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Background: Thyroid cancer is the most common malignancy of the endocrine

system. PANoptosis is a specific form of inflammatory cell death. It mainly

includes pyroptosis, apoptosis and necrotic apoptosis. There is increasing

evidence that PANoptosis plays a crucial role in tumour development.

However, no pathogenic mechanism associated with PANoptosis in thyroid

cancer has been identified.

Methods: Based on the currently identified PANoptosis genes, a dataset of

thyroid cancer patients from the GEO database was analysed. To screen the

common differentially expressed genes of thyroid cancer and PANoptosis. To

analyse the functional characteristics of PANoptosis-related genes (PRGs) and

screen key expression pathways. The prognostic model was established by

LASSO regression and key genes were identified. The association between hub

genes and immune cells was evaluated based on the CIBERSORT algorithm.

Predictive models were validated by validation datasets, immunohistochemistry

as well as drug-gene interactions were explored.

Results: The results showed that eight key genes (NUAK2, TNFRSF10B,

TNFRSF10C, TNFRSF12A, UNC5B, and PMAIP1) exhibited good diagnostic

performance in differentiating between thyroid cancer patients and controls.

These key genes were associated with macrophages, CD4+ T cells and

neutrophils. In addition, PRGs were mainly enriched in the immunomodulatory

pathway and TNF signalling pathway. The predictive performance of the model

was confirmed in the validation dataset. The DGIdb database reveals 36 potential

therapeutic target drugs for thyroid cancer.

Conclusion: Our study suggests that PANoptosis may be involved in immune

dysregulation in thyroid cancer by regulating macrophages, CD4+ T cells and

activated T and B cells and TNF signalling pathways. This study suggests potential

targets and mechanisms for thyroid cancer development.
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Introduction

Thyroid cancer (THCA) is one of the most common

malignant tumours in the world, and in recent years, the

incidence of thyroid cancer has been increasing every year.

Compared with the total data in 2000, the incidence of thyroid

cancer has increased 20 times (1, 2). The incidence of thyroid

cancer in women is 3-4 times higher than in men. According to

clinical and pathological typing thyroid cancer can be divided

into papillary thyroid carcinoma (PTC), follicular thyroid

carcinoma (FTC), medullary thyroid carcinoma (MTC), and

undifferentiated thyroid carcinoma (ATC) (3, 4). PTC and

FTC collectively referred to as differentiated thyroid carcinoma

(DTC) is the most common pathological type of thyroid cancer,

accounting for more than 90% of all thyroid cancers. The

treatment of choice for most patients with thyroid cancer is

surgica l resect ion, and thyroid-st imulat ing hormone

suppression and radioactive iodine (RAI) therapy are required

for patients with high-risk features, with some patients with

thyroid cancer progressing to RAI-refractory thyroid cancer and

death (5). There is a lack of effective treatment strategies for

patients with advanced thyroid cancer. The development,

invasion, and metastasis of thyroid cancer are closely related to

changes at the gene level and dysfunctional regulation of related

signal transduction pathway. These molecular changes are the

hallmarks of thyroid cancer diagnosis and prognosis, as well as

potential targets for biological therapy.

PANoptosis is an inflammation-driven programmed cell death

that combines key features of pyroptosis, apoptosis and necrotic

apoptosis, yet cannot be characterised by any of these modes of

death alone (6, 7). PANoptosis was first named in 2019 by the

American scholar Malireddi, who proposed that the innate immune

sensors ZBP1 and TAK1 kinase play important roles in the

regulation of the PANoptosis vesicle complex (7). Three types of

PANoptosis vesicles have been identified, ZBP1 PANoptosis

vesicles, RIPK1 PANoptosis vesicles and AIM2 PANoptosis

vesicles. Viruses, bacteria and other non-infectious factors such as

cytokines in tumours can trigger host cells to undergo PANoptosis

(8, 9). Pancytopenia is closely related to homeostasis maintenance,

embryonic development, and immune regulation.

BRAF V600E and RAS gene variants are the most common

mutations in thyroid cancer. These mutations constitutively

activate the MAPK signalling pathway, and patients with

advanced thyroid cancer develop other genetic variants in

addition to these common mutations and become more

aggressive and less differentiated (10, 11). The genetic variants

and mechanisms that drive the development of thyroid cancer are

becoming better understood, but researchers still do not fully

understand the determinants and functional basis of certain

genetic variants (12). The study of genomic profiles of thyroid

cancer patients can help predict the prognosis of thyroid cancer

patients and for subsequent immunotherapy. PANoptosis plays a

crucial role in many diseases such as infections, tumours, and
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inflammatory diseases (13–16). There are no data from studies

evaluating the impact of PANoptosis-related genes in THCA

disease progression. Therefore, the present study proposes that

PANoptosis-related genes may also be involved in thyroid cancer

disease progression. We first analysed the expression levels of

PANoptosis-related genes in THCA. The pathogenic mechanisms

of PANoptosis-related genes were explored based on functional

enrichment analysis. A PANoptosis risk score model was

established by LASSO regression, and the diagnostic efficiency

of key genes was verified in the validation dataset. Finally, we

analysed the immune infiltration characteristics of THCA to

reveal the association between key genes and the immune

microenvironment. We aimed to explore the potential link

between PANoptosis-related genes affecting the genetic variants

of THCA, and to provide a theoretical basis for guiding the

prognosis and immunotherapy of thyroid cancer patients.
Materials and methods

Data acquisition

The thyroid cancer datasets GSE33630 and GSE3467 were

downloaded from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/gds). The training dataset

GSE33630 consisted of 60 THCA patient samples and 45 control

samples. Transcriptome information for 512 thyroid cancer

samples was obtained from The Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov/). The validation dataset

GSE3467 included 9 THCA patient samples and 9 controls. The

obtained dataset was analysed based on R software (version 4.3.1).

PANoptosis-related genes were downloaded from the GeneCards

database (https://www.genecards.org/).
Analysis of PANoptosis related differentially
expressed genes

We used the “combat” function in “sva” to remove the batch-to-

batch difference to obtain the differentially expressed genes between the

THCA group and the control group (17). The screening criteria were |

logFC| > 1.5, p-value < 0.05. The obtained differentially expressed genes

and PANoptosis related genes were imported into the jvenn online

platform (https://jvenn.toulouse.inrae.fr/app/example.html) to obtain

PANoptosis related differentially expressed genes (PRGs).
Functional enrichment analysis

Differentially expressed genes were imported into the DAVID

(https://david.ncifcrf.gov/) online platform for Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses. GO mainly includes molecular function (MF), biological
frontiersin.org
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pathway (BP) and cellular component (CC). Visualization was

performed using the “ggplot2” package in R software (18). The

interaction network between PRGs was constructed using the

STRING database. In addition, the metscape database (https://

metascape.org/) was used to explore the functional mechanisms

among PRGs.
Screening for prognostic markers

Least Absolute Shrinkage and Selection Operator (LASSO)

regression is a regularization method for linear regression problems,

which can be used to reduce the complexity of the model, prevent

overfitting, and select important feature variables (19). We used the

LASSO regression model to screen for diagnostic markers. Patients

with THCA in the training dataset were divided into high-risk and low-

risk groups. Predictive model accuracy was assessed by area under the

receiver operating characteristic curve (ROC). GSE3467 was used as a

validation dataset to validate the expression of the key genes mentioned

above and the area under ROC (AUC) value to measure the predictive

power of the algorithm(P<0.05). We validated the predictive power of

the algorithm in the Human Protein Atlas (HPA) database (https://

www.proteinatlas.org/) to verify the expression levels of key genes in

thyroid cancer tissues. The relationship between the core genes and

the prognosis of thyroid cancer patients was explored by the clinical

information in the TCGA database.
Immune cell correlation analysis

The CIBERSORT algorithm was used to calculate the immune

cell infiltration between the thyroid cancer group and the control

group in the training dataset (20). Stacked plots were used to show
Frontiers in Endocrinology 03
the distribution of immune cells in each sample. Box plots show the

relative proportions of the immune cell types between the two

groups. The “ggcorrplot” package was used to explore the

correlation between biomarkers and immune cell infiltration.
Drug screening and predicting
transcription factor regulatory networks

The Drug Gene Interaction Database (DGIbd) is a database for

exploring drug-gene interactions. Transcription factors are key

regulators of gene expression, and the activity of these proteins

determines cellular function and response to environmental

perturbations. We predicted TF regulatory networks and TF-

miRNA regulatory networks of key genes by NetworkAnalyst 3.0

online tool (https://www.networkanalyst.ca/) (21). Analyses and

presentations were performed using Cytoscape 3.7.2.
Results

Identification of differentially expressed
genes of THCA

We obtained a total of 2219 differentially expressed genes by

analysing the training dataset GSE33630. The screening criteria were

|logFC|>1.5, P>0.05. The volcano plots and heatmaps in

Supplementary Figures 1A, B demonstrate the differential expression

patterns of DEGs in the dataset GSE3360. These DEGs were mainly

enriched in the positive regulation of inflammatory response, cell

migration, extracellular matrix structure, and protein fusion

(Figure 1A). KEGG pathway analysis focused on Phagosome、

Cytokine-cytokine receptor interaction、Rheumatoid arthritis and

ECM-receptor interaction (Figure 1B).
BA

FIGURE 1

Functional enrichment analysis of thyroid cancer-related differentially expressed genes. The size of the ball represents the number of genes. The
colours of the balls correspond to different P values. (A) The top 10 significantly enriched GO annotations, including biological process, cellular
component, and molecular function, were selected separately. (B) The top 20 significantly enriched KEGG pathway analyses. GO, the Gene
Ontology; KEGG, the Kyoto Encyclopedia of Genes and Genomes analyses.
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Identification of differentially expressed
genes associated with PANoptosis

A total of 2219 DEGs were obtained in GSE33630 and 204

PANoptosis genes were obtained from GeneCards, and the

intersection of the two datasets was taken to obtain 38 PRGs as

shown in Figure 2A. The heatmap in Figure 2B demonstrates the

differential expression of the 38 PRGs in GSE33630. We constructed

a protein interaction network in which 31 genes had interaction

relationships (Figure 2C). To explore the links between these genes,

we calculated their correlations using the “corrplot” package

(Figure 2D) and found significant synergistic effects, with most of

the genes being significantly positively correlated with each other.
Constructing functionally
enriched networks

To investigate the relationship between PANoptosis genes and

the pathogenesis of thyroid cancer, we further explored the

functional pathways of PRGs through the metscape database.

Functional enrichment analysis showed that the 38 genes were

mainly enriched in the positive regulation of apoptosis, pyroptosis,

cytokine signalling in the immune system, and regulation of

lymphocyte proliferation, etc. (Figure 3A). KEGG analysis showed
Frontiers in Endocrinology 04
that the genes were mainly related to the TNF signalling pathway.

The network graph between the enriched pathways is shown in

Figure 3B. Nodes with the same pathways tend to cluster together.
Construction of a PANoptosis risk score
model for thyroid cancer

To further screen PRGs for key genes that play a regulatory role

in thyroid cancer disease progression, we constructed a PANoptosis

risk score model based on the TCGA database using LASSO

regression against 38 PRGs. The LASSO analysis identified eight

genes associated with THCA prognosis: NUAK2, TNFRSF10B,

TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, IL18 and GZMB.

We established a PANoptosis risk score and survival analysis for

THCA as well as the differential expression of these 8 genes in this

model (Figure 4). We chose the following formula as the risk score

formula: lambda.min=0.0062 Riskscore=(0.4977)*NUAK2+(0.0437)

*TNFRSF10B+(-0.385)*TNFRSF10C+(-0.2139)*TNFRSF12A

+(0.0165)*UNC5B+(0.5133)*PMAIP1+(-0.253)*IL18+(-0.006)

*GZMB. We also analysed the ROC curves of this risk model at

different times with AUC. the AUC values for 3-year, 5-year and 10-

year OS were 0.854, 0.736 and 0.868, respectively (Figure 4C). Where

the higher AUC value indicates the better predictive ability of the

model. In addition, we also calculated the AUC values of these eight
B

C D

A

FIGURE 2

Identification of PANoptosis -related differentially expressed genes in the thyroid cancer training dataset. (A) Venn plots of 204 PANoptosis genes
and 2216 DEGs. (B) Heatmap of the expression of 38 PRGs in the training dataset. Red: low expression level; green: high expression level (C)
Interaction network graph of PRGs in the STRING database. (D) Correlation heatmap of PRGs in the training dataset. THCA, thyroid cancer; DEGs,
differentially expressed genes.
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candidate genes in the GSE33630 dataset, and all of them, except

GZMB, had an AUC greater than 0.7 (Figures 5A–H).
Immune cell infiltrability analysis of the
training dataset

The immune system of THCA patients plays an important role

in disease progression. To investigate the differences in immune cell

infiltration between THCA patients and controls, we used the

CIBERSORT algorithm. The proportions of immune cells

between the two groups are shown in Figure 6A. The THCA

group showed significantly higher proportions of activated T cells,

activated DC cells, naïve B cells, NK cells, and helper T cells

compared with the control group (Figure 6C). Neutrophils were

positively correlated with seven genes except NUAK2. TNFRSF10B,

TNFRSF10C, and TNFRSF12A were positively correlated with

macrophages, DC cells, and mast cells (Figure 6B).
Frontiers in Endocrinology 05
Construction of hub gene-TF-miRNA
transcriptional network

To further explore the potential biological processes of

candidate genes in thyroid cancer, we analysed the interactions

among candidate genes, transcription factors and miRNAs through

the Networkanalyst platform. The TF-gene interaction network was

constructed in the ENCODE (https://www.encodeproject.org/)

database (Supplementary Figure S2A). The TF-miRNA

interaction network was obtained in the Regnetwork (http://

www.regnetworkweb.org) database (Supplementary Figure S2B).

The regulatory network was then imported into Cytoscape

3.7.2 for visualization. Combining the regulatory networks

revealed that IKZF1 potentially transcriptionally activates

PMAIP1, TNFRSF10B and GZMB. The TF-genes network

contained 179 TFs, 8 hub genes, and 248 edges. In the TF-

miRNA regulatory network, a total of 90 edges and 81 miRNAs

interacted with 7 hub genes.
B

A

FIGURE 3

Functional enrichment analysis of PANoptosis -related differentially expressed genes in the thyroid cancer training dataset. (A) Bar graph of 20 enriched
biological pathways, coloured by p−values. (B) Network of enriched terms for specified genes analysed by Metascape, coloured by cluster ID.
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B C D

E F G H

A

FIGURE 5

ROC curves of the diagnostic value of the eight biomarkers in the thyroid cancer training dataset. (A–H) Subject operating characteristic curves
(ROC) of candidate diagnostic markers NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, IL18 and GZMB in the training dataset.
B

C

A

FIGURE 4

Biomarker identification using LASSO regression based on thyroid cancer dataset in TCGA database. (A) Least absolute shrinkage and selection
operator (LASSO) regression analysis. (B) Cross validation for adjusting parameter selection in LASSO regression. (C) Modelling of pan-apoptotic risk
score and survival analysis.
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B

C

A

FIGURE 6

Assessment and visualization of immune cell infiltration in the thyroid cancer training dataset. (A) Proportion of immune cell infiltration in the thyroid
cancer group and control group. (B) Heatmap of 8 biomarkers correlating with immune cells. (C) Box line plot of immune cells differentially
expressed between thyroid cancer group and control group. (* represented P < 0.05, ** represented P < 0.01 and *** represented P < 0.001).
B C D

E F G H

A

FIGURE 7

Expression analysis of biomarkers in 8 in the thyroid cancer validation dataset. (A–H) Expression levels of candidate diagnostic markers NUAK2,
TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, IL18 and GZMB in the validation dataset.
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Validation of candidate diagnostic markers

To validate the accuracy of the prediction model, we examined

the expression of the candidate genes in the validation dataset

GSE3467 and ROC analysis. The results showed good diagnostic

performance of the predictive model. It is possible that the sample

size of the analysis was limited and the difference in the expression

of GZMB in the validation dataset was not statistically significant

(Figure 7A). NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A,

UNC5B, PMAIP1, and IL18 were expressed in the validation

dataset in agreement with the analysis of the assay dataset

(Figures 7B–H). TNFRSF10B, TNFRSF10C, TNFRSF12A,

UNC5B, PMAIP1, and IL18 had increased expression in thyroid

cancer tissues, while NUAK2 was decreased. The ROC curves

showed that the AUC values of the seven candidate genes were

greater than 0.8 except for GZMB (Figures 8A–H). Then we verified

the protein expression of the candidate genes in the tissues at the

protein level. The results showed that except for TNFRSF10B, the

expression of other genes was generally consistent with the above

analysis. It proved that the PANoptosis prediction model based on 8

key genes was feasible (Figures 9A–H).
Drug-gene interaction prediction

We imported 8 key targets from the above screening into the

DGIbd database for screening small molecule compounds for the

treatment of thyroid cancer. In total, 36 drugs interacted with

TNFRSF10C, TNFRSF12A, PMAIP1, IL18, GZMB and

TNFRSF10B. Visualization was performed using Cytoscape
Frontiers in Endocrinology 08
(Figure 10). 1 drug targets TNFRSF12A. 1 drug targets PMAIP1.

9 drugs target TNFRSF10B. 19 drugs target IL18. 1 drug targets

TNFRSF10C. 5 drugs target GZMB. No potential drugs were

identified for UNC5B and NUAK2. Details of these drugs are in

Supplementary Table S1.
Discussion

Thyroid cancer has become the most common endocrine

system malignancy. The incidence of thyroid cancer is increasing

at the highest rate among all malignant tumours. Treatment options

for patients with advanced thyroid cancer are very limited. In recent

years, with the rapid development of multi-omics research, the

understanding of the pathogenesis of different thyroid cancer

subtypes has been greatly enhance (22). In particular, the

discovery of new thyroid cancer biomarkers has brought hope for

the treatment of advanced thyroid cancer. PANoptosis is a novel

mode of programmed cell death. PANoptosis has been extensively

studied in colorectal, prostate and gastric cancers and some

inflammatory diseases (23–27). No study has yet found a link

between PANoptosis and thyroid cancer disease progression. The

aim of this study was to explore the role of PANoptosis in thyroid

cancer disease progression, with the hope of providing new

therapeutic targets for the treatment of thyroid cancer.

In this study, a total of 2219 DEGs were identified by analysing

the training dataset. In obtained 38 genes that were differentially

expressed in thyroid cancer tissues by taking the intersection set.

The functional enrichment of the 38 PRGs was mainly related to the

regulation of the immune system, with the most significant
B C D

E F G H

A

FIGURE 8

ROC curves for the diagnostic value of the eight biomarkers in the thyroid cancer validation dataset. (A–H) Subject operating characteristic curves
(ROC) of candidate diagnostic markers NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, PMAIP1, IL18 and GZMB in the validation dataset.
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enrichment in the TNF pathway. We further identified 8

meaningful signature genes using LASSO regression. Then the

diagnostic efficacy of these eight genes for thyroid cancer was

verified by ROC curves. Among them, the AUC values of

TNFRSF10B, TNFRSF10C and TNFRSF12A in the training

dataset were all greater than 0.8. TNFRSF10B, TNFRSF10C and

TNFRSF12A belong to the tumour necrosis factor receptor

superfamily (TNFRSF) which can bind to the tumour necrosis

factor superfamily (TNFSF) through the cysteine-rich domains

(CRDs). The TNFRSF system contains 19 ligands and 29
Frontiers in Endocrinology 09
receptors, some of which can bind to multiple receptors and

regulate complex cellular networks. TNFRSF can assist in the

regulation of a variety of cellular functions, including immune

responses, inflammatory responses, and cell proliferation,

differentiation, and apoptosis (28–31).

In addition, we also analysed the immune cell infiltration in the

thyroid cancer group versus the control group in the training dataset.

The results showed that activated T cells, NK cells, bone marrow-

derived suppressor cells (MDSC), and helper T cells were significantly

higher in the tumour group. PANoptosis may be involved in thyroid
B

C D

E F

G H

A

FIGURE 9

Protein expression levels of eight thyroid cancer biomarkers were analysed based on the HPA database. (A–H) Protein expression of candidate
diagnostic markers TNFRSF10C, TNFRSF12A, TNFRSF10B, NUAK2, UNC5B, PMAIP1, IL18, and GZMB in thyroid normal and tumour tissues.
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cancer progression through the immune system. These genes we

studied were strongly correlated with mast cell and macrophage

infiltration. During the progression of ATC, macrophages shift from

the M1 state to the M2 state. The role of macrophages in thyroid

cancer progression is worthy of further investigation (2). TNFRSF

family-mediated signalling has been a hot topic of research in the field

of tumour immunotherapy, with notable findings in CAR-T cell

therapy (30, 32, 33). Given that TNFRSF10B, TNFRSF10C and

TNFRSF12A are up-regulated in thyroid cancer tissues and

correlate with macrophages. They may be able to play an

important role in CAR-macrophage therapy in the future. In order

to make our study more convincing, the above results were verified

again by the validation dataset GSE3467.The expression differences of

NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B,

PMAIP1, and IL18 in the validation dataset were statistically

significant. And the AUC values of these genes were all greater

than 0.8. The PANoptosis diagnostic model based on 8 key genes

performed well in the HPA database, except for TNFRSF10B.

Although there are individual differences in the expression of

TNFRSF10B, this still proves that our predictive model is feasible.
Conclusion

our study has some limitations. The results of our analyses were

mainly obtained from public databases and lacked sufficient clinical

samples for validation. And our study also requires later molecular
Frontiers in Endocrinology 10
biology experiments to further explore the hypothesis of the results of

this study. However, we finally identified eight PRDEGs as potential

targets for thyroid cancer diagnosis and treatment and predicted

potential therapeutic agents through this study. The immune

microenvironment of thyroid cancer and the link with PRGs were

explored by immune infiltration analysis. It gives us a clearer

understanding of thyroid cancer and PANoptosis and provides

some new ideas for the clinical treatment of thyroid cancer disease.
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