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International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China,
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Zhejiang, China
Background: Clinical studies have indicated a comorbidity between sepsis and

kidney diseases. Individuals with specific mutations that predispose them to

kidney conditions are also at an elevated risk for developing sepsis, and vice

versa. This suggests a potential shared genetic etiology that has not been

fully elucidated.

Methods: Summary statistics data on exposure and outcomes were obtained

from genome-wide association meta-analysis studies. We utilized these data to

assess genetic correlations, employing a pleiotropy analysis method under the

composite null hypothesis to identify pleiotropic loci. After mapping the loci to

their corresponding genes, we conducted pathway analysis using Generalized

Gene-Set Analysis of GWAS Data (MAGMA). Additionally, we utilized MAGMA

gene-test and eQTL information (whole blood tissue) for further determination

of gene involvement. Further investigation involved stratified LD score

regression, using diverse immune cell data, to study the enrichment of SNP

heritability in kidney-related diseases and sepsis. Furthermore, we employed

Mendelian Randomization (MR) analysis to investigate the causality between

kidney diseases and sepsis.

Results: In our genetic correlation analysis, we identified significant correlations

among BUN, creatinine, UACR, serum urate, kidney stones, and sepsis. The

PLACO analysis method identified 24 pleiotropic loci, pinpointing a total of 28

nearby genes. MAGMA gene-set enrichment analysis revealed a total of 50

pathways, and tissue-specific analysis indicated significant enrichment of five

pairs of pleiotropic results in kidney tissue. MAGMA gene test and eQTL

information (whole blood tissue) identified 33 and 76 pleiotropic genes,

respectively. Notably, genes PPP2R3A for BUN, VAMP8 for UACR, DOCK7 for

creatinine, and HIBADH for kidney stones were identified as shared risk genes by

all three methods. In a series of immune cell-type-specific enrichment analyses

of pleiotropy, we identified a total of 37 immune cells. However, MR analysis did

not reveal any causal relationships among them.

Conclusions: This study lays the groundwork for shared etiological factors

between kidney and sepsis. The confirmed pleiotropic loci, shared pathogenic
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genes, and enriched pathways and immune cells have enhanced our

understanding of the multifaceted relationships among these diseases. This

provides insights for early disease intervention and effective treatment, paving

the way for further research in this field.
KEYWORDS

sepsis, kidney, genetic correlation, blood urea nitrogen, creatinine, urinary albumin-to-
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1 Background

Sepsis is a life-threatening disease that endangers human lives

and results in multiple organ dysfunction (1). It remains one of the

leading causes of morbidity and mortality worldwide, highlighting

the critical need to understand its impact on public health (2). In

2017 alone, an estimated 48.9 million cases of sepsis occurred

globally, resulting in 11 million deaths, accounting for nearly 20%

of all global deaths (3). Due to limited treatment options,

identifying the underlying mechanisms of sepsis is essential for

developing novel therapeutic strategies.

Sepsis presents with a heterogeneous range of clinical symptoms

(4), with renal dysfunction being a frequent complication. Early stages

of various kidney diseases often manifest as renal impairment,

characterized by changes in blood creatinine, blood urea nitrogen

(BUN), urinary albumin-to-creatinine ratio (UACR), uric acid (UA),

estimated glomerular filtration rate (eGFR), and other relevant

indicators. For instance, elevated blood creatinine levels are

frequently observed in sepsis patients, a phenomenon also

characteristic of acute kidney injury and chronic kidney disease (5).

Similarly, changes in BUN, UACR, and UA have been closely linked to

sepsis (6–8). Additionally, studies suggest an association between stone

formation and adverse outcomes like sepsis (9). The connections

between IgA nephropathy, diabetic nephropathy, renal tumors, and

sepsis also require further elucidation. The shared genetic

underpinnings of these associations remain unexplored. Therefore, a

systematic analysis is crucial to investigate the presence of common

pleiotropic risk variants between kidney-related diseases or relevant

indicators and sepsis, along with the potential involvement of specific

biological pathways and shared risk genes.

The rise of genome-wide association studies (GWAS) in recent

years has been instrumental. GWAS have become a powerful tool

for identifying a wide range of genetic variations associated with

complex diseases and elucidating genes related to the occurrence,

progression, and treatment of diseases (10). In our GWAS study,

patients with acute kidney injury and chronic kidney disease

predominantly exhibited elevated indicators such as creatinine

and eGFR. Therefore, we used these kidney-related indicators as

proxies for the two conditions. Utilizing large-scale GWAS

summary data, we conducted a genome-wide analysis for nine

kidney-related diseases or indicators (BUN, UACR, UA, eGFR,
02
creatine, kidney neoplasm, kidney stone, IgA nephropathy, and

diabetic nephropathy) and sepsis. We employed various genetic

methods, including pleiotropy analysis for significant results, to

systematically explore pleiotropic associations at both the gene and

pathway levels. This analysis aimed to uncover potential shared

genetic etiology. Additionally, we conducted gene set enrichment

analysis and immune cell enrichment analysis to discover potential

correlations. Finally, Mendelian randomization (MR) analysis was

employed to explore causal relationships among these factors.
2 Methods

2.1 Study design

This study investigates the potential genetic associations

between kidney disease or relevant kidney function indicators and

sepsis. A schematic representation of the study design is provided

in Figure 1.
2.2 GWAS data sources

In our analyses, we investigated the genetic associations

between the following traits: BUN (N=480,698), UACR

(N=547,361), UA (N=110,347), eGFR (N=480,698), creatinine

(N=110,051), kidney neoplasm (N=456,348), kidney stone

disease (N=456,348), IgA nephropathy (N=477,784), diabetic

nephropathy (N=452,280), and sepsis (N=344,644) (11–15).

Details regarding the data sources for the GWAS employed in

this analysis are presented in Supplementary Table S1. All studies

included in these consortia were approved by local research ethics

committees and institutional review boards, and written informed

consent was obtained from all participants.
2.3 Statistical analyses

2.3.1 Genetic correlation analysis
Linkage Disequilibrium Score Regression (LDSC) was

employed to assess shared polygenic structures between traits,
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with LD scores calculated from European ancestry samples of the

1000 Genomes Project serving as the reference group (1). Stringent

quality control measures were implemented for SNPs: (i) exclusion

of non-biallelic SNPs and those with ambiguous allele chains;

(ii) removal of SNPs lacking rs labels, duplicates, or those not

included in the 1000 Genomes Project, with alleles mismatching

that dataset, or located within the major histocompatibility complex

region (chr6: 28.5–33.5Mb); (v) retention of SNPs with a minor

allele frequency (MAF) > 0.01. Given the distinct origins of kidney-

related diseases and sepsis, there was limited sample overlap

between them. Finally, we preserved pertinent information for

each SNP, such as effect size, standard error, effect allele, and

P-value, for further analysis.

Stratified LD score regression was applied to immune cell data

to study whether specific cell types harbor a greater proportion of

the genetic variation (SNP heritability) underlying kidney-related

traits and sepsis. We aimed to identify immune cell types with

significant enrichment of SNP heritability. Data on 292 immune cell

types from the ImmGen consortium (including B cells, gamma

delta T cells, alpha beta T cells, innate lymphocytes, myeloid cells,

stromal cells, and stem cells) were used (16). Following adjustment

for baseline models and all gene sets, significance of SNP heritability

enrichment estimates in each tissue and cell type was assessed using

p-values from regression coefficients z-scores.

2.3.2 Analysis of pleiotropy under the composite
null hypothesis

SNP-Level PLACO leverages summary-level genotype-

phenotype association statistics to investigate pleiotropic loci

among complex traits (17). We computed the squared Z-scores
Frontiers in Endocrinology 03
for each variant, excluding SNPs with extremely high Z2 (>80).

Additionally, considering the potential correlation between kidney-

related diseases and sepsis, we estimated the correlation matrix of Z-

scores. Subsequently, a Horizontal a-level intersection-union test

(IUT) method was employed to test the hypothesis of no pleiotropy.

The final p-value from the IUT test represents the strongest

evidence against the null hypothesis.To explore the shared

biological mechanisms of these pleiotropic loci identified by

PLACO, we further mapped them to nearby genes. MAGMA

analysis (18) was conducted on genes located at or overlapping

with the pleiotropic loci, utilizing both PLACO outputs and single-

trait GWAS results. A significance level of P< 0.05/Ngenes = 3E-06

was applied. To identify potential functional annotations beyond

the immediate risk loci, we utilized functional maps and

annotations from the Functional Mapping and Annotation of

Genome-Wide Association Studies (FUMA) (19). Mapping and

Annotation of Genome-Wide Association Studies (FUMA) (19).

Additionally, enrichment analysis of mapped genes was performed

using pathways from the Molecular Signatures Database (MSigDB)

(20). Additionally, we employed eQTL mapping, which identifies

genes whose expression is influenced by genetic variants, to explore

associations beyond the risk loci themselves. Tissue data originated

from the GTEx V8 eQTL summary data for whole blood tissue (21).

2.3.3 MR analysis
We used PLINK’s clumping program (22) to identify potential

causal variants among loci significantly associated with exposure

(P< 5×10-8). These loci were treated as instrumental variables (IVs)

in downstream analyses. All IVs underwent linkage disequilibrium

(LD) clumping (r2 = 0.001; distance = 5,00 kb) to mitigate the
FIGURE 1

An overview of the study design.
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influence of correlated SNPs. To ensure the strength of the IVs, we

computed the R2 and F-statistic (F = ( N−1−k
k )( R2

1−R2 )), for each IV,

where R2 represents the proportion of variance explained by the

genetic instrument, N is the effective sample size of GWAS, and k is

the number of SNPs (23).

Mendelian randomization primarily relies on the Inverse

Variance Weighting (IVW) approach, but this method hinges on

three key assumptions. First, the genetic variants (instrumental

variables) must be strongly associated with the exposure of interest.

Second, these variants should not be influenced by confounding

factors that affect both the exposure and the outcome. Finally, the

variants’ effect on the outcome must solely act through the

exposure, with no independent pathways. To assess potential

violations of these assumptions, we conducted several sensitivity

analyses. Firstly, both the IVW and MR-Egger methods employed

the Q-test to detect heterogeneity in associations among individual

instrumental variables. This test helps identify potential violations

of the core assumptions. Secondly, MR-Egger was used to estimate

horizontal pleiotropy based on its intercept, ensuring the genetic

variants are independent influences on the exposure and outcome

(24). To further strengthen the results’ stability and robustness, we

performed supplementary analyses using additional MR methods

with varying modeling assumptions and advantages, such as the

weighted median and weighted mode.

All statistical analyses were conducted using R version 4.2.3.

MR analyses were performed using the MendelianRandomization

package (25).
3 Results

3.1 Genetic correlation analysis

Genetic correlation analysis revealed significant genetic

correlations between sepsis and BUN (rg = 0.233, P = 4×10-4),
Frontiers in Endocrinology 04
kidney stone (rg = 0.433, P = 1.85×10-5), creatinine (rg =0.244,

P = 1.85×10-7), UA (rg = 0.470, P = 7.12×10-12), and UACR (rg =

0.211, P = 5.64×10-5). To account for multiple testing, we applied

Bonferroni correction (0.05/9 = 0.006). Notably, all the

aforementioned associations with sepsis remained statistically

significant after correction. Figure 2 illustrates the results of the

genetic correlation analysis.
3.2 Analysis of PLACO

PLACO pleiotropy analysis was performed on the five trait pairs

exhibiting significant correlations (Figure 3). Details of the

identified pleiotropic loci are provided in Table 1 and

Supplementary Table S3. The analysis collectively identified 24

genomic regions. Notably, the 4q21.1 locus was concurrently

associated with both BUN and UACR. Lead SNPs, rs10008637

and rs17319721 (both introns), reside within the SHROOM3 gene.

Similarly, the 11p14.1 locus associated with BUN and Creatinine

harbors lead SNPs rs685270 and rs963837 (intergenic) near genes

RP5–1024C24.1 and DCDC1. The 12q13.3 locus linked to BUN and

Serum urate contains lead SNPs rs540730 and rs1106766 (introns)

within the R3HDM2 gene. Finally, the 13q14.3 locus associated with

Creatinine and UACR harbors lead SNPs rs1327653 and rs1239707

(intergenic) with currently unidentified associated genes.

The QQ plot (Supplementary Figure S1) did not exhibit

premature deviation from the reference line, indicating no

genomic inflation. Essential information for each genomic risk

locus i s provided in Supplementary Figures S2, S3 .

Supplementary Figure S3 explores the functional consequences of

cis-acting pleiotropic SNPs on genes. In the association analysis

involving BUN, UACR, and kidney stones, these pleiotropic SNPs

predominantly affect introns. For serum urate, they mainly impact

the intergenic regions, while their influence on creatinine is

relatively minor.
FIGURE 2

The results of the genetic correlation analysis.
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FIGURE 3

The Manhattan plots for pleiotropic loci in 5 pairs of results. (A) BUN and Sepsis; (B) Creatinine and Sepsis; (C) Serum urate and Sepsis; (D) UACR and
Sepsis; (E) Kidney stone and Sepsis.
TABLE 1 Pleiotropic loci (p-value< 5E-8) identified among the 5 significant result pairs.

Trait pairs GenomicLocus Locus boundary LeadSNPs P Nearby gene

BUN&Sepsis 1q22 1:155013708–156005431 rs11264313 5.84E-10 EFNA3, Y_RNA

BUN&Sepsis 3q22.3 3:135462536–136816214 rs6793835 3.61E-08 PPP2R3A

BUN&Sepsis 4q21.1 4:76814640–77693256 rs17319721 1.87E-11 SHROOM3

BUN&Sepsis 5p13.1 5:39758532–41267218 rs4509070 2.96E-11 PTGER4, TTC33

BUN&Sepsis 6p12.3 6:50526289–51370132 rs283561 1.29E-09 FTH1P5, RP3–437C15.2

BUN&Sepsis 8q24.21 8:127485569–127630223 rs73705665 3.00E-08 RP11–103H7.1

BUN&Sepsis 11p14.1 11:30312421–31746547 r685270 1.72E-10 RP5–1024C24.1, DCDC1

BUN&Sepsis 12q13.3 12:57272547–58422642 rs540730 9.89E-14 R3HDM2

BUN&Sepsis 16q12.2 16:53579222–53848561 rs56094641 1.41E-08 FTO

Creatinine&Sepsis 1p31.3 1:62833553–63372868 rs1167998 2.92E-10 DOCK7

Creatinine&Sepsis 8p23.1 8:7626198–10383226 rs6980728 6.82E-09 RP11–375N15.1,
RP11–375N15.2

Creatinine&Sepsis 11p14.1 11:30630607–31388640 rs963837 1.17E-08 RP5–1024C24.1, DCDC1

Creatinine&Sepsis 13q14.3 13:50423680–51423481 rs1327653 2.70E-08 NA, NA

UACR&Sepsis 2p11.2 2:85680453–85918616 rs35565292 4.08E-09 VAMP8

UACR&Sepsis 2q33.2 2:202869199–204445015 rs140750546 3.22E-08 RP11–
544H14.1, NBEAL1

UACR&Sepsis 4q21.1 4:76814640–77693256 rs10008637 8.44E-10 SHROOM3

UACR&Sepsis 8q24.13 8:126447308–126533955 rs28601761 3.52E-10 RP11–136O12.2

(Continued)
F
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We further conducted MAGMA gene set enrichment analysis

on the pleiotropic results using Gene Ontology terms, presenting

the top 10 significantly enriched gene sets in Figure 4 and

Supplementary Table S4. Functional enrichment analysis revealed that

the most significant set for BUN was “GOBP_MYELOID_CELL_

ACTIVATION_INVOLVED_IN_IMMUNE_RESPONSE”

(p=4.95×10-6) , whi le for creat inine, i t was “GOBP_

CARDIAC_VENTRICLE_DEVELOPMENT” (p = 1.42×10-5). For

serum urate, the most significant was “GOBP_NEGATIVE
Frontiers in Endocrinology 06
_ R E G U L A T I O N _ O F _ A L P H A _ B E T A _ T _ C E L L

_DIFFERENTIATION” (p=1.25×10-6), and for UACR, the most

significant was “GOBP_INNER_EAR_MORPHOGENESIS”

(p=1.33×10-5). Finally, for kidney stone, the most significant enriched

gene set was “GOMF_ALKALINE_PHOSPHATASE_ACTIVITY”

(p=1.87×10-5). Tissue-specific MAGMA analysis revealed significant

enrichment of maternal effects in the pleiotropy of the 5 pairs of results

in kidney tissue. Additionally, reports of enrichment were observed in

other tissues such as bladder, liver, prostate, and thyroid, among others
TABLE 1 Continued

Trait pairs GenomicLocus Locus boundary LeadSNPs P Nearby gene

UACR&Sepsis 13q14.3 13:50550018–51423481 rs1239707 3.53E-08 NA, NA

Serum urate&Sepsis 4q22.1 4:88479645–89136066 rs2169611 3.02E-08 HSP90AB3P, SPP1

Serum urate&Sepsis 6p22.2 6:25452783–26770791 rs12209856 4.08E-10 SLC17A1

Serum urate&Sepsis 11q12.1 11:55600975–57092768 rs617212 2.18E-09 OR5G3, AP000479.1

Serum urate&Sepsis 12q13.3 12:57256380–58428763 rs1106766 1.62E-12 R3HDM2

Kidney stone&Sepsis 1p36.12 1:21829792–22351947 rs1256326 3.13E-08 ALPL, RP11–63N8.3

Kidney stone&Sepsis 7p15.2 7:27355114–28037674 rs1404278 7.68E-09 HIBADH
FIGURE 4

MAGMA pathway enrichment (top 10). The blue line represents a significance level of 0.05, and the red line indicates results that remain significant
after multiple corrections (P< 0.05/15485 = 3.23E-6).
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(Supplementary Figure S4). Notably, the MAGMA gene set and tissue-

specific analyses in this section were conducted using the complete

distribution of SNP p-values.

We leveraged positional information of lead SNPs to identify

genes associated with pleiotropic risk loci across the five

significantly correlated pairs. A total of 28 genes were mapped to

these loci, and details are provided in the last column of Table 1

(also available in Supplementary Table S5). We further employed

MAGMA gene-set analysis to identify pleiotropic genes with

genome-wide s ignificance (Supplementary Table S6 ,

Supplementary Figure S5). This analysis identified 33 pleiotropic

genes (listed in Supplementary Table S6, Supplementary Figure S5).

The QQ plot for the MAGMA gene-test is presented in

Supplementary Figure S6. Additionally, we used eQTL

information from whole blood tissue to explore genes potentially

regulated by these pleiotropic risk loci. Specific details are provided

in Supplementary Table S5.

Several pleiotropic genes displayed significant differential

expression in tissues relevant to our study, such as the kidney and

pancreas (Supplementary Figure S7, Supplementary Table S7). This

finding is further supported by tissue-specific enrichment analysis,

which revealed an enrichment of these positionally mapped genes in

pancreas and kidney tissues (Figure 5, Supplementary Table S7).

Pathway enrichment analysis, based on MAGMA gene testing, is

illustrated in Supplementary Figure S8. The most significant

enrichment was observed in “8p23.1 copy number variation

syndrome”. Cell-type enrichment analysis results are displayed in
Frontiers in Endocrinology 07
Supplementary Figure S9, with the most notable enrichment found

in “Aizarani liver C4 Epcam pos bile duct cells1”. Finally, the

protein-protein interaction (PPI) network analysis in

Supplementary Figure S10 revealed a network of six genes that

interact with each other.

To further explore the immunological underpinnings of these

associations, we conducted LDSC immune cell-type-specific

enrichment analyses for sepsis and the kidney-related

traits (Figure 6). We investigated a total of 37 immune cell types

in relation to these phenotypes. Among the traits, BUN

exhibited associations with 11 immune cell types, with

“T.8Mem.Sp.OT1.d106.VSVOva” showing the strongest enrichment

(p = 2.87×10-3). Similarly, significant immune cell enrichments were

observed for Creatinine (4 identified cells, most significant:

“MEChi.GFP+.Adult”, p = 1.20×10-2), Serum urate (7 identified

cells, most significant: “NK.49CI+.Sp “, p = 2.05×10-2), UACR (3

identified cells, most significant: “T.DP69+.Th.v2”, p = 1.34×10-2),

and Kidney stone (12 identified cells, most significant: “NK.49CI-

.Sp”, p = 6.47×10-3). Interestingly, the analysis also revealed shared

immune cell enrichments between certain traits. For example,

“T.8Mem.Sp.OT1.d106.VSVOva, NK.MCMV7.Sp, NK.CD49b+.Lv,

NK.b2m-.Sp” cells were enriched for both BUN and Kidney stone,

while “NK.49CI+.Sp” and “NK.49CI-.Sp” were enriched for both

Serum urate and Kidney stone. Additionally, “ILC1.CD49b-.Lv” and

“Ep.5wk.MEClo.Th” cells showed enrichment for both BUN and

Creatinine. Full details of all identified immune cell enrichments can

be found in Supplementary Table S9.
FIGURE 5

The enrichment of pleiotropic genes (based on MAGMA gene testing) across different tissues.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1396041
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1396041
3.3 MR analysis

We employed the two-sample Mendelian randomization

method to investigate the causal relationship between the kidney-

related diseases and sepsis. However, the IVW analysis did not

identify a statistically significant causal association between them

(Supplementary Table S10). Sensitivity analyses yielded results

consistent with the main findings, showing no evidence of

directional pleiotropy or heterogeneity (Supplementary Table S11).
4 Discussion

This study investigated the complex genetic relationship

between kidney diseases and sepsis. We employed two main

approaches: first, LDSC analysis to evaluate their genetic

correlation, and second, a pleiotropy approach to identify shared

genetic loci and genes potentially influencing both conditions. We

then assessed causal associations through a two-sample

bidirectional MR method. Our analyses revealed significant

genetic correlations between BUN, creatinine, urine albumin,

UACR, kidney stones, and sepsis. We identified 24 risk loci across

five pairs of significantly correlated traits, including four loci shared

by multiple traits. Further integrated analysis using MAGMA gene-

test and eQTL data identified PPP2R3A, VAMP8, DOCK7, and

HIBADH as shared risk genes. Genetic enrichment analysis revealed

50 potentially relevant pathways and 37 immune cell types

associated with both diseases. These findings suggest a shared

genetic architecture and potentially overlapping pathogenic

mechanisms between kidney diseases and sepsis. This deeper
Frontiers in Endocrinology 08
understanding of pleiotropy in sepsis paves the way for future

research on disease prevention.

Genetic correlation analysis revealed a significant positive genetic

correlation between BUN, creatinine, UACR, serum urate, kidney

stones, and sepsis. Previous studies have also reported associations

among these factors, and we have summarized the findings of these

studies in Supplementary Table S1 of the Supplementary Files. Our

findings align with and further validate the results of these

aforementioned studies. While existing reports suggest relationships

between eGFR, IgA nephropathy, kidney neoplasm, diabetic

nephropathy, and sepsis (26–29), our study did not identify

significant connections among them. Several factors may explain

these null findings: sample size limitations, population structure

complexities, disease heterogeneity, and potential confounding or

reverse causation inherent to observational studies could all play a

role. For instance, diabetic nephropathy often results from diabetes,

and the genetic correlation between diabetes and sepsis might be

insignificant. Additionally, our kidney neoplasm data included cases

of metastasized tumors, potentially introducing inaccuracies. The lack

of association with IgA nephropathy could be due to a true lack of

correlation or its complex etiology. Interestingly, while eGFR showed

no significant genetic correlation with sepsis, serum creatinine levels

did. This might be because eGFR is also influenced by factors like age

and weight, impacting the results. Therefore, these non-significant

relationships were not elaborated in the following discussion. Although

MR analysis did not establish causality between kidney diseases and

sepsis, our genetic correlation and pleiotropy analyses revealed a shared

genetic architecture. This suggests that multiple risk loci contribute to

both conditions, indicating a potential pleiotropic effect. Individuals

with specific mutations for kidney diseases may also have an increased
FIGURE 6

The LDSC cell-type-specific heritability enrichment analysis.
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risk of sepsis, and vice versa. However, this shared genetic architecture

does not imply that kidney disease and sepsis are inevitable co-

occurrences. Clinicians should remain vigilant for potential sepsis in

patients with persistently elevated serum creatinine, BUN, UACR or

serum urate, as well as those with kidney stones. Prompt antibiotic use

to prevent infections is advisable, rather than relying on advanced

antibiotics after sepsis develops, which can contribute to

bacterial resistance.

PLACO pleiotropy analysis of the five significant trait pairs

identified 24 pleiotropic loci and 28 potentially associated genes.

Notably, a shared risk locus (11p14.1) and common genes (RP5–

1024C24.1, DCDC1) were found in both BUN and creatinine. While

not previously linked to sepsis, this locus has been associated with sex

hormone secretion (30). The gene RP5–1024C24.1 lacks current

research, while DCDC1 has been implicated in esophageal cancer

(31). Similarly, BUN and UACR shared a risk locus (4q21.1) and the

gene SHROOM3. This locus has been previously linked to essential

tremor (32), while SHROOM3 is known to play a role in kidney

function and chronic kidney disease (33). Our findings suggest a

potential novel genetic link between SHROOM3 and sepsis. BUN

and serum urate shared another risk locus (12q13.3) and the gene

R3HDM2. This previously unreported locus for BUN, serum urate,

and sepsis is a novel finding for nodular disease (34). R3HDM2, linked

to uric acid transport (35), aligns with our investigation and

strengthens the potential genetic connection between BUN and

sepsis. Creatinine and UACR shared a common risk locus (13q14.3)

without identified nearby genes. While currently associated with

leukemia (36), there is no existing evidence linking 13q14.3 to

creatinine, UACR, or sepsis. These newly discovered loci and genes

hold promise as future therapeutic targets for sepsis, warranting

further investigation.

MAGMA gene-testing, whole blood tissue eQTL information, and

analysis of nearby genes all converged on four genes: PPP2R3A,

VAMP8, DOCK7, and HIBADH. A mouse model study suggested

PPP2R3A’s role in initiating lung inflammation (37). While VAMP8

has been linked to inflammation in periodontal disease (38). DOCK7 is

associated with serum lipid level (39), which are known to play a role in

both sepsis and kidney health (40). Finally, HIBADH, previously

connected to kidney stones (41), has been documented to be

involved in valine metabolism disorders (42),a pathway recently

implicated in sepsis (43). The established roles of these genes in

inflammation, lipid metabolism, and metabolic disorders, alongside

our findings in sepsis and kidney diseases, suggest a potential interplay

in the pathogenesis of these conditions. However, further research is

required to elucidate these potential connections. While tissue

expression analysis revealed significantly higher levels of certain

pleiotropic genes, including RAP1GAP, PBXIP1, VAMP8, SUMO1,

SPP1, and SCARB2, in kidney, pancreas, and liver tissues, tissue-specific

enrichment analysis further confirmed this enrichment for these

positionally-mapped genes. Notably, VAMP8 emerged as a common

pathogenic gene across all three methods employed. This gene exhibits

high expression in the kidneys, but its precise physiological and

molecular roles remain unclear (44). Interestingly, research suggests

its interaction with apolipoproteins, potentially contributing to chronic

kidney disease (45). Our study additionally identified its association

with the pancreas, which aligns with previous reports highlighting its
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role in pancreatitis (46). This potentially explains the frequent clinical

observation of pancreatitis progressing to sepsis and subsequent renal

dysfunction. Moreover, genes like RAP1GAP, expressed in multiple

tissues, have been linked to glomerular damage (47). Similarly, PBXIP1

is associated with renal fibrosis and chronic kidney disease (48), while

SPP1 is related to damage in renal tubules (49). These co-expressed

genes, along with VAMP8, suggest an intrinsic link between the

kidneys and other organs, potentially explaining the multi-organ

dysfunction observed in sepsis and the need for diverse clinical

indicators for diagnosis. However, further research is crucial to fully

elucidate this intricate relationship.

Several gene sets were enriched across the 5 pairs of results. T cells

are categorized into abT cells and gdT cells based on the expression of

their T-cell receptors. gdT cells, known to be associated with sepsis (50),

have been implicated in this process. While abT cells are more

prevalent in the kidney and linked to acute kidney injury (51), their

specific role in sepsis remains unclear. Our findings suggest that serum

urate, possibly through its influence on abT cells, could play a role in

sepsis development. Myeloid cells are another enriched pathway

identified in our analysis. Established research confirms their

involvement in sepsis (52). Consequently, elevated blood urea

nitrogen levels may modulate myeloid cell function, potentially

influencing susceptibility to sepsis. Interestingly, the link between

creatinine and ventricular function emerged from our analysis.

Studies in animal models with reduced kidney function (5/6

nephrectomy) observed left ventricular hypertrophy and progressive

creatinine elevation (53). Similarly, septic cardiomyopathy with altered

ventricular morphology is a common observation in sepsis patients

(54). Our findings suggest a potential underlying mechanism where

increased creatinine levels might impact ventricular development,

influencing susceptibility to sepsis. This hypothesis warrants further

investigation. Intriguingly, MAGMA analysis identified the enrichment

of ion channel and transport protein pathways. These proteins are

abundantly expressed in both the inner ear and the kidneys (55). A

study involving Alport mice with glomerular disease and hearing loss

(56) demonstrated that dual inhibition of endothelin and angiotensin

receptors improved kidney and inner ear lesions. This suggests a link

between the kidneys and the inner ear. In a mouse model of sepsis,

observations indicated that sepsis can affect the morphology and

function of the inner ear. We speculate that there might be a link

connection between UACR, inner ear morphology, and sepsis. In a

retrospective analysis, alkaline phosphatase was identified as a

predictive factor for stone formation (57). Interestingly, research has

explored its potential role in treating sepsis-related acute kidney injury

(58), suggesting its potential as a novel therapeutic target for

inflammation in sepsis-related kidney complications (59). Therefore,

our study suggests that kidney stones might alter alkaline phosphatase,

thereby influencing sepsis. At present, we have only discussed the most

significant pathways in the pathway analysis among the five pairs of

results. No overlapping pathways were found among the five pairs of

results. Nevertheless, all enriched pathways hold promise as potential

therapeutic targets for sepsis, warranting further investigation. While

our pathway analysis focused on kidney-related genes, enrichment

signals were also observed in other tissues such as bladder, liver,

prostate, and thyroid. This suggests a broader influence beyond the

kidneys, potentially involving a complex interplay between multiple
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organs in sepsis. The close association of BUN, creatinine, serum urate,

UACR, and kidney stones with renal function strengthens the link

between the kidneys and sepsis. Our findings suggest a potential genetic

connection, where sepsis can trigger changes in these well-established

kidney function indicators. This aligns with common observations in

retrospective studies, where alterations in these markers frequently

accompany sepsis events (6, 60–62). Furthermore, diseases that

frequently alter these indicators may also predispose individuals to

sepsis. Clinicians should therefore maintain a heightened awareness for

potential sepsis development when encountering changes in these

established markers and implement timely preventive measures. The

insights gleaned from our results hold promise for guiding the

development of effective treatments targeting these identified

associations. Pathway enrichment analysis of pleiotropic genes

identified by MAGMA gene testing revealed a significant association

with “8p23.1 copy number variation syndrome”. Similarly, cell-type

enrichment analysis highlighted “Aizarani liver C4 Epcam pos bile duct

cells1”. However, no research has explored their specific connection to

sepsis. While PPI network analysis identified six interacting genes, only

HFE has established links to both chronic kidney disease (63) and

sepsis (64). The absence of existing literature on the remaining genes

should not preclude the inference of a potential genetic link between

the kidney and sepsis based on their interactive network. Further

research is thus necessary to elucidate the specific roles of these genes,

pathways, and cell types in the context of sepsis.

The most significant cell type, “T.8Mem.Sp.OT1.d106.VSVOva”,

observed in BUN and sepsis, also showed significance in kidney stone.

This cell type is closely linked to CD8 T cells in the spleen.

Intriguingly, CD8 T cells have been independently implicated in

sepsis (65), BUN (66), and kidney stones (67), suggesting a potentially

crucial role for these cells in the interplay between these conditions.

Creatinine and sepsis exhibited the most significant enrichment for

the immune cell type, “MEChi.GFP+.Adult”, while “ILC1.CD49b-

.Lv” was co-expressed in BUN and creatinine. Current research on

these two cell types is limited, and their specific relevance to sepsis

remains to be elucidated. Analysis of serum urate and sepsis revealed

“NK.49CI+.Sp” as the most significant cell type, which was also

enriched in kidney stones. Similarly, kidney stones exhibited the most

significant enrichment for “NK.49CI-.Sp”, a cell type co-expressed

with serum urate. Additionally, other NK cells identified in kidney

stones also showed expression in BUN. These findings collectively

suggest a potential role for NK cells in the interplay between these

conditions. Supporting this notion, previous studies have established

the importance of NK cells in sepsis. David et al. demonstrated that

NK cell count can predict mortality rates in severe sepsis (68).

Furthermore, single-cell RNA sequencing studies on sepsis highlight

the immunomodulatory role of NK cells (69). A connection between

uric acid and NK cells has also been documented. A single-cell

sequencing study of gout patients identified NK cells as potential

contributors to novel therapeutic targets (70), and a mouse model

demonstrated that NK cells can ameliorate gout inflammation (71).

However, research on the correlation between kidney stones, BUN,

and NK cells is sparse. A study on urinary tract stones with infection

noted changes in NK cells, but the specific mechanisms were not

explored (72). Another study investigating risk factors for death in

COVID-19 patients found that elevated urea nitrogen and NK cells
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correlated with a poor prognosis (73). Finally, the immune cell type

“T.DP69+.Th.v2” emerged as the most significant finding in the

UACR and sepsis analysis. Currently, no relevant research on this

specific cell type is available.

Our study has several limitations that should be acknowledged.

First, the participants were predominantly of European descent.

Since sepsis and kidney issues are global concerns, generalizability

of these findings to other populations is crucial and requires further

investigation. Second, due to limitations in acquiring individual-

level data and the lack of large, well-characterized cohorts, our study

relied heavily on publicly available GWAS databases. This limited

the ability to perform subgroup or stratified analyses. Third, the MR

analysis did not establish a causal relationship between kidney

diseases and sepsis, suggesting a potential comorbid association

rather than a direct causal effect. Fourth, some of the newly

identified gene loci, pathways, and immune cells lack prior

mention in existing literature. In the future, we aim to further

explore and validate our findings through additional studies.

Validation of these findings necessitates additional, well-designed

experiments or clinical research. Despite these limitations, this

study offers the best available evidence to date on genetic

correlations between kidney diseases and sepsis.
5 Conclusion

By integrating comprehensive GWAS data and applying diverse

methodologies, our study identified novel pleiotropic loci, shared

pathogenic genes, enriched pathways, and immune cells. This

comprehensive analysis sheds light on the complex interplay

between kidney disease and sepsis, potentially revealing a shared

underlying etiology. These findings offer valuable insights for early

intervention and treatment strategies, paving the way for further

research in this critical area.
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