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Abnormalities in glucose metabolism that precede the onset of type 2 diabetes

(T2D) activate immune cells, leading to elevated inflammatory factors and

chronic inflammation. However, no single-cell RNA sequencing (scRNA-seq)

studies have characterized the properties and networks of individual immune

cells in T2D. Here, we analyzed peripheral blood mononuclear cells (PBMCs)

from non-diabetes and T2D patients by scRNA-seq. We found that CD14

monocytes in T2D patients were in a pro-inflammatory state and intermediate

monocytes expressed more MHC class II genes. In T2D patients, cytotoxic CD4 T

cells, effector memory CD8 T cells, and gd T cells have increased cytotoxicity and

clonal expansion. B cells were characterized by increased differentiation into

intermediate B cells, plasma cells, and isotype class switching with increased

expression of soluble antibody genes. These results suggest that monocytes, T

cells, and B cells could interact to induce chronic inflammation in T2D patients

with pro-inflammatory characteristics.
KEYWORDS

type 2 diabetes, single-cell RNA sequencing, pro-inflammatory characteristics,
monocyte, T cell, cell interaction
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Introduction

Diabetes, a prevalent metabolic disorder, affects a substantial

portion of the Korean population. According to the Korean

Diabetes Fact Sheet 2021, approximately 4.6 million people

(13.2%) aged 30 years and above were affected in 2020 (1).

Despite a consistent decline in diabetes-related mortality since

2003, it currently ranks as the third leading cause of natural death

(2). This chronic condition significantly elevates the risk of various

other diseases, stemming from both macrovascular and

microvascular damage, thereby exerting detrimental effects on

vital organs such as the brain, kidneys, heart, and eyes (3).

In type 2 diabetes (T2D), insulin resistance, resulting from

multiple causes, leads to increased insulin secretion to control

blood sugar (3). Although early stages of T2D may exhibit normal

blood sugar levels due to heightened insulin secretion, abnormal

glucose metabolism has already been initiated (4). As T2D progresses,

blood sugar levels rise because pancreatic b-cells are unable to secrete
sufficient insulin to overcome insulin resistance (4). Moreover,

inflammatory factors, including fibrinogen, high-sensitivity C-

reactive protein (hsCRP), and IL-6, are elevated in diabetic patients

(5). The association of these inflammatory factors with predicting

cardiovascular disease among the chronic complications of diabetes is

well recognized (6). In addition to their association with

macrovascular complications such as cardiovascular disease, recent

studies also link inflammatory factors to microvascular complications

such as microalbuminuria and diabetic retinopathy (4). In addition to

the representative complications of T2D, the chronic inflammatory

state of diabetes contributes to elevated risk for various conditions,

including cancer, neurodegenerative diseases, depression, and

autoimmune disorders (7–10). The constant activation of immune

cells could alter their characteristics, creating a vicious cycle that

perpetuates the inflammatory state (5).

Single-cell RNA sequencing (scRNA-seq) technology has

emerged as the primary method for elucidating the intricate

heterogeneity and complexity of RNA transcripts at the single-cell

level (11). This advanced approach facilitates the identification and

characterization of distinct cell types and provides insights into their

unique functions within intricately organized tissues. By employing

scRNA-seq, researchers can deepen their understanding of cellular

composition and dynamics, shedding light on the intricate workings

of biological systems. In type 1 diabetes (T1D), scRNA-seq has been

applied to pancreas tissue and peripheral blood mononuclear cells

(PBMCs) (12). However, there is an absence of studies analyzing

scRNA-seq data using PBMCs from T2D patients. This study aimed

to compare PBMCs between T2D patients and non-diabetes, to

characterize immune cells and analyze the mechanisms

contributing to chronic inflammation in T2D.
Materials and methods

Data and code availability

This study was provided with biomedical and research resource,

containing genetic and health information from CODA (Clinical &
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Omics Data Archive), the Agency for Disease Control and

Prevention, Republic of Korea (CODA_S2400015-01). Raw files

are accessible under the Gene Expression Omnibus (GEO) and

accession number is GSE268210. This paper does not report

additional code. Any additional information required to reanalyze

the data reported in this work paper is available from the lead

contact upon reasonable request.
Study design and participants

PBMCs were obtained from 37 patients diagnosed with T2D,

prospectively recruited between August 6th 26th, 2020 and

April 3rd, 2021, at the Health Promotion Center of Samsung

Medical Center and the Department of Family Medicine of

Yongin Severance Hospital. PBMC samples from non-diabetes

from the COVID-19 project served as the non-diabetes group.

Type 2 diabetes was defined as any of the following: a fasting

plasma glucose level ≥126 mg/dL, a plasma glucose level ≥200 mg/

dL at two hours after a 75-g OGTT, an HbA1c ≥6.5%, or current

treatment with oral anti-diabetic medications.

This study was approved by the Institutional Review Board (IRB)

of SamsungMedical Center (IRBNo. 2019–09-121) and by the IRB of

Yongin Severance Medical Center (IRB No. 9–2020-0109). All

participants provided signed informed consent in accordance with

the Helsinki Declaration, allowing for the collection of specimens and

detailed analysis of the genetic materials.
Single-cell isolation

Whole blood samples were collected using BD Vacutainer

CPT™ Tubes containing sodium heparin (Cat. No. 362753).

PBMCs were isolated from blood samples collected in CPT tubes

(maintained at room temperature) within 2–24 hours after blood

collection for optimal results. PBMC isolation utilized Ficoll-Paque

density gradient centrifugation.
Genetic multiplexing and sample pooling

Each individual sample was counted and re-suspended to 1.5 ×

106 cells/ml in phosphate-buffered saline with 0.04% bovine serum

albumin. Equal numbers and volumes of cells from each control were

pooled for each experimental batch. Pooled samples were re-counted

before being used in the 10x Genomics single-cell experiments.
10x scRNA-seq library preparation
and processing

For each batch, samples from four controls were pooled. The

library preparation utilized a Chromium Next GEM Single Cell 5’Kit

v2 (10x Genomics), with a cell recovery target of 4,000 per patient,

following the manufacturer’s instructions. Libraries were processed

according to the manufacturer’s recommendations (10x Genomics)
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and sequenced on a HiSeq 2500 system with 100-bp paired-end

sequencing. Raw sequencing reads underwent processing using

CellRanger (version 5.0.1) (10x Genomics) with default parameter

values. The human reference sequence (version GRCh38) and

annotation (version GENCODE v32) were employed, utilizing pre-

built reference packages provided by 10x Genomics (version 2020-A).
scRNA-seq data

The scRNA-seq reads underwent processing using CellRanger

v5.0.0 to generate the raw expression matrix, comprising unique

molecular identifier counts for each gene in every cell. Subsequently,

various data preprocessing steps were conducted using the R package

Seurat (v4.1.0), encompassing quality control, scaling, transformation,

clustering, dimensionality reduction, and visualization. Specifically,

cells with fewer than 200 genes and a mitochondrial gene content of

less than 5% were excluded from the analysis. For cell type annotation,

the LogNormalize function with a scaling factor of 10,000 was applied

to normalize the count matrices and identify variable features. To

integrate data from different samples and mitigate batch effects, the

Harmony method was employed. We used the AddModuleScore

function in Seurat(v4.1.0) to score cells for the expression of known

gene signatures. Raw files are accessible under the Gene Expression

Omnibus (GEO).
TCR and BCR analysis

The scBCR-seq and scTCR-seq data were assembled using the Cell

Ranger VDJ pipeline (v5.0.0, 10x Genomics). Only cells with

productive and paired chains, such as IGH and IGL/IGK for BCRs,

and TRA and TRB for TCRs, were included in the analysis. In cases

where multiple consensus sequences were detected for the same chain

type within a cell, all chains were considered for further analysis. The

overall clonality of the sample’s repertoire was assessed using the Gini

coefficient, which measures the degree of inequality among clonotypes.
Pseudobulk analysis

We performed pseudobulk analysis by treating the single-cell

RNA profiles as pseudobulk expression matrices to evaluate the

trend of pro-inflammation genes among each patient. We ran

DEseq2 on the aggregated pseudobulk gene expression data. We

next formed a correlation matrix using Spearman’s correlation

across the expression matrix containing only pro-inflammation

genes (CXCL8, CCL2, CCL3, CCL5, IL1B, CXCL9, and CXCL10),

and clustered the samples using hierarchal clustering.
Enrichment analysis

For the identification of marker genes specific to each status (T2D

and non-diabetes samples), we utilized the Seurat FindMarkers

function. Signature genes were required to be expressed in >25% of

cells within either of the two cell groups. The selection of differentially
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expressed genes (DEGs) was based on a statistical threshold

(avg_log2FC > 0.5 and p-value < 0.05). To gain insights into cellular

pathways associated with the selected DEGs, we performed gene set

enrichment analysis (GSEA) using the clusterProfiler (V4.6.2) package,

with the GO Biological Process dataset as the reference dataset.
Cell-to-Cell communication

We performed Cell-to-Cell communication analysis using

ChellChat R package (V 1.4.0) which can then be used for

comparative analysis across multiple datasets. CellChat enables

for comparing the number and strength of interactions among

various cell populations, computing signals for each cell population,

and screening essential ligand/receptor pairs across different cells.
Statistical analysis

R statistical software (version 4.0.2) was used for statistical

analysis. The data were reported as mean ± SEM. An unpaired two-

tailed t-test was performed for experiments to test significance

between the two groups.
Results

scRNA-seq identified an altered immune
cell atlas in T2D

The scRNA-seq datasets were obtained from PBMCs of 34 non-

diabetes and 37 T2D patients, aiming to investigate the cellular

composition of PBMCs in T2D (Figure 1A). For comparability, we

matched non-diabetes and T2D patients based on sex, age, and BMI,

with only a slight BMI difference among females due to the strong

association between BMI and diabetes. Table 1 shows the baseline

characteristics of the 34 non-diabetes and 37 T2D patients. Age, sex,

and BMI did not show differences between the non-diabetes and T2D

patients. The following variables were analyzed in the T2D patients and

were not obtained during the sample recruitment process in the non-

diabetes: HbA1c, glucose, total cholesterol, triglyceride, HDL, and LDL.

After filtering out low-quality cells, a total of 293,923 PBMCs

were analyzed. Violin plots before quality control (QC) and after

filtering was shown in Supplementary Figures 1A, B. Uniform

Manifold Approximation of Projection (UMAP) was employed to

delineate the T2D PBMC atlas (Figure 1B). Integrating scRNA-seq

data using the Harmony method revealed no obvious specimen-

derived bias. Clustering analysis identified 11 major cell types

annotated by marker genes, including CD4 T cells (CD3D, IL7R),

CD8 T cells (CD3D, CD8B), NK cells (NCAM1), B cells (CD79A),

CD14 monocytes (CD14, S100A9), CD16 monocytes (CDKN1C),

platelets (PPBP), dendritic cells (DCs; CD74), erythrocytes (HBM),

cycling cells (MKI67), and hematopoietic stem and progenitor cells

(HSPCs; SPINK2) (Figure 1C). Supplementary Figure 1C showed

the PBMC atlas by each patient, non-diabetes or T2D patients, and

sex, respectively. The cell number and cell population for each
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subject could be found in Supplementary Figure 1D. The global cell

type feature plot is shown in Supplementary Figure 1E.

Differences in cell type composition were observed between the

non-diabetes and T2D patients (Figures 1D, E). T2D patients

showed higher proportions of NK cells and CD16 monocytes,

while B cells and CD14 monocytes were significantly more

abundant in non-diabetes.
T2D monocytes exhibited heightened
expression of cytokine and antigen-
presenting genes

To explore transcriptome dynamics in 56,260 cells identified as

monocytes and DCs, we subclustered monocytes into three subsets
Frontiers in Endocrinology 04
and DC into three subsets using canonical gene markers: CD14

monocytes (expressing CD14 and S100A8), CD16 monocytes

(expressing PTPRC and LST1), intermediate monocytes displaying

characteristics of both CD14 monocytes and CD16 monocytes,

conventional DCs type 1 (cDC1s; expressing CLEC9A), cDC2s

(expressing FCER1A), and plasmacytoid DCs (pDCs; expressing

ITM2C) (Figures 2A, B). Composition differences emerged between

non-diabetes and T2D patients. The proportion of CD14 monocytes

significantly decreased in T2D, while intermediate monocytes and

CD16 monocytes increased in T2D (Figure 2C).

Validation through the expression of MHC class II genes

(Figure 2D) showed that these genes were most highly expressed

in intermediate monocytes in T2D, consistent with previous

research indicating the significant expression of antigen

presentation-related molecules in this subset (13).
A

B C

D

E

FIGURE 1

scRNA-seq identified Type 2 diabetes immune cell atlas. (A) Schematic representation of experimental design and techniques used in this study. 34
non-diabetes PBMC samples and 37 type 2 diabetes patients were collected for analysis. (B) UMAP plot of 293,923 PBMC cells shows the major cells
types. Each dot represents a single cells, and colors represent different cell types. (C) Dot plot of mean expression of canonical markers across the
cell types. (D) The proportion of global cell clusters depending on normal or diabetes using bar plot. (E) The proportion of global cell clusters
depending on normal or diabetes using box plot. N.S. not significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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A pro-inflammation score, calculated for CD14 monocytes

based on the expression of pro-inflammatory genes (CXCL8,

CCL2, CCL3, CCL5, IL1B, CXCL9, and CXCL10) with the

AddModuleScore function, revealed differing subsets in pro-

inflammation scores between T2D and non-diabetes, with T2D

displaying a higher pro-inflammation score (Figure 2E). Further

analysis of CD14 monocytes by pseudobulk differential expression

analysis, the expression of pro-inflammatory genes differentiated

between non-diabetes and T2D patients and were highly expressed

in T2D patients (Figure 2F). Gene Ontology (GO) enrichment

analysis, specifically on CD14 monocytes (Figure 2G), highlighted

pathways associated with T2D, including MHC class II protein

complex binding, MHC protein complex binding, T-cell receptor

binding, and cytokine binding. Sending signaling of CD14

monocytes was increased in T2D (Figure 2H) and the outgoing

interaction strength of CD14 monocytes was higher in T2D patients

than in non-diabetes (Figure 2I). Furthermore, RETN and CAP1

interaction, which are associated with inflammation in T2D (14),

was increased between CD14 and CD4 cytotoxic T cell (CD4 Tcyt),

CD14 and CD8 effector memory (CD8 Tem), CD14 and gd T cell

(gdT), and CD14 and MAIT (Figure 2J).

These findings collectively indicate heightened activity in

CD14 and intermediate monocytes in T2D conditions, reflecting

a more activated immune system in individuals with T2D

compared to those without the condition. In particular, CD14

monocytes have inflammative signature and play a role in

inflammation with T cells and interacted with other cells

through sending signals. Furthermore, the increased expression
Frontiers in Endocrinology 05
of MHC class II genes in intermediate monocytes underscores

their crucial role in antigen presentation to CD4 T cells and their

potential to recruit T cells.
T2D elicited enhanced cytotoxicity and
clonal expansions of cytotoxic T cells

Continuing our investigation into T cells influenced by

monocytes, we observed a shift in the proportions of T-cell

populations, notably marked by an increase in CD8 T cells. A re-

clustering of T cells with canonical markers revealed nine subtypes,

including CD4 naïve, CD4 central memory (CD4 Tcm), CD4

regulatory T cell (CD4 Treg), CD4 cytotoxic T cell (CD4 Tcyt),

CD8 naïve, CD8 central memory (CD8 Tcm), CD8 effector memory

(CD8 Tem), gd T cell (gdT), and MAIT cells (Figures 3A, B).

Supplementary Figure 1F shows the expression of T cells marker

genes in UMAP plot. T-cell composition varied between non-

diabetes and T2D patients, with a significant decrease in CD4

naïve cells in T2D patients compared to non-diabetes. (Figure 3C).

To assess the functional aspects of cytotoxic T cells, we

calculated the cytotoxicity score for CD4 Tcyt and CD8 Tem

using cytotoxic genes (PRF1, GZMH, and GZMK) and observed

higher cytotoxicity scores in T2D patients compared to non-

diabetes (Figure 3D). Glucose metabolism plays a crucial role in

regulating the effector killing function of T cells. This implies that

the hyperglycemic conditions observed in T2D may enhance the

cytotoxicity of CD4 Tcyt and CD8 Tem cells (15, 16).

We examined T-cell senescence by analyzing KLRG1

expression, a marker associated with senescence in T cells (17). In

CD8 Tem cells, KLRG1 expression was elevated in individuals with

T2D compared to non-diabetes (Figure 3E). This suggests that CD8

Tem cells in T2D are not only more activated than their normal

counterparts but also exhibit a faster senescent state compared to

normal conditions.

To explore clonal relationships among individual T cells, T cell

receptor (TCR) analysis was performed across the nine subsets. The

percentage of matched TCRs with scRNA-seq was 81.6%. In T2D

patients, there were significant clonal expansions observed in

cytotoxic T cells (CD4 Tcyt and CD8 Tem) (Figure 3F), with the

clonality size, measured using the Gini index, being notably higher

in T2D cytotoxic T cells than in those from the non-diabetes

(Figure 3G). These heightened-cytotoxicity and clonality features

in cytotoxic T cells contribute to the pro-inflammatory immune

environment associated with T2D.
T2D enhanced B-cell differentiation and
isotype class switching

To elucidate B-cell characteristics in T2D patients, we investigated

five distinct B-cell subsets and two clusters of plasma cells. These

subsets included naïve B cells (expressing MS4A1, CD79A, TCL1A,

IGHM, and IGHD), memory B cells (expressingMS4A1, CD79A, and
TABLE 1 Baseline characteristics of the study population.

Healthy
controls

Type
2 diabetes

P-value

N 34 37

Age 51 (12) 56 (7) 0.14

Sex 0.4

Female 16 (47 %) 14 (38 %)

Male 18 (53 %) 23 (62 %)

BMI 25.0 (3.2) 26.4 (3.3) 0.14

Glucose NA 133 (27)

HbA1c NA 6.5 (2.8)

Total
cholesterol

NA 150 (35)

Triglyceride NA 127 (68)

HDL NA 52 (13)

LDL NA 97 (40)

AST NA 34 (17)

ALT NA 31 (17)
Data are expressed as the mean (SD), or percentage.
P values were calculated using Wilcoxon rank sum test, and Pearson’s Chi-squared test.
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CD27), plasma cells (expressing MZB1), and intermediate B cells

(exhibiting characteristics of both naïve and memory B cells and

expressing TNFR1B and NKFB) (Figures 4A, B).Our observations

revealed an elevated proportion of intermediate B cells (identified as

intermediate B_TNFR2+ and intermediate B_NFKB+) and plasma

cells, while the naïve B-cell proportion was lower in T2D patients than

the non-diabetes (Figure 4C). Additionally, we analyzed B-cell

receptor (BCR) data, comparing T2D patients and non-diabetes.

The findings indicated that individuals with T2D exhibited a higher

degree of differentiation into plasma cells and increased diversity of

BCR isotypes (Figures 4D, E). Overall, our results suggest that T2D is

associated with changes in B-cell subsets, including an expansion of

intermediate B cells, increased differentiation into plasma cells, and

heightened isotype class switching in memory B cells. These

alterations may contribute to the pro-inflammatory immune

environment associated with T2D, similar to the role of T cells.
Frontiers in Endocrinology 06
Discussion

T2D induces systemic chronic inflammation, heightening the

risk of cancer, cardiovascular diseases, and autoimmune conditions.

However, scRNA-level analysis of immune cells orchestrating

chronic inflammatory states has predominantly focused on T1D.

This study illustrated that inflammation-related alterations within

individual immune cell populations are more pronounced in T2D

patients than in non-diabetes. Specifically, our findings highlight

heightened MHC class II protein expression and inflammatory

interaction in T2D monocytes. Additionally, CD4 and CD8 T

cells exhibited increased cytokine scores and clonality, while

differentiated B cells, including TNFR2+ intermediate B cells,

NFKB+ intermediate B cells, and plasma cells, showed increased

proportions and engaged in antibody isotype switching to IgG and

IgA. Our study underscores the interconnectedness and interaction
A B

C D

E

F

J

I

G H

FIGURE 2

T2D monocytes have increased expression of inflammatory molecules and antigen-presenting genes. (A) The UMAP visualization shows the
distribution of 56,250 myeloid cells, revealing the presence of six distinct monocyte cell clusters, as well as clusters representing dendritic cells.
(B) The expression of myeloid cell marker genes is depicted in the UMAP plot, highlighting their expression patterns across the identified myeloid
clusters. (C) The proportion of myeloid clusters depending on normal or diabetes (D) The expression pattern of cytokine gene and MHC class II
genes in monocytes. (E) Distributions of CD14 Mono pro-inflammation module score with respect to normal and diabetes. (F) Different patterns
heatmap between non-diabetes and T2D patients by pro-inflammatory genes (CXCL8, CCL2, CCL3, CCL5, IL1B, CXCL9, and CXCL10) using
pseudobulk differential expression analysis (G) The top 10 enriched biological processes by GO analysis of upregulated DEGs of CD14 Mono of
diabetes and normal group. Dot color indicates the statistical significance of enrichment and dot is in proportion of gene ratio of the enriched gene
number. (H) Heatmap showing the differential number of interactions between non-diabetes and T2D patient. In the color bar, red (or blue)
represents increased (or decreased) signaling in the T2D patient compared to non-diabetes. (I) Scatter plots comparing the outgoing and incoming
interaction strength in the 2D space among each cell population. (J) Bubble chart of cell to cell signaling in non-diabetes and T2D patient. N.S. not
significant, **p < 0.01, ***p < 0.001.
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among immune cell populations in T2D, suggesting a potential

induction of chronic inflammation and susceptibility to

autoimmune diseases. The study of Dora et. al (18). that CD8 and

gd T cells in T2D make many molecules that increase inflammaging

support our study. In addition to those commonalities, we showed

that other cells, such as, CD14 monocytes, CD4 T cells, and B cells,

also have inflammatory properties.

Monocytes constitute a crucial component of the innate

immune system, playing a role in regulating cellular homeostasis

and inflammatory processes (19, 20). T2D patients exhibit a

reduction in CD14 monocytes (classical monocytes), which

differentiate into M2 macrophages with anti-inflammatory

characteristics (21). However, in the context of T2D, classical
Frontiers in Endocrinology 07
monocytes are vulnerable and functionally impaired under

endoplasmic reticulum stress (22).

In this study, T2D patients demonstrated a decreased

proportion of CD14 monocytes and an increased proportion of

intermediate and CD16 monocytes compared to non-diabetes.

Interestingly, our current study revealed that CD14 monocytes

in T2D exhibited a significantly higher pro-inflammatory score and

enriched pathways associated with MHC class II protein complex

binding and RETN-CAP1 interaction compared to the non-

diabetes. This suggests that while CD14 monocytes in T2D could

display inflammatory characteristics. Furthermore, intermediate

monocytes in T2D patients demonstrated an upregulation of

MHC class II molecule genes compared to the non-diabetes.
A B

C D E

F G

FIGURE 3

T2D enhanced cytotoxicity and clonal expansions of cytotoxic T cells. (A) The UMAP visualization shows the distribution of 21,871 T cells, revealing
the presence of five distinct T cell clusters, as well as clusters representing NK cells. (B) Dot plot of mean expression of canonical markers across the
cell types. (C) The proportion of T cell clusters depending on normal or diabetes. (D) Distributions of CD4_Tcyt, CD8_Tem cytotoxic and gdT
module score with respect to normal and diabetes. (E) Distributions of CD8_Tem KLRG1 expression score with respect to normal and diabetes.
(F) The UMAP plot specifically focuses on the visualization of marked TCR abundance. The circle size represents the log(Abundance) and color
represent normal and diabetes. (G) Distributions of Gini index score of cytotoxic T cells (CD4_Tcyt and CD8_Tem) depending on normal and
diabetes. N.S. not significant, *p < 0.05, ***p < 0.001.
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These findings in T2D patients may contribute to the chronic

inflammatory status, with the upregulation of MHC class II

molecules potentially influencing T-cell activity.

In the current study, the cytotoxic scores of CD4 Tcyt cells, CD8

Tem cells, and gd T cells were higher in T2D patients than in the

non-diabetes. Our findings in monocytes and T cells could provide

a mechanism for the persistence of the chronic inflammatory state

in T2D patients through MHC class II and an antigen-presenting

cell (23).

We next delved into the expression change of cytotoxic genes in

CD4 Tcyt, CD8 Tem, and gd T cells (24, 25). Previous studies,

particularly in T1D, have implicated granzyme and perforin secreted

by CD8 T cells in the destruction of b cells (26). Furthermore,

increased serum levels of granzyme B have been independently

associated with T2D diagnosis (27), underscoring the potential

significance of CD4 Tcyt cells in the pathophysiology of diabetes.

In a T1Dmouse model, macrophages and CD4 T cells developed into

a pro-inflammatory subtype (28). Comprehensive analyses showed
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that the expression and chromatin accessibility of cytotoxic genes in

CD4 T cell were heightened in children with T1D (29).

In our study, we observed an increase in the cytotoxicity of CD4

T cells, CD8, and gd T cells. These findings suggest crucial roles for

T cells in the pathophysiology of T2D. Additionally, we identified

heightened expression of KLRG1 on CD8 Tem cells in TD2,

reflecting the senescent status of T cells (30). Furthermore, our

study demonstrated clonal expansions of cytotoxic T cells in T2D

patients than in the non-diabetes. Exhibiting clonal expansion and

cytotoxicity of senescent T cells suggests that persistently stimulated

T cells potentially contribute to chronic inflammation in T2D.

In the context of B-cell development into plasma cells, the

involvement of CD4 T cells is crucial (23). Our study revealed a

reduction in naïve B cells and an increase in TNFR2+ intermediate

B cells, NF-kB+ intermediate B cells, and plasma cells in T2D

patients. NF-kB, a pivotal signaling molecule, plays a significant role

in B-cell activation and development by inhibiting B-cell apoptosis

and influencing peripheral B-cell survival (31, 32). Plasma cells,
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FIGURE 4

Increased Plasma Cell Differentiation and BCR diversity in Diabetes. (A) The UMAP visualization shows the distribution of 21,871 B cells, revealing the
presence of five distinct B cell clusters, as well as clusters representing plasma cells and cycling plasma cells. (B) The expression of B cell marker
genes is depicted in the UMAP plot, highlighting their expression patterns across the identified B cell clusters. (C) The proportion of B cell clusters
depending on normal or diabetes. (D) The UMAP plot specifically focuses on the visualization of marked B cell receptor (BCR) isotypes. The color-
coding indicates the presence or absence of matched BCR data, with grey color representing cases where BCR data was not available. (E) The
distribution of BCR isotypes within each B cell and plasma cell cluster based on the normal or diabetes. N.S. not significant, *p < 0.05, **p < 0.01,
***p < 0.001.
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derived from B cells with support from CD4 T cells, can produce

large amounts of antibodies (33). In T2D patients, we observed an

elevation in plasma cells, coupled with changes in antibody isotypes,

resulting in increased secretion of IgA and IgG antibodies. While

IgA plays a protective role on mucosal surfaces, its increased

expression during the inflammatory phase of T2D may induce

various immune cells to express the Fc receptor in multiple tissues,

promoting the production of pro-inflammatory cytokines (34).

Elevated IgG levels are associated with various autoimmune

diseases and the level of procytokines, and our findings align with

various (35, 36).

Our study showed that the sequential activation of monocytes

and CD4 T cells influences B-cell development perpetuation of the

pro-inflammatory status observed in T2D. However, the increased

population of TNFR2+ intermediate B cells may have a

counteractive effect through IL-10, anti-inflammatory cytokine

(37). The observed increase in TNFR2+ intermediate B cells could

be a complementary consequence of an excessively inflammatory

status. Further investigation is needed to determine whether

TNFR2+ intermediate B cells indeed possess anti-inflammatory

effects in the context of T2D.

When we analyzed correlation between our findings and the

clinical characteristics of T2D patients, the inflammation score of

CD14 monocytes was correlated with BMI, but the correlation

coefficient was small. (R=0.36, p=0.037) (Supplementary Figure 2).

These results suggest that due to the fact that T2D patients are

taking medications to control their disease, so they do not show

significant differences in clinical characteristics, but rather changes

at the cellular level. Further research is needed to confirm the results

of this study using flow cytometry to determine the actual

proportion of and the function of the immune cells.

The information presented in Table 1– was limited because

the prevalence of T2D was determined using a questionnaire

during the recruitment process for non-diabetes participants.

However, in Korea, the prevalence of T2D could be determined

through regular national and employee medical checkups, so non-

diabetes participants in this study could be classified as not having

T2D. Second, the medication information of T2D patients was not

presented. Further studies are needed to provide more accurate

information on non-diabetes participants and more detailed

comparisons including medication information for T2D. Despite

these limitations, our findings revealed intricate interactions

among monocytes, T cells, and B cells, collectively contributing

to the establishment of a chronic inflammatory state in T2D

patients. These results emphasize the potential heightened risk

of cancer, cardiovascular disease, and autoimmune diseases

among T2D patients due to the sustained presence of

chronic inflammation.
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