
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Guifang Zhao,
Mayo Clinic Florida, United States

REVIEWED BY

Rongwei Lei,
University of Houston, United States
Xiaodong Zou,
The Chinese University of Hong Kong, China

*CORRESPONDENCE

Timothy O’Brien

timothy.obrien@universityofgalway.ie

RECEIVED 06 March 2024
ACCEPTED 14 June 2024

PUBLISHED 15 July 2024

CITATION

Liu Y, Lyons CJ, Ayu C and O’Brien T (2024)
Enhancing endothelial colony-forming cells
for treating diabetic vascular complications:
challenges and clinical prospects.
Front. Endocrinol. 15:1396794.
doi: 10.3389/fendo.2024.1396794

COPYRIGHT

© 2024 Liu, Lyons, Ayu and O’Brien. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 15 July 2024

DOI 10.3389/fendo.2024.1396794
Enhancing endothelial colony-
forming cells for treating
diabetic vascular complications:
challenges and clinical prospects
Yaqiong Liu, Caomhán J. Lyons, Christine Ayu
and Timothy O’Brien*

Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway,
Galway, Ireland
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia,

leading to various vascular complications. Accumulating evidence indicates that

endothelial colony-forming cells (ECFCs) have attractive prospects for repairing

and restoring blood vessels. Thus, ECFCs may be a novel therapeutic option for

diabetic patients with vascular complications who require revascularization

therapy. However, it has been reported that the function of ECFCs is impaired

in DM, which poses challenges for the autologous transplantation of ECFCs. In

this review, we summarize the molecular mechanisms that may be responsible

for ECFC dysfunction and discuss potential strategies for improving the

therapeutic efficacy of ECFCs derived from patients with DM. Finally, we

discuss barriers to the use of ECFCs in human studies in light of the fact that

there are no published reports using these cells in humans.
KEYWORDS

endothelial colony forming cells, diabetes mellitus, pharmacological conditioning,
genetic modification, disease-related cellular dysfunction, clinical translation
Abbreviations: AGEs, Advanced glycation end-products; ASK1, Apoptosis signal-regulating kinase 1; CB,
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Endothelial cell cluster; FIR, Far-infrared radiation; eNOS, Endothelial nitric oxide synthase; gAcrp, Globular
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Human umbilical vein endothelial cells; IL-6, Interleukin 6; IL-1b, Interleukin 1b; IL-8, Interleukin 8; iPSCs,

Induced pluripotent stem cells; LPP-ECFC, Low proliferative potential ECFC; MEOX2, Mesenchyme

homeobox 2; MSCs, Mesenchymal stromal cells; NI, Neuroischemic; NO, Nitric oxide; NP, Neuropathic;

NRIP1, Nuclear receptor-interacting protein 1; oxLDL, Oxidized low density lipoprotein; PB, Peripheral

blood; PBMNCs, Peripheral blood mononuclear cells; PCDH10, Protocadherin 10; RAGE, Receptor for

advanced glycation end-products; ROS, Reactive oxygen species; SIRT1, Sirtuin-1; TAGLN, Transgelin; TNF-

a, Tumor necrosis factor-a; VWF, Von willebrand factor.
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1 Introduction

Diabetes mellitus (DM) is a metabolic disease characterized by

long-term hyperglycemia, which can be mainly classified into two

subtypes: type 1 DM (T1DM) and type 2 DM (T2DM). T1DM is

attributed to the immune-mediated destruction of pancreatic b-
cells (1) and T2DM is caused by tissue resistance to insulin and a

relative lack of insulin (2). It is estimated that approximately 537

million people are affected by DM worldwide in 2021, with the

number expected to rise to 783 million by 2045 (3). DM can lead to

macrovascular and microvascular complications, which imposes a

significant health burden (4). The macrovascular complications of

DM include coronary artery disease, peripheral arterial disease, and

stroke. The primary microvascular complications encompass

diabetic nephropathy, neuropathy, and retinopathy (5). For

patients with severe vascular complications that need

revascularization therapy, endothelial colony-forming cells

(ECFCs) have emerged as a promising therapy due to their strong

angiogenic ability. ECFCs are progenitors of endothelial cells,

representing a cell population that has self-renewal ability and the

capacity to form functional blood vessels (6). However, previous

studies suggest that ECFCs isolated from diabetic patients exhibited

functional defects, thereby limiting their therapeutic potential

(Figure 1) (7, 8). Due to the difficulty in isolating ECFCs from

peripheral blood (PB), most studies on ECFCs in diabetic patients

have revolved around exploring the biology of ECFCs from

gestational diabetes mellitus (GDM) patients. CB-ECFCs from

GDM patients exhibit increased senescence, reduced proliferation,

migration, and tube formation when compared with those from

healthy donors (9–13). Besides, it has been reported that it was

more difficult to isolate ECFCs from the PB of T2DM patients than

from healthy donors (14). An altered function of PB-ECFCs was

also found in diabetic patients with vascular complications. Tan
Frontiers in Endocrinology 02
et al. investigated the cell number and function of CD34+ CD45−

ECFCs between healthy donors and patients with proliferative

diabetic retinopathy (PDR) using a cross-sectional cohort design.

Their results revealed that PB-ECFCs from patients with PDR had

impaired capacity to migrate and were not able to form functional

vascular tubes (15). Another study reported that PB-ECFCs isolated

from patients with DM with neuroischemic (NI) or neuropathic

(NP) foot ulcers exhibited reduced colony formation, proliferation,

migration capability, and nitric oxide (NO) bioavailability (16).

Hence, it is reasonable to suggest that optimizing the potency of

ECFCs in DM by reversal of dysfunction may achieve the desired

therapeutic potential. Several strategies have been developed to

enhance the efficacy of ECFCs in DM, such as pretreatment with

bioactive agents or chemical factors, genetic modification, and

combination with other cell types such as mesenchymal stromal

cells (MSCs). In this review, we aim to summarize the mechanisms

that account for the reduced cell number and compromised

function of ECFCs from DM and explore potential strategies to

improve the therapeutic efficacy of ECFCs from patients with DM.

Due to the dearth of clinical trials using these cells, we also discuss

translational barriers.
2 Definition and characteristics of
human ECFCs

In 1997, Asahara et al. first isolated putative endothelial

progenitor cells (EPCs) from peripheral blood mononuclear cells

(PBMNCs). They reported that EPCs were able to integrate into

regenerating host blood vessels within injured areas and contribute

to vascular repair (17). Subsequent studies found that these EPCs

promoted angiogenesis through a paracrine signaling mechanism,

but they had limited proliferative ability and could not form blood
FIGURE 1

Definition, source of ECFCs and their phenotype in DM.
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vessels directly (18, 19). In 2004, Ingram et al. identified a new cell

type termed ECFCs that exhibited superior clonal and angiogenic

ability (20). In humans, ECFCs are defined using the following three

features: (i) lineage differentiation into endothelial cells; (ii) self-

renewal ability; and (iii) angiogenic potential in vitro and in vivo

(21) (Figure 1). The first feature emphasizes that ECFCs exhibit the

endothelial phenotype after in vitro culture, which is used to

distinguish ECFCs from other blood outgrown cell types of

hematopoietic lineages, such as myeloid angiogenic cells (MACs)

(22). The second feature emphasizes the strong self-renewal

potential of ECFCs. In some cases, a single ECFC is capable of

expanding to a colony with >10,000 cells after 14 days in culture

(20, 23). The third feature, angiogenic potential in vitro and vivo, is

also essential for distinguishing ECFCs from MACs. MACs cannot

form blood vessels themselves, but they support vascular repair by

secreting angiogenic factors (22). To date, the origin of ECFCs is not

well understood. Lin et al. have provided evidence for a bone

marrow origin of ECFCs based on the analysis of blood samples

from bone marrow transplant recipients who had received gender-

mismatched transplants (24). Fujisawa et al. investigated the ECFCs

isolated from PB of male patients after a sex mismatched allogeneic

bone marrow transplant. They found that these ECFCs exhibited a

XY phenotype instead of a XX phenotype, suggesting that ECFCs

originated from blood vessels (25). Surprisingly, the two similar

studies have reached very different conclusions. However, a recent

study suggested that ECFCs originated from blood vessel walls

through lineage tracing and single cell RNA sequence analysis (26).

Although the origin of ECFCs is still controversial, ECFCs have

been successfully isolated from various tissues (Figure 1). ECFCs are

most frequently isolated from cord blood (CB) and peripheral blood

(PB) (27) but can also be derived from other tissues (28–30)

(Figure 1). CB-ECFCs and PB-ECFCs show differences in gene

expression and pro-angiogenic capacity (31, 32). However, the

frequency of ECFC is very low in CB and PB: approximately 50

CB-ECFCs per 1x108 cord blood mononuclear cells (CBMNCs)

(33) and 1.7 PB-ECFCs per 1x108 PBMNCs (34). It is also
Frontiers in Endocrinology 03
important to point out that there is heterogeneity within ECFCs

population. Based on the different proliferative potential, CB-

ECFCs exhibit a hierarchy of three levels: (i) high proliferative

potential ECFC (HPP-ECFC); (ii) low proliferative potential ECFC

(LPP-ECFC); (iii) endothelial cell cluster (ECC). HPP-ECFC has the

highest proliferative potential and forms colonies containing more

than 2000 cells, which gives rise to LPP-ECFC and ECC. LPP-ECFC

forms colonies with 50–2,000 cells and ECC forms colonies that

contain less than 50 cells (20, 35). In 2019, the International Society

on Thrombosis and Hemostasis Congress proposed a standardized

protocol for the isolation and expansion of PB-ECFCs and CB-

ECFCs without focusing particularly on their surface markers (36)

(Figure 2). Generally, ECFCs are positive for CD34 (37), CD31,

VEcadherin, von Willebrand factor (vWF), CD146, and VEGFR2

expression, whereas they are negative for hematopoietic markers

such as CD14 and CD45 (6).
3 Mechanisms leading to ECFCs
dysfunction in DM

The triggering factors that lead to dysfunctional ECFCs in DM

are still unclear, but hyperglycemia, oxidative stress, and

inflammation have been hypothesized as key factors in ECFC

dysfunction (Figure 3). These three triggering factors act

independently and also interact with each other in a vicious cycle,

which contributes to the altered function of ECFCs in DM.
3.1 Hyperglycemia

Hyperglycemia, a hallmark of diabetes mellitus, may be one of

the leading factors that result in ECFC dysfunction in DM. It has

been reported that high glucose impaired the function of ECFCs,

including colony formation, self-renewal capacity, and tube

formation (38). The adverse effects of high glucose on ECFC have
FIGURE 2

Schematic of isolation, culture, and characterization of ECFCs. CB, cord blood; EDTA, ethylene diamine tetra acetic acid; CBMNC, cord blood
mononuclear cell; PB, peripheral blood; PBMNC, peripheral blood mononuclear cell.
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been suggested through affecting sirtuin (SIRT) family and nitric

oxide (NO) bioavailability. The SIRT family are nicotinamide

adenine dinucleotide (NAD)+-dependent histone deacetylases,

which includes seven members (SIRT1–SIRT7) (39). SIRT1 is the

most widely studied member of this family and shows anti-

inflammatory and anti-oxidative stress effects and improves the

mitochondrial function under stress (40). SIRT1 has been found to

protect endothelial cells from stress-induced senescence and

improve endothelium-dependent vasodilation by deacetylating

endothelial nitric oxide synthase (eNOS) and increasing NO

bioavailability (41). As for NO bioavailability, its decreased level

is a key factor for endothelial cells dysfunction (42). There are

several possible mechanisms for decreased NO bioavailability,

including reduced eNOS mRNA or protein expression,

endogenous competitive inhibitors of L-arginine, reduced

tetrahydrobiopterin (BH4) level, and interaction between NO and

superoxide (43). Due to the important role of SIRT1and NO

bioavailability in endothelial cells, researchers have also

investigated their alteration in ECFCs exposed to high glucose.

Chen et al. demonstrated that high glucose (25 mM glucose)

resulted in increased senescence and impaired proliferation,

migrat ion and tube format ion abi l i ty of PB-ECFCs.

Mechanistically, high glucose suppressed phosphorylation of Akt

and eNOS, thereby reducing NO bioavailability. Besides, high

glucose inhibited the activity of FOXO1 in PB-ECFCs. The

negative effects of high glucose could be reversed by co-

incubation with the NO donor sodium nitroprusside or p38

mitogen–activated protein kinase (MAPK) inhibitor. Conversely,
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the negative effects of high glucose could be enhanced by co-

incubation with NOS inhibitor l-Ng-nitro-l-arginine methyl ester

(l-NAME) or PI3K inhibitor LY294002. These results suggested that

high glucose may impair ECFC function by modulating PI3K/Akt,

NO, and p38 MAPK-related mechanisms (44). Likewise, Huang

et al. reported that high glucose levels resulted in cellular

senescence, defective migration, and tube formation of PB-

ECFCs, as well as decreased phosphorylation of Akt and eNOS

(45). Glucagon-like peptide-1 (GLP-1) plays a key role in regulating

blood glucose homeostasis through GLP-1 receptor (GLP-1R) (46).

Importantly, the activation of GLP-1R was able to increase NO

production in endothelial cells and blunted high glucose-induced

endothelial dysfunction (47). Therefore, Tu et al. investigated

whether GLP-1R and SIRT1 led to PB-ECFCs dysfunction under

high glucose conditions. They found that GLP-1R and SIRT1 were

downregulated in PB-ECFCs under high glucose conditions (25

mM glucose). The knockdown of GLP-1R and SIRT1 aggravated

the dysfunction of PB-ECFCs, including increased apoptosis, and

impaired migration, adhesion and angiogenic abilities. Moreover,

the upregulation of GLP-1R improved the dysfunctional ECFCs by

regulating SIRT1 expression (48). Consistent with the

aforementioned study, another group showed decreased

transcription levels of SIRT1, SIRT3, and SIRT4 in CB-ECFCs

after high glucose treatment (30 mM glucose) (49).

Persistent hyperglycemia increases the formation of advanced

glycation end-products (AGEs) (50). AGEs are the products of non-

enzymatic glycation of macromolecules (proteins, lipids, and

nucleic acids) with monosaccharides such as glucose,
FIGURE 3

Potential mechanisms causing ECFC dysfunction in DM. Hyperglycemia, oxidative stress, and inflammation may lead to a defective phenotype of
ECFCs in a diabetic state. NAD+, nicotinamide adenine dinucleotide; SIRT1/3/4, sirtuin 1; 3; and 4; p-AKT, phosphorylated protein kinase B; p-eNOS,
phosphorylated endothelial nitric oxide synthase; NO, nitric oxide; FOXO1, fork head box O 1; GLP-1R, glucagon-like peptide 1 receptor; Acetyl-p53,
acetylated p53; AGEs, advanced glycation end products; RAGE, receptor for AGEs; COX-2, cyclooxygenase-2; ROS, reactive oxygen species; Nrf2,
nuclear factor erythroid 2-related factor 2; ASK1, apoptosis signal-regulating kinase 1; SOX9, SRY-box transcription factor 9; EMT, endothelial-to-
mesenchymal transition; IL-8, Interluekin-8.
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glyceraldehyde, and fructose (51). AGEs are associated with

increased oxidative stress (52) and inflammation (53). Chen et al.

revealed that AGEs promoted the apoptosis of ECFCs and reduced

the migration and tube formation of ECFCs. They investigated the

effects of AGEs on Akt/eNOS and cyclooxygenase-2 (COX-2)

protein expression as these proteins play an important role in

endothelial cell homeostasis. The results showed that AGEs

increased the expression of the receptor for AGE (RAGE) and

decreased Akt and COX-2 protein expression. However, RAGE did

not influence the mRNA nor protein levels of eNOS. These results

provided evidence that Akt and COX-2 expression may be involved

in the mechanism underlying this impairment induced by RAGE

(54). Another study showed that AGEs accelerated the shedding of

syndecan-4 (synd4, a ubiquitous heparan sulfate proteoglycan

receptor), thereby impairing the migration of ECFCs. Besides, the

lack of synd4 led to poor homing of ECFCs to the site of injury in

lower limb ischemic mice (55). Additionally, a study reported that

AGEs were able to promote oxidative stress via SIRT1/p66shc

pathway and stimulate the upregulation of high mobility group

box-1 protein (HMGB-1). The inhibition of HMGB-1 (a pro-

inflammatory cytokine) attenuated oxidative stress induced by

AGEs. Conversely, the effects of oxidative stress could be

exacerbated by a positive feedback of which can bind to RAGEs,

facilitating more ROS production (56).

Overall, mechanisms implicated in hyperglycemia-induced

ECFCs dysfunction include: PI3K/Akt/eNOS pathway, the

decreased SIRT1 level, and AGEs-RAGE axis. Previous studies

have demonstrated that hyperglycemia causes endothelial

dysfunction by four major mechanisms: (i) increased glucose flux

into the polyol pathway; (ii) increased intracellular production of

advanced glycation end-products (AGEs); (iii) activation of protein

kinase C (PKC) isoforms; (iv) overactivity of the hexosamine

pathway [see review (57)]. Therefore, it is worth exploring

whether hyperglycemia could activate the polyol, hexosamine

pathway, and PKC isoforms to cause ECFC damage (58).
3.2 Oxidative stress

Oxidative stress is caused by the imbalance between ROS

production and ROS scavenging, which negatively affects the

survival of cells (59). The important sources of ROS production

include mitochondria, NADPH oxidases, xanthine oxidases,

cyclooxygenases, and uncoupled endothelial (60). ROS are highly

reactive oxidizing agents characterized by the presence of one or

more unpaired electrons, such as superoxide anion (O2•−),

hydroxyl radical (•OH), and H2O2 (61). ROS at low

concentrations can serve as signaling molecules which transmit

signals for normal physiological processes, such as cell growth and

cellular adaptation responses (62). Excessive ROS would reduce NO

bioavailability, activate inflammatory pathways mediated by TNF-a
and NF-kB, leading to endothelial cell dysfunction (42). Notably, it

has been reported that ROS was increased in ECFCs from patients

with DM (63), which may play an important role in diabetes-

induced ECFC dysfunction. But there is little evidence on how

increased ROS levels disturb ECFC function in DM (64). A study
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found that increased ROS level in DM-ECFCs was mainly

attributed to mitochondrial dysfunction. DM-ECFCs exhibited

mitochondrial fragmentation and dysfunction accompanied by

downregulation of nuclear factor erythroid 2-related factor 2

(Nrf2). Nrf2 is a key regulator of the cellular antioxidant system

and the overexpression of Nrf2 improved the mitochondrial

fragmentation and dysfunction by influencing protein associated

with mitochondrial fission and fusion in DM-ECFCs (63). With the

exception of decreased Nrf2 levels, other molecular mechanisms are

involved in oxidative stress-mediated ECFCs dysfunction. Using the

oxidative stress model induced by hydrogen peroxide (H2O2),

Ingram et al. demonstrated that oxidative stress promoted

apoptosis of ECFCs and diminished their tube formation in vitro

and in vivo by activating apoptosis signal-regulating kinase 1

(ASK1) (35). ASK1 was shown previously to be negatively

regulated by redox-sensitive binding partners (65). Furthermore,

H2O2 treatment impaired the vessel formation of ECFCs in vivo

(35). Another study showed that oxidative levels of five proteins (T-

complex protein 1 subunit a, isoform A of prelamin-A/C, cofilin-1,

peroxiredoxin-4, and actin) were upregulated in H2O2 induced

ECFCs, which provided novel insight into the proteomic

mechanisms of oxidative stress on ECFCs (66). Additionally, the

generation of oxidized low-density lipoprotein (oxLDL) would

increase under conditions of excessive oxidative stress (67).

OxLDL has been shown to impair the growth and bioactivity of

ECFCs, decrease Akt phosphorylation and eNOS protein expression

in a dose-dependent manner, and increasing lectin-like OxLDL

receptor protein expression (68). A very recent study found that

ECFCs underwent endothelial-to-mesenchymal transition

(EndoMT) and exhibited a loss in self-renewal and proliferative

capacity after OxLDL stimulation (69). Collectively, oxidative stress

impaired ECFC function by a variety of mechanisms, including

causing mitochondrial fragmentation and dysfunction, increasing

apoptosis, decreasing Akt phosphorylation and eNOS protein

expression, and increased EndoMT. While oxidative stress has

been recognized as a primary cause in endothelial cell

dysfunction, its importance in ECFC dysfunction induced by

diabetes requires further confirmation.
3.3 Inflammation

DM is associated with an inflammatory state, caused by

complex factors, including increased levels of ROS, oxidized

lipids, increased angiotensin II, free fatty acids, AGEs and

reduced NO level (70). These factors lead to increased levels of

plasma inflammatory cytokines in DM, including C-reactive

protein (CRP) (71), interleukin-6 (IL-6), interleukin 1b (IL-1b),
interleukin 8 (IL-8) (72), tumor necrosis factor-a (TNF-a), and so

on (73). Theses inflammatory cytokines bind to various receptors

that trigger a common pathway of mediators, like oxidative stress

and NF-kB pathway, in endothelial cells, which eventually result in

endothelial cell dysfunction (74). This paragraph aims to discuss the

impact of inflammatory cytokines on ECFCs. Studies suggested that

the inflammatory cytokines can lead to dual effects in ECFCs: (i)low

level of inflammatory cytokines stimulated the proliferation of
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ECFCs (75); (ii) high level of inflammatory cytokines impaired the

function of ECFCs (76). Two studies have reported that high

concentrations of TNF-a (>10ng/ml) significantly inhibited the

proliferation and tube formation of ECFCs and increased the

apoptosis of CB-ECFCs (76, 77). But the mechanisms underlying

the TNF-a-induced impairment of CB-ECFCs remains unclear.

The interaction between TNF-a and transmembrane receptor 1

may be involved in the impairment of CB-ECFCs (78). Shen et al.

provided additional evidence for inflammation induced ECFC

dysfunction in DM. They compared the differentially expressed

genes (DEGs) between healthy PB-ECFCs and diabetic PB-ECFCs

using microarray data. Pathway analysis revealed that these DEGs

were mainly associated with inflammatory pathways, such as “NF-

kB signaling pathway” and “TNF-a signaling pathway”.

Additionally, IL-8 (a pro-inflammatory chemokine) was

upregulated in DM-ECFCs compared with healthy-ECFCs (79).

However, another study has reported that increased plasma

inflammatory cytokines in diabetic patients with chronic kidney

disease did not influence the success rate of PB-ECFC isolation (80).

Nevertheless, this study did not rule out the influence of

inflammatory cytokines on other aspects of the biology of ECFCs.

Overall, inflammation could be caused by multiple factors,

which leads to the increased inflammatory cytokines level in DM.

These inflammatory cytokines could alter gene expression patterns

of ECFCs and activate inflammatory pathways. These changes

ultimately result in decreased tube formation and increased

apoptosis of ECFCs.
4 Strategies for improving the
therapeutic efficacy of ECFCs in DM

To achieve the desired therapeutic potential, several strategies

have been proposed to improve the compromised function of

ECFCs in DM. These strategies can be mainly divided into three

categories: (i) pretreatment of ECFCs with biological compounds;
Frontiers in Endocrinology 06
(ii) genetic modification; (iii) co-injection with mesenchymal stem

cells (MSCs) (Figure 4 and Table 1).
4.1 Pretreatment of ECFCs with
biological compounds

4.1.1 Pretreatment of ECFCs with glycomimetics
A previous study has demonstrated the defects in ECFCs from

patients with diabetes with NI or NP ulcers (16). In an ex vivo study,

it was suggested that glycomimetic C3 was able to enhance the

migration ability of ECFCs from diabetic patients with NI and NP.

Nevertheless, glycomimetic C3 only enhanced the tube formation in

ECFCs from diabetic patients with NI. Although the mechanism by

which glycomimetic C3 improved the function of ECFCs in diabetic

patients was unclear, a previous study has shown that glycomimetic

C3 exerted a protective effect in an endothelial model of lipid-

induced oxidative stress through the Nrf2/ARE and Akt/eNOS

signaling pathways (81).

4.1.2 Pretreatment of ECFCs with
globular adiponectin

The literature has shown that individuals with higher serum

adiponectin levels are less likely to develop insulin resistance and

T2DM (82, 83). In addition, adiponectin exerts vasculoprotective

actions by increasing NO production and inhibiting endothelial

apoptosis (84). Leicht et al. investigated the effects of gAd (an active

domain of adiponectin) on diabetic ECFCs and found that pre-

treatment of diabetic ECFCs with gAd increased neovascularization

in a diabetic hindlimb ischemia mouse model. Thus,

preconditioning of DM-ECFCs with gAd may be a novel

approach to counter their dysfunction in DM (85).

4.1.3 Pretreatment of ECFCs with vitamin D
Emerging evidence has suggested that vitamin D deficiency is

associated with endothelial dysfunction (75). Vitamin D
FIGURE 4

Strategies to enhance the therapeutic efficacy of ECFCs in DM. Several strategies have been used to improve the therapeutic efficiency of ECFCs in
DM, including pretreatment of ECFCs with bioactive compounds or chemical factors (pH), genetic modification, and co-injection with MSCs. ECFCs,
endothelial colony forming cells; MEOX2, mesenchyme homeobox 2; TAGLN, transgelin; PCDH10, protocadherin 10; MSC, mesenchymal stem cells;
VEGFA, vascular endothelial growth factor A; FGF2, fibroblast growth factor-2.
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supplementation has antioxidant capacity and anti-inflammatory

effects to rescue dysfunctional endothelial cells (76). Gui et al.

showed that pre-activation of ECFCs with vitamin D improved

the migration and tube formation of ECFCs from pregnancies with

GDM (10). However, this study did not investigate the effects of

vitamin D on diabetic ECFCs in vivo. Additionally, the effectiveness

of vitamin D with a longer duration of supplementation and at

different doses needs to be studied in the future to fully explore the

potential of this therapy.
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4.1.4 Pretreatment of ECFCs in acidic conditions
Reduced blood flow during tissue injury tends to drive cell

metabolism into anaerobic glycolysis, which leads to lactate

formation and pH reduction. Acidosis reduces cell proliferation

and viability (86). Acidic preconditioning has been found to be a

potential strategy to improve the cell viability in the host acidic

environment (76). Mena et al. demonstrated that acid

preconditioning enhanced the proliferation and tube formation of

ECFCs under pro-inflammatory and high glucose condition.
TABLE 1 Strategies for improving the therapeutic efficacy of ECFCs in DM.

Strategies Assessment methods
for angiogenesis

Main results References

Pretreatment
with
biological
compounds

Acidic
conditions

In vitro Matrigel assay;
Laser Doppler blood flow analyzer in a
hind limb ischemia (HLI) mouse
model;
Histological analysis

Acidic preconditioning improved the survival, migration
and tube formation ability of ECFCs under high glucose
condition; Preconditioned ECFC had superior ability to
restore hind limb revascularization and reduce ischemia-
related tissue damage and inflammation in mouse models
of T2DM

(89)

Globular
adiponectin

Laser Doppler blood flow analyzer in a
HLI mouse model
Intravital near-infrared
fluorescence imaging

Pretreating ECFCs with globular adiponectin improved
ECFC function in vitro and in vivo in normoglycemic and
hyperglycemic environments

(85)

Glycomimetic
C3

In vitro Matrigel assay
Wound healing assay

Glycomimetic C3 enhanced the migration and tube
formation of PB-ECFCs from diabetic patients with NI

(16)

Vitamin D In vitro Matrigel assay Vitamin D alleviated the dysfunction of ECFCs from
pregnancies with GDM or healthy ECFCs exposed
to hyperglycemia.

(10)

miRNA
Modification

miR-134–5p In vitro Matrigel assay;
Laser Doppler Perfusion
Imager system

miR-134–5p was upregulated in diabetic PB-ECFCs;
Knockdown of miR-134–5p could restore the impaired
migration and angiogenic activities of diabetic PB-ECFCs via
upregulation of NRIP1;
FIR pretreatment promoted the angiogenic ability of
dysfunctional PB-ECFCs induced by high glucose in a
mouse ischemic limb model;
The protective effects of FIR could be reduced by the
overexpression of miR-134–5p

(93)

miR-139–5p In vitro Matrigel assay;
Matrigel plug assay in vivo;
PeriCam Perfusion Speckle Imager;
Histological analysis;
Count the number of CM-DiI-labeled
PB-ECFCs in the ischemic muscle

miR-139–5p was upregulated in PB-ECFCs from diabetic
patients and in healthy PB-ECFCs exposed to high glucose;
miR-139–5p inhibited VEGF and PDGF-B expressions by c-
jun to impair the ECFC function;
miR-139–5p prevented tube formation in vivo;
Knockdown of miR-139–5p promoted ECFC-mediated
angiogenesis and blood perfusion in hind limb ischemia in
diabetic mice

(92)

mRNA
Modification

MEOX2 Matrigel assay Compared with healthy pregnancies, MEOX2 was
upregulated in pregnancies complicated by T1DM and
T2DM;
Knockdown of MEOX2 in CB-ECFCs from DM pregnancies
led to decreased network formation

(94)

PCDH10 Matrigel assay Increased PCDH10 expression was observed in GDM-
ECFCs; Knockdown of PCDH10 recovered the impaired
proliferation, migration, adhesion, and tube formation
ability of GDM-ECFCs

(12)

TAGLN Upregulation of TAGLN was found in GDM-ECFCs;
Knockdown of TAGLN expression improved migration and
network formation in GDM- ECFCs

(11)

Co-Injection
with MSCs

MSCs In vitro Matrigel assay;
Matrigel plug assay in vivo

MSCs enhanced the vasculogenic capacity of ECFCs to form
functional microvessels under in vitro and in vivo
hyperglycemic conditions

(104)
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Compared with PBS treatment and non-preconditioned ECFCs, the

transplantation of acidic preconditioned ECFCs increased

the capillary density and diminished the inflammation score in

the murine model of the diabetic ischemic limb (87). However,

more experiments are needed to explore the different PH levels of

cell culture and incubation time (88, 89) to obtain more beneficial

effects and regenerative capacity of ECFCs.
4.2 Genetic modification

4.2.1 miRNAs
miRNAs are endogenous non-coding RNAs of 21–25

nucleotides that primarily affect the post-transcriptional regulation

of target genes by binding to the 3’ untranslated region of mRNA

(90). Luo et al. found that miR-139–5p, an anti-angiogenesis miRNA

(91), was upregulated in diabetic ECFCs compared to ECFCs from

healthy control patients. In vitro experiments showed that the

inhibition of miR-139–5p can rescue the impaired migration and

tube formation ability of diabetic ECFCs. Matrigel plug assays

demonstrated that the inhibition of miR-139–5p facilitates

restoration of the blood vessel-forming ability of diabetic ECFCs in

vivo. Mechanistically, miR-139–5p was found to target the

transcription factor c-jun, thereby decreasing the expression of

VEGF/PDGF-B (92). Another study reported that miR-134–5p

was more highly expressed in diabetic ECFCs compared to ECFCs

from disease free controls, and was associated with impaired

angiogenic activities of diabetic ECFCs. Knockdown of miR-134–

5p restored the impaired migration and angiogenic activities of

diabetic ECFCs via upregulation of the nuclear receptor-interacting

protein 1 (NRIP1). Furthermore, the study suggested that far-

infrared radiation (FIR) pretreatment promoted the angiogenic

ability of dysfunctional ECFCs induced by high glucose in a mouse

ischemic limb model. The protective effects of FIR could be

attenuated by the overexpression of miR-134–5p (93). The study

indicated that miR-134–5p may serve as a novel target for improving

dysfunctional diabetic ECFCs. However, the limited sample size in

combination with the lack of long-term monitoring makes it difficult

to confirm the therapeutic effect of FIR.

4.2.2 Mesenchyme homeobox 2
Gohn et al. found that MEOX2 was upregulated in pregnancies

complicated by T1DM and T2DM when compared with healthy

pregnancies. MEOX2 knockdown can reduce the tube formation of

GDM-ECFCs. This study suggested that the upregulation of MEOX2

might be a compensatory mechanism to alleviate the impaired

migration and angiogenesis in GDM-ECFCs (94). But the other

researchers have revealed that high MEOX2 expression resulted in

increased senescence (95) and less tube formation (96) in human

umbilical vein endothelial cells (HUVECs). Thus, the protective role

of MEOX2 in GDM-ECFCs should be interpreted with caution.

4.2.3 Transgelin
TAGLN, a TGF-b inducible gene expressed in smooth muscle

cells, has been reported to be involved in the angiogenesis of
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endothelial cells (97). Varberg et al. evaluated the function of

TAGLN in GDM-ECFCs and found that decreasing TAGLN

expression contributed to improved migration and tube

formation in GDM-ECFCs (11). These results suggest that

knockdown of TAGLN could be a novel strategy to improve the

function of GDM-ECFCs. Interestingly, they developed a bioactive

nanoparticle that can conjugate to the surface of ECFCs. The

nanoparticles, loaded with SB-431542 (a TGF-b inhibitor), can

stably normalize TAGLN expression in GDM-ECFCs. Not only

did the bioactive nanoparticles improve migration of GDM-ECFCs,

but also they augmented the vasculogenesis of GDM-ECFCs in vitro

and in vivo (98).

4.2.4 Protocadherin 10
PCDH10, a member of the non-clustered protocadherins, is

involved with adherens junctions (99). PCDH10 has been found to

be upregulated in GDM-ECFCs compared to ECFCs from normal

pregnancies. The upregulation of PCDH10 was due to the

hypomethylation of the PCDH10 promoter. Knockdown of

PCDH10 was able to rescue the defective proliferation, migration,

cell adhesion, and angiogenic functions in GDM-ECFCs (12).

Nevertheless, PCDH10 was identified as a tumor suppressor gene

in various cancers (99). Thus, it is necessary to assess the safety of

knockdown of PCDH10 in GDM-ECFCs.
4.3 Mesenchymal stem cells

In addition to specific biomolecules and genetic modification,

co-injection with MSCs is an efficient strategy to boost the

regenerative potential of ECFCs. MSCs are multipotent non-

hematopoietic, fibroblast-like plastic adherent cells, which have

the potential to differentiate into multiple cell types, such as

chondrocytes, adipocytes, and osteocytes (100). MSCs have

captured attention in vascular regeneration because these cells

secrete large amounts of angiogenic factors, growth factors and

cytokines (101). Several studies have demonstrated that combined

transplantation of MSCs with healthy ECFCs exhibited stronger

ability of vessel-like structures formation in mice when compared to

translation of healthy ECFCs alone. The better effects of combined

transplantation were due to the ability of MSCs to reduce the

immune cell infiltration or their ability to produce paracrine factors

(102, 103). However, there are very limited published data on the

combination of ECFCs with MSCs in the context of DM. Lee et al.

compared the vasculogenic capacity between ECFCs and ECFCs +

MSCs under high glucose conditions (30 mM) in a diabetic

immunodeficient mouse model. The results showed that ECFCs +

MSCs potentiated the tube formation ability under hyperglycemic

conditions compared to ECFCs alone. More importantly, the

combination of ECFCs with MSCs was beneficial for forming

tube functional microvessels in vitro (104). There are some

advantages of combined transplantation of MSCs with ECFCs: (i)

MSCs secrete a plethora of pro-angiogenic factors, such as VEGF-A

and FGF2 (101); (ii) the immunomodulatory effects of MSCs

protect against ECFCs rejection after transplantation (103); (iii)
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MSCs induce mesenchymal transition of ECFCs thorough NOTCH

signaling, which improves engraftment and vasculogenic potential

(105); (iv) MSCs bolster vasculogenic activity of ECFCs through the

endoglin-mediated adhesion between MSCs and ECFCs (106).
4.4 Potential challenges and limitations of
the above bioengineering strategies

Although the above strategies have shown promising results in

vitro or in preclinical animal models, there are still some potential

limitations that need to be considered. For pretreatment with

biological compounds, this strategy is reliant on endogenous

ECFC biology and its efficacy could be limited in defective

ECFCs. More importantly, transient pretreatment may make it

difficult to maintain the therapeutic effect for a much longer

period. The use of genetically modified ECFCs will pose a

biosafety concern. Viral transduction (adenovirus and lentivirus)

is the most commonly used method for gene delivery into ECFCs

because of its high and consistent transduction efficiency (107).

Viral transduction with adenovirus and lentivirus has been

associated with adverse effects such as toxicities, increased

immunogenicity, and oncogenicity (108). As for co-injection with

MSCs, it holds great potential for clinical translation because ECFCs

and MSCs contribute to angiogenesis through different, yet

complementary, mechanisms. However, the safety profile of

combined therapy needs further research, as standardized

approaches for combined therapy are not yet developed,

including the optimal dosage, time, transplant type (autologous or

allogenic), and route of administration.
5 Barriers to clinical translation of
ECFCs and potential solutions

There is now significant evidence in pre-clinical models that

ECFCs can be used as a therapy for diabetic vascular complications

and that therapeutic effectiveness can be enhanced with

modifications described above. However, it should be noted that

there are no human clinical trials using ECFCs. The major

challenges for clinical applications of ECFCs are divided into six

different categories, including cell identity, cell dose, good

manufacturing practice (GMP)-compliant cell manufacture,

heterogeneity, efficacy, safety and cost (Table 2). First, it is

necessary to establish unified surface markers for identifying

ECFCs (37). Unified surface markers can improve the purity of

ECFC populations, which may contribute to the production of a

homogeneous cell population and facilitate superior comparison

between studies using ECFCs. Single cell sequencing may further

elucidate the characteristics of ECFCs and help to establish uniform

surface markers. Uniform markers will also facilitate inter-study

comparison and rapidly progress the ECFC field by reducing

confusion and increasing knowledge. Second, the frequency of

CB-ECFCs and PB-ECFCs is low (33, 34). ECFC large scale

expansion strategies, e.g. bioreactor expansion, or enhancing
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ECFC potency is needed to achieve the desired clinical outcomes

(109). Third, there is limited data in the literature describing GMP

grade manufacture of ECFCs, with ECFC isolation and expansion

being heavily reliant on high FBS content and the use of rat tail

collagen for cell attachment (109). Collaboration between academic

researchers, clinicians, and biotech companies can accelerate the

development of GMP-compliant ECFCs. Fourth, ECFCs are an

inherently heterogeneous cell population. The heterogeneity of

ECFCs is affected by multiple factors, including the different

donors (110), tissue origin (32, 111), and methods for isolation

and culture of ECFCs (112). Therefore, it is difficult to reproducibly

generate functionally equivalent ECFC populations. Fifth,

disease status (113–115), cryopreservation (116), hypoxia and

inflammatory microenvironment of transplantation sites (76) can

lead to the loss of ECFC potency, which may impair therapeutic

efficacy. The strategies mentioned in the previous paragraph should

be explored to boost the potency of defective ECFCs. Lastly, the

reagents (type I rat tail collagen and fetal bovine serum) for ECFC

isolation and culture are not appropriate for clinical applications

because they may carry animal-originated pathogens. The

development of xeno-free medium might help to solve this issue,

such as platelet lysate supplemented culture medium (109) and EC-

Cult-XF ECFCmedium (Stemcell Technologies, Canada). However,

these xeno-free media are expensive to scale-up for clinical use
TABLE 2 Major Challenges for clinical applications of ECFCs.

Challenges References

1. Identity:
(a) Lack of unified surface markers
for identifying ECFCs

(37)

2. Cell doses:
(a) Low frequency of ECFCs;
(b) Large-scale expansion methods
need to be developed

(33, 34)

3. GMP-compliant cell manufacture: (109)

4. Heterogeneity of ECFCs:
(a) Different donors;
(b) Different tissue origin;
(c) Methods for isolation and culture
of ECFCs

(32, 110–112)

5. Efficacy:
(a) Defective function under disease
status;
(b) Loss of potency after
cryopreservation;
(c) Hypoxia and inflammation
microenvironment of
transplantation sites

(87, 113–116)

6. Safety and cost
(a) Type I rat tail collagen or fetal
bovine serum are derived from animal
sources;
(b) Toxicities, immunogenicity and
oncogenicity induced by genetic
engineering approaches
(c) Allogeneic cell sources causing
immunogenic responses
(d) Xeno-free medium are expensive
to scale-up for clinical use

(108, 109)
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currently. Collectively, there needs to be considerable attention paid

to the good manufacturing practice (GMP) of human ECFCs

keeping in mind the issues raised in this section on

standardization, heterogeneity, optimal approaches for cell

propagation, delivery and safety.
6 Comparison of ECFCs with other
possible cell or EV treatments in
diabetic vascular complication

Due to the low frequency of PB-ECFCs and impaired function

of ECFCs in DM, other possible sources have been explored for the

treatment of diabetic vascular complication. Thus, we next

compared the efficacy of ECFCs with other stem cell approaches

or extracellular vesicles (EVs) derived from stem cells in diabetic

vascular complications (Table 3).

Pluripotent embryonic stem cells (ESCs) originate from the

inner cell mass of the blastocyst, which possess the capacity to

differentiate into any cell type (117). Animal studies have suggested

that ESCs-derived endothelial cells can incorporate into the

vasculature of the ischemic limb and improve limb perfusion

(118, 119). These studies indicated that ESCs can successfully

treat ischemia, while evidence of their effects in diabetic vascular

complications is still lacking. A significant potential advantage of

differentiating ESCs into endothelial cells lies in the opportunity to

induce tissue-specific EC phenotypes (120). However, although

ESCs exhibit a greater proliferative capacity than adult stem cells,

the application of ESCs in clinical settings is hindered by ethical

controversies over human embryos, allogeneic immune responses

post transplantation, and the risk of teratoma formation (121).

MSCs from different sources have been widely used in the

treatment of diabetic vascular complications. Preclinical models

and clinical trials have demonstrated a broad range of beneficial

effects of MSCs in the treatment for diabetic complications,

including vascular protective effects (122–124). For instance,

Zhang et al. summarized the effects of umbilical cord

mesenchymal stem cells (UC-MSCs) in the treatment of diabetic

foot, including nine preclinical experiments and five clinical trials.

These studies have demonstrated the impressive efficacy and safety

of UC-MSCs in diabetic foot (125). Besides, researchers have

suggested that UC-MSCs and adipose-derived MSCs could have

superior clinical application prospects as they are more easily

accessible and have better immunomodulatory properties

than MSCs from bone marrow (126, 127). Nonetheless,

MSCs promote vascular repair through paracrine and trophic

mechanisms instead of forming blood vessels themselves (128).

The combination between MSCs and ECFCs could be an exciting

therapeutic prospect.

Induced pluripotent stem cells (iPSCs) are derived from mature

cells like fibroblasts, which can be reprogrammed to differentiate

into any of the three germ layers (129). One recent breakthrough

was the observation that human induced pluripotent stem cells

(iPSCs) can be differentiated into ECFCs. These iPSCs-ECFCs have

been shown to possess high clonal proliferative potential, form
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capillary structures in Matrigel, and contribute to vascular repair in

both oxygen-induced retinopathy and hind limb ischemia mice

model. The iPSCs-ECFCs have similar capacity of promoting

neovascularization when they were compared with CB-ECFCs

(130). More importantly, iPSCs-ECFCs were derived from

fibroblasts, which were easily obtained in large quantities and did

not face the immunologic barriers associated with allogeneic cell

therapies. However, differentiation of iPSCs into the ECFC lineage

is complex, time consuming, and costly. Undifferentiated cells
TABLE 3 Comparison of ECFCs with other possible cell or EV treatments
in diabetic vascular complications.

Sources Efficacy Advantages Limitations

ECFCs Yes Self-renewal ability
and the capacity to
form functional
blood vessels

Low frequency;
Defective function
in diabetic
autologous
sources
Immunogenic
issues with
allogeneic sources

ESCs Unknown Supreme
proliferative capacity
and pluripotent

Ethical
controversies,
allogeneic
immune
responses, and
risk of
teratoma
formation

MSCs Yes Easy isolation and
expansion;
Reduces immune
cell infiltration and
produces
immunomodulatory
and angiogenic
factors;
Well tolerated and
safe for clinical use

MSCs cannot
directly form
blood vessels;
The immune
suppression by
MSCs may lead to
the growth and
spread of
tumor cells

iPSCs-ECFCs Unknown Can be expanded to
large numbers and
low immunogenicity

The production is
complex, time
consuming, and
costly;
Risk of
teratoma
formation

MSC-EVs Yes Easy storage;
Lower
immunogenicity and
an improved safety
profile;
Anti- inflammation
and repair function
in pre-
clinical models

Lack of
standardized
isolation,
characterization
methods;
Challenges of
large-
scale production

ECFC-EVs Unknown Easy storage;
Lower
immunogenicity and
an improved
safety profile

Lack of
standardized
isolation,
characterization
methods;
Challenges of
large-
scale production
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during the differentiation process could cause teratomas and the

potential of iPSCs-ECFCs needs to be further investigated in the

context of DM.

EVs have attracted considerable attention due to the therapeutic

potential of bioactive molecules contained inside EVs, including

peptides, proteins, lipids, and nucleic acids (microRNAs and

mRNA) (131). An additional factor to consider is that EVs have

low immunogenicity and an improved safety profile compared to

cell-based therapies (132). EVs from MSC are considered as

promising products for the treatment of diabetic vascular

complications [see review (133)]. In particular, MSC-EVs have

been reported to promote angiogenesis and wound healing in

diabetic mice model (134). MSC-EVs exert their protective effects

in diabetic vascular complications through multiple methods, such

as reduction of inflammatory cytokines, activation of angiogenesis,

and promotion of collagen synthesis (135). Despite promising in

vitro and in vivo results, to date no clinical trials have been

conducted to evaluate the efficacy and safety of MSC-EVs in

diabetic vascular complications. As for ECFC-EVs, a few studies

suggested that they had protective effects on preclinical mouse

models of ischemia, such as ischemic retinopathy (136) and

ischemic kidney injury (137). However, no studies have yet been

performed to investigate the therapeutic effects of ECFC-EVs in

ischemic conditions in the context of a diabetic environment.

Moreover, it remains unknown whether tissue source, isolation

protocol, and disease status influence the bioactivity of ECFC-EVs.

Therefore, MSCs are the most studied cell therapy in diabetic

vascular complications ECFCs have shown promising outcomes in

preclinical studies. The combination MSCs with ECFCs, iPSCs-

ECFCs and EVs from MSC and ECFCs offer promising avenues for

treating diabetic vascular complications.
7 Conclusion and future perspective

ECFCs enhance the formation of blood vessels and contribute

to revascularization, which may benefit diabetic patients with severe

vascular complications. However, ECFCs isolated from DM

patients exhibited a dysfunctional phenotype. Although the

involvement of hyperglycemia, oxidative stress, and inflammation

has been discussed in this review, underlying the mechanisms of

dysfunctional ECFCs in DM are not well understood. The role of

noncoding RNAs and epigenetic regulation in DM-ECFCs requires

further study.

Currently, combining ECFCs with biological compounds, gene

modification, or MSC has shown efficacy in rescuing diabetes-

mediated ECFC damage. However these strategies need to be

evaluated in more studies and pre-clinical models in the future.
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Besides, regulatory issues related to cell modification and issues of

ECFC expansion under diabetic conditions will need to be

addressed to enhance the realization of the potential of this

therapy. Moreover, the application of biomaterials, 3D

bioprinting of vascular structures might represent potential future

strategies to improve the properties and functional capabilities of

ECFCs in DM. The development of ipSCs-ECFCs and ECFC-EVs

could be promising alternative treatments for patients with DM.
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