially

resulting in kidney failure (7). Studies show that dyslipidemia

increases the risk of gout and higher serum urate levels (8).

Dyslipidemia involves high levels of total cholesterol,

triacylglycerols, and low-density lipoprotein cholesterol (LDL-C),

which are all positively linked to serum urate levels (9).

Dyslipidemia occurs more frequently in gout patients than in

those with silent high urate levels (10) and gout patients often

have a history of dyslipidemia (11).

Statins are preferred for the treatment of dyslipidemia due to

their proven efficacy in reducing LDL-C levels and mitigating the

risk of atherosclerotic cardiovascular disease (ASCVD) (12).

Inhibitors of 3-Hydroxy-3-methylglutaryl coenzyme A reductase

(HMGCR), including simvastatin and rosuvastatin, represent

prevalent statin types. Additionally, other lipid-lowering agents,

including FDA-approved inhibitors of the preprotein convertase

subtilisin/kexin type 9 (PCSK9) and ezetimibe targeting Niemann-

Pick C1-like 1 (NPC1L1), are employed to augment the lipid-

reducing efficacy (13, 14). PCSK9, identified as a serine protease,

occupies a pivotal role in the regulation of LDL-C metabolism,

contributing to the onset of dyslipidemia and atherosclerosis

through the inhibition of LDLR recycling to the cellular surface,

thus elevating LDL-C concentrations (15). NPC1L1, a

transmembrane protein prevalent in diverse cells, notably within
02
the parietal membrane of intestinal epithelial cells and the renal

tubular membrane of hepatocytes, plays a crucial role in mediating

cholesterol absorption and overseeing hepatic cholesterol excretion

(16), significantly influencing LDL-C metabolism regulation (17).

Extant research highlights that both statin and non-statin lipid-

lowering medications may contribute to increased urate levels and a

heightened risk of gout development (12, 18), While certain

investigations have probed into the correlation between serum

urate and lipid concentrations, the findings remain contentious

(19). Therefore, it has become particularly important to thoroughly

investigate the causal relationship between lipid-lowering drugs and

urate levels and gout.

Drug target Mendelian randomization analyses utilize genetic

variation that mimics the pharmacological inhibitory effects of a

pharmacogenetic target as an instrumental variable (IV). This

approach aims to clarify the consequences of drug utilization via

regression techniques, thereby augmenting the comprehension of

the causal nexus between drug targets and the potential

repercussions on urate levels and gout manifestations (15). In

accordance with Mendel’s laws, genetic material undergoes

random distribution during meiosis and is transmitted from

parents to offspring during fertilization, thereby reducing the

likelihood that the outcomes of MR studies are influenced by

potential confounding factors or reverse causation (20).

Consequently, MR analyses have furnished a tier of evidence that

is second only to that provided by randomized controlled trials (21).

In the current investigation, we employed a two-sample Mendelian

Randomization analysis approach to explore the relationship

between lipid-lowering agents (HMGCR inhibitors, PCSK9

inhibitors, and NPC1L1 inhibitors) and outcomes related to urate

and gout.
2 Materials and methods

2.1 Study design

This investigation adhered to the guidelines stipulated by the

STERBE-MR framework (22), Additionally, a two-sample

Mendelian Randomization analysis was employed to evaluate the
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influence of drug targets. The analytical framework was grounded

on publicly accessible summary-level data derived from Genome-

Wide Association Studies (GWAS) and Expression Quantitative

Trait Loci (eQTL) investigations. Two principal methodologies

were utilized in the analysis: Summary Data-based Mendelian

Randomization (SMR) and Inverse Variance Weighted Mendelian

Randomization (IVW-MR) techniques. Detailed information and

specific data sources are delineated in the annex (Supplementary

Table S1)with the study’s flowchart presented in Figure 1. The

foundational GWAS study underpinning this research received

approval from pertinent ethical review boards, with participants

providing signed informed consent forms. Given that only

summary-level data from publicly accessible genetic databases

were utilized, no further ethical approvals were necessitated for

this study (23).
2.2 Selection of genetic instruments

In this investigation, we identified genes encoding the target

proteins of currently available LDL-lowering drugs using the

DrugBank database, three categories of lipid-lowering agents were

designated as exposure variables: HMGCR, PCSK9, and NPC1L1

inhibitors. Serving as surrogates for these drug exposures, accessible

eQTL datasets were utilized, encompassing only those eQTLs

expressed in serum, liver, or adipose tissues associated with lipid-

lowering target genes, which were identified as common cis-eQTLs. A

significance threshold was established at P < 5.0 × 10^-8, with aminor

allele frequency (MAF) exceeding 0.01. During the data analysis

phase, the HMGCR, PCSK9, and NPC1L1 genes presented 921, 24,
Frontiers in Endocrinology 03
and 11 cis-eQTLs, respectively, aligning with their corresponding

drug targets. For every targeted gene, the most representative cis-

eQTL SNPs were chosen as genetic instruments for the analysis. Data

from the eQTL Gen consortium (24) (https://www.eqtlgen.org/) or

GTEx Alliance V8 (25) (https://gtexportal.org/). Furthermore, we

evaluated the linkage between individual genetic variants and levels

of LDL-C. Aggregated data concerning LDL-C levels were sourced

from the Global Lipids Genetics Consortium (GLGC) (23),

encompassing 173,082 individuals of European descent. Single

nucleotide polymorphisms (SNPs) were utilized as surrogate

markers for exposure to LDL-C lipid-lowering drugs. Genetic

instruments based on SNPs were chosen according to specific

criteria: they were situated within or in close proximity to the

±100 kb region surrounding the pertinent drug target gene and

exhibited a high correlation with it (p<5.0×10^-8). In order to

augment the robustness of the instrumental variables, SNPs were

permitted to exhibit low weak linkage disequilibrium (r2< 0.30).

Ultimately, utilizing data from the GLGC (ieu-a-300), we identified

and selected 7, 12, and 3 significant SNPs within the HMGCR,

PCSK9, and NPC1L1 genes, respectively, as our genetic instruments

(Supplementary Table S2).
2.3 Sources of results

In this investigation, urate and gout data were employed as the

principal outcome measures for the execution of Mendelian

Randomization analyses concerning drug targets. To ascertain the

robustness of our results, coronary heart disease (CHD) was

incorporated as a positive control, reflecting the well-documented
FIGURE 1

Flowchart of the study design. In order to study causality, the following conditions need to be met: (1) genetic variation should be strongly
correlated with exposure (solid line); (2) genetic variation should not be correlated with confounders (dashed line); and (3) genetic variation should
not have a direct relationship with the outcome (dotted line). eQTL, expressed quantitative trait loci; SNP, single nucleotide polymorphism;
MAF, minor allele frequency; SMR, Mendelian randomization based on pooled data; IVW-MR, inverse variance weighted Mendelian randomization;
LDL, HMGCR, 3-hydroxy-3- methylglutaryl-coenzyme A reductase; PCSK9, preprotein convertase Bacillus subtilis protease/kexin type 9; NPC1L1,
Niemann-Pick C1-like 1; CHD, coronary heart disease; Gout, gout; Urate, uric acid.
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efficacy of lipid-lowering therapies in diminishing CHD incidence

rates (26, 27). The CHD dataset was sourced from GWAS summary

statistics, encompassing 60,801 cases and 123,504 controls (28). For

the condition of gout, summary statistics were derived from a cross-

ethnic meta-analysis of GWAS, which involved 763,813

participants and included 13,179 gout cases. Conversely, GWAS

data pertaining to urate were procured from a cross-racial meta-

analysis incorporating 457,690 individuals across 74 studies (29)

(Supplementary Table S1).
2.4 Statistical analysis

2.4.1 Primary MR analysis
In the present investigation, we employed a SMR approach,

utilizing eQTL as a tool to harness pooled data from GWAS and

eQTL studies for probing the relationship between gene expression

levels and their correlation outcomes. Furthermore, to ensure the

stability of the observed associations, HEIDI tests were conducted. All

analyses were executed utilizing the SMR software version 1.03. (for

details see:(https://cnsgenomics.com/software/smr/#Overview).

When employing SNPs as genetic instruments, alongside the

primary application of IVW-MR methods, additional analyses,

including weighted median, simple modal, weighted modal, and

MR-Egger regression, were undertaken to augment the

comprehensiveness and depth of the investigations. The results of

these analyses are presented in Supplementary Table S3.

2.4.2 Sensitivity analysis
In order to ascertain the robustness of the instrumental

variables (IVs), we evaluated their strength employing the F-

statistic as a metric. Exclusively, single nucleotide polymorphisms

(SNPs) exhibiting an F-statistic exceeding 10 were incorporated to

mitigate the bias originating from insubstantial instruments (30).

Moreover, statistical efficacy was assessed via the mRnd website

(https://shiny.cnsgenomics.com/mRnd/). Within the framework of

the SMR approach, the link between gene expression and outcome

variables was evaluated by conducting a HEIDI test to determine if

the observed association stems from linkage disequilibrium (31),

A p-value lower than 0.01 indicates a potential for linkage

disequilibrium. To enhance the robustness assessment of the

Mendelian Randomization outcomes, we employed the intercept

test and the Cochran Q test within the MR Egger regression

framework to evaluate the potential degrees of multicollinearity

and heterogeneity (32, 33). The MR Egger regression and MR-

PRESSO methods were employed to evaluate the horizontal

pleiotropy of genetic instruments. A p-value greater than 0.05

indicates the absence of horizontal pleiotropy (34). Conversely,

Cochran’s Q test is employed to assess heterogeneity, where a p-

value below 0.05 signifies substantial heterogeneity (35).

Furthermore, a leave-one-out analysis was conducted to ensure

the reliability of the overall effect (36). This analysis was conducted

as part of the sensitivity analyses, where each instrumental SNP was

sequentially excluded to evaluate the causal impact of the remaining

SNPs on the outcome, thereby determining if the MR findings were

influenced by any specific SNP. Ultimately, the credibility of the
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genetic instrument was corroborated through the execution of a

positive control study. The analysis utilized R version 4.3.1,

employing the TwoSampleMR and MR-PRESSO packages (36, 37).
3 Results

3.1 Preliminary analysis

In this investigation, the correlation between gene expression of

HMGCR, PCSK9, and NPC1L1 and outcomes related to gout and

urate was evaluated utilizing the SMR approach. Cis-eQTL results

for HMGCR, PCSK9, and NPC1L1 were sourced from the

eQTLGen and GTEx consortia, featuring 921, 24, and 11 SNPs,

respectively. Following this, the most indicative cis-eQTL SNPs

(rs6453133, rs472495, and rs41279633 for each gene respectively)

were chosen as instrumental variables (IV) for their corresponding

drug target genes and subjected to analysis via the SMR method.

The results showed no significant association between elevated

levels of HMGCR, PCSK9, and NPC1L1 gene expression and the

risk of gout and uric acid (all p-values > 0.05) (Figure 2).

Additionally, the outcomes of the HEIDI test indicated that the

observed correlations were not influenced by genetic linkage (all p-

values > 0.05).

IVW-MR analysis demonstrated (Figure 3) a correlation

between elevated expression of the HMGCR gene and a

heightened risk of gout (OR [95%CI] = 1.25 [1.03, 1.46], p =

0.0436). Weighted median analysis indicated that NPC1L1

inhibitors could potentially act as a risk factor for gout (OR [95%

CI] = 0.53 [-0.02, 1.09], p = 0.0263). Concurrently, IVW analysis

along with weighted median and weighted mode analyses uniformly

revealed that PCSK9 inhibitors may elevate the risk of urate (IVW:

OR [95%CI] = 1.06 [1.01, 1.10], p = 0.0167; weighted median: OR

[95%CI] = 1.08 [1.03, 1.13], p = 0.0026; weighted mode: OR [95%

CI] = 1.08 [1.02, 1.14], p = 0.0228). Regarding NPC1L1 expression,

no significant correlation with gout and urate levels was established

(Supplementary Files S1-S4).
3.2 Positive control analysis

To ascertain the precision of the study’s outcomes, a positive

control analysis was conducted. An examination of the GLGC

dataset employing the IVW method revealed that PCSK9,

HMGCR, and NPC1L1 inhibitors significantly mitigated the risk

of CHD (OR [95%CI] =0.60 [0.46-0.74], p<0.001; OR [95%CI]

=0.69 [0.54-0.84], p<0.001, respectively) (OR [95%CI] =0.60 [0.28-

0.92], p=2.1×10^-3) (Figure 3), (Supplementary Files S1-S5).
3.3 Sensitivity analysis

For the evaluation of heterogeneity and horizontal pleiotropy,

the Cochrane Q-test and MR Egger regression models were

employed (33). In the IVW-MR analyses, neither significant

heterogeneity nor horizontal pleiotropy was observed, with all p-
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values exceeding 0.05, indicating the robustness of the findings.

(Supplementary Files S1-S6). The MR-Egger regression and MR-

PRESSO analyses provided no evidence of potential horizontal

pleiotropy. Our comprehensive leave-one-out sensitivity analyses

revealed that the exclusion of any single SNP did not lead to

significant alterations in the effect estimates. This further

reinforces the robustness of our findings, indicating that they are

independent of the influence exerted by any individual SNP

(Supplementary File 2). Through the execution of these sensitivity

analyses, the reliability of the findings was affirmed and the impact

of potential confounders was minimized.
4 Discussion

In this investigation, we employed a comprehensive approach to

explore the impact of lipid-lowering drug targets on gout and urate

through drug-target Mendelian Randomization and SMR analysis.

Utilizing genetic instruments, our goal was to surmount the

constraints inherent in observational studies and to furnish more

robust evidence for the potential role of HMGCR, PCSK9, and

NPC1L1 in the onset of gout and urate. The findings from our

analysis indicated no significant associations between SMR-based gene

expression levels of HMGCR, PCSK9, and NPC1L1 and the risks of

developing gout and elevated urate levels. However, through IVW-MR

analysis, we identified a positive relationship between HMGCR

inhibition and gout, albeit without a significant correlation to

hyperuricemia. Conversely, a positive relationship was observed

between PCSK9 inhibition and hyperuricemia, while no genetic

association with gout was detected. The analysis indicated no

significant causal link between the gene expression of NPC1L1

inhibitors and the onset of gout and urate levels, implying that the

side effects associated with NPC1L1 inhibitors in patients suffering

from gout and urate might be inferior to those arising from HMGCR

and PCSK9 inhibitors. These results offer theoretical backing for

tailoring hyperlipidemia treatment approaches in individuals with

gout and hyperuricemia. The rising concern of pharmacologically

induced hyperuricemia and gout in clinical settings is noteworthy.

Various medications, particularly diuretics, antituberculosis agents,

and immunosuppressants, have been implicated in triggering

hyperuricemia accompanied by gout (38). Observational research

has indicated that instances of hyperuricemia and gout are prevalent

among individuals suffering from dyslipidemia (39–41), A
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comprehensive randomized, double-blind, placebo-controlled trial

involving 13,970 participants revealed that individuals on lipid-

lowering medication exhibited an increased risk of developing gout

and hyperuricemia in comparison to those in the placebo group (42).

Nevertheless, current investigations into its underlying mechanisms

remain inadequate, and the conclusions drawn from various studies

are inconsistent. For instance, a retrospective analysis discovered that

patients administering a combination of allopurinol, febuxostat, and

fenofibrate experienced a more significant reduction in serum urate

concentrations (43). Conversely, another observational study

highlighted that fenofibrate frequently correlates with nephrotoxicity

among gout patients, underscoring the necessity for additional

investigations into the selection of lipid-lowering medications in the

treatment of gout (44). The reliability of these findings is controversial

due to the scarcity of randomized controlled trials and limited cohort

studies. A meta-analysis of Phase 2 and Phase 3 clinical studies shows

that bempedoic acid raises the risk of hyperuricemia and gout (45). In

clinical practice, patients with hyperuricemia or acute gout are advised

to be monitored while using bempedoic acid (46).

From an etiological standpoint, the genesis of gout and

hyperuricemia is attributable to various factors, notably including a

definitive correlation with body mass. A research indicated that

bariatric surgery markedly decreased body weight and serum urate

concentrations in individuals suffering from obesity (47). The

Mendelian randomization analysis further substantiates obesity as a

contributory risk factor for the onset of gout and hyperuricemia (48).

Multiple pathways may interfere in the mechanisms by which lipid-

lowering drugs affect gout and urate. In a study of gout and urate and

lipid profiles, gout and urate showed characteristic changes at

different stages of the disease, and gout and hyperuricemia were

associated with alterations in plasma lipid profiles, with reductions in

LPC, LPCO- and LPCP- (LPC class as the mainpart ofoxidized LDL),

underscoring the significance of monitoring LDL concentrations in

individuals with gout and hyperuricemia. conversely, a significant

association exists between gout and diabetes, as evidenced by studies

demonstrating that individuals with diabetes exhibit a reduced risk of

developing gout compared to non-diabetics (49, 50). Concurrently,

lipid-lowering medications demonstrate both anti-inflammatory and

pro-inflammatory properties (51), soluble urate and urate

nanocrystals enhance NF-kB and IL-1b expression through NLRP3

inflammasome activation (52). PCSK9 promotes oxLDL-induced

inflammation and TLR4 expression by increasing LOX expression,

thereby initiating inflammation through NF-kB activation (53). This

implication suggests that lipid-lowering drugs could modulate urate

concentrations and gout symptoms via inflammatory routes, yet this

hypothesis demands additional empirical substantiation.

Concurrently, the dualistic character of statins, manifesting both

anti-inflammatory and pro-inflammatory properties, intimates that

inflammation might play a role in the genesis of gout, a hypothesis

that requires further empirical validation (51).

This investigation showcased numerous notable strengths.

Primarily, this research represents the inaugural systematic

application of a drug-target Mendelian Randomization approach to

elucidate the causal dynamics between lipid-lowering medications and

both gout and urate. In the context of the prevailing absence of

randomized controlled trials providing direct evidence, MR analysis
FIGURE 2

SMR analysis.
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serves to significantly diminish the impact of confounding variables

typically present in observational studies by emulating a natural

experiment akin to a randomized trial scenario, consequently

enhancing the reliability of the conclusions.

Nevertheless, this study encompasses certain limitations. Firstly,

the GWAS data utilized in this study predominantly originated from

individuals of European descent. The limited diversity in current

public GWAS databases restricts the availability of sufficient data

from non-European populations, preventing this study from

conducting an analysis across broader ethnic groups. Consequently,
Frontiers in Endocrinology 06
this limits the generalizability of our findings to other populations.

Secondly, despite the application of both SMR and IVW-MR

methods, only the IVW-MR presented a significant correlation,

potentially due to the influence of various factors. Thirdly, our

study primarily reflects the effects of lifetime suppression of drug

targets on disease outcomes. Regarding long-term effects, the

relationship between short-term drug use and disease risk remains

uncertain. Mendelian Randomization studies may not fully capture

the real-world effects of medication use due to factors such as dosage,

mechanisms of action, individual variability, and duration of drug
FIGURE 3

IVW-MR analysis.
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exposure. Consequently, there is a pressing need for high-quality

randomized controlled trials to delve deeper into the specific impacts

of lipid-lowering medications on gout and hyperuricemia, along with

their underlying mechanisms. Fourthly, the absence of eQTL data for

the target genes in the liver (a critical site for lipid metabolism)

diminished the credibility of the observed correlations. Specifically,

the limited sample size of NPC1L1 eQTL within the GTEx program,

coupled with the absence of NPC1L1 eQTL data in blood samples,

might have resulted in an underestimation of the efficacy of NPC1L1

inhibitors in managing gout and urate.
5 Conclusions

In conclusion, this research furnishes empirical evidence

suggesting that HMGCR inhibitors elevate the risk of developing

gout, while PCSK9 inhibitors heighten the risk of urate. Despite its

limitations, this study offers significant insights into evaluating their

application in personalized treatment strategies.
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