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Exploring the relationship
between air pollution, non-
alcoholic fatty liver disease,
and liver function indicators: a
two-sample Mendelian
randomization analysis study
Qingliang Song †, Jinyue Pan †, Maoxing Pan, Chuiyang Zheng,
Wen Fan, Jianwei Zhen, Dajin Pi, Zheng Liang, Haiyan Shen,
Yuanyou Li, Qinhe Yang* and Yupei Zhang*

School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
Background and aims: Non-alcoholic fatty liver disease (NAFLD) is a common

metabolic disorder worldwide, with an increasing incidence in recent years.

While previous studies have suggested an association between the air pollutant

PM2.5 and NAFLD, there is still considerable debate regarding the existence of a

clear causal relationship between air pollution and NAFLD. This study aims to

employ Mendelian randomization methods to evaluate the causal relationship

between major air pollutants and NAFLD.

Method: We conducted Mendelian randomization analyses on a large-scale

publicly available genome-wide association study (GWAS) dataset of European

populations to dissect the association between air pollutants, NAFLD, and liver

function indicators. We used five different analysis methods, including Inverse-

variance weighted (IVW), Weighted median, MR-Egger, Simple mode, and

Weighted mode, to analyze the data. We also tested for pleiotropy,

heterogeneity, and sensitivity of the results.

Results: This study utilized four common exposures related to air pollution and

four outcomes related to NAFLD. The results regarding the association between

air pollutants and NAFLD (PM2.5: P=0.808, 95% CI=0.37-3.56; PM10: P=0.238,

95% CI=0.33-1.31; nitrogen dioxide: P=0.629, 95% CI=0.40-4.61; nitrogen

oxides: P=0.123, 95% CI=0.13-1.28) indicated no statistically significant

correlation between them. However, notably, there was a causal relationship

between PM10 and serum albumin (ALB) levels (P=0.019, 95% CI=1.02-1.27).
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Conclusion: This MR study found no evidence of a causal relationship between

air pollution and NAFLD in European populations. However, a statistically

significant association was observed between PM10 and ALB levels, suggesting

that the air pollutant PM10 may impact the liver’s ability to synthesize proteins.
KEYWORDS

air pollution, non-alcoholic fatty liver disease, liver function indicators, PM2.5, causal
relationship, Mendelian randomization study
1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a clinical-

pathological syndrome characterized by hepatocellular steatosis

and lipid accumulation (1). It includes a range of liver

abnormalities, starting from simple steatosis (NAFL) to non-

alcoholic steatohepatitis (NASH), with various disease progression

patterns that can result in liver fibrosis, cirrhosis, and cancer (2, 3).

Epidemiological studies have shown a strong correlation between

NAFLD and metabolic diseases such as obesity, diabetes,

hypertension, and dyslipidemia (4), leading many scholars in

recent years to refer to it as metabolic dysfunction-associated

fatty liver disease (MAFLD) to emphasize the impact of

metabolism on the disease (5–7).

Currently, experts estimate that NAFLD affects around 25% of

the global population, and there has been a rising trend in recent

years (8). With its increasing prevalence, NAFLD has become a

significant public health concern globally. Despite the high medical

demand for NAFLD, no effective drugs targeting NAFLD have yet

received approval from the United States Food and Drug

Administration (FDA) and the National Medical Products

Administration (NMPA) (9), making lifestyle modifications still a

recommended intervention (10). Therefore, it is crucial to identify

factors that may influence the occurrence and progression of

NAFLD and implement effective interventions to reduce the

incidence of NAFLD.

Air pollutants primarily originate from human activities or

natural events, including pollutants from burning fossil fuels and

sources from natural disasters, mainly comprising particulate

matter (PM2.5, PM10), sulfur dioxide, nitrogen dioxide, ozone,

and nitrogen oxides (11). Prolonged exposure to air pollutants is
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bound to have adverse effects on human health. Evidence suggests

that long-term exposure to air pollution or fine particulate matter

PM2.5 can negatively impact human health, increasing the risk of

cardiovascular events and diseases such as diabetes (12–15).

Furthermore, prolonged environmental exposure to fine

particulate matter PM2.5 may be associated with an increased

risk of NAFLD development (16–18). However, these reports still

face numerous contradictions and controversies (19–21),

necessitating further investigation and validation. Based on this,

we hypothesize: Is there a causal relationship between air pollutants

and NAFLD?

Mendelian randomization (MR) is a widely used analytical

method for exploring causal relationships. Based on the

random allocation of genes from parents to offspring, MR

uses differences in human genotypes as instrumental

variables (IVs) to investigate the causal impact of exposures

on outcomes (22). MR can minimize confounding factors to a

great extent as genetic variations are randomly allocated to

offspring and thus independent of environmental factors,

which are typically confounders associated with exposure and

outcome (23). In conclusion, well-designed MR studies can

provide more reliable evidence to guide clinical practice

(24, 25).

In this study, we utilized a large amount of publicly available

GWAS data and conducted a two-sample MR analysis to

elucidate the impact of air pollutants on the development of

NAFLD, thereby further investigating the causal relationship

between air pollution and NAFLD, providing new insights for

NAFLD prevention.
2 Methods

2.1 Study design

Our design is based on the three core assumptions of MR (26):

assumption 1, the relevance assumption: strong associations exist

between genetic variations and exposure factors; assumption 2, the

independence assumption: genetic variations are independent of

confounding factors that influence both exposure and outcome;
frontiersin.org
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assumption 3, the exclusion restriction assumption: genetic

variations only affect outcomes through exposure and not

through other pathways.

We utilized common air pollution indicators, namely PM2.5,

PM10, nitrogen dioxide, and nitrogen oxides, as exposure factors. A

diagnosis of Non-Alcoholic Fatty Liver Disease (NAFLD) was

considered the outcome of Mendelian randomization analysis.

Furthermore, given the primary characteristics of NAFLD are

hepatic steatosis and liver dysfunction, we conducted a second

Mendelian randomization analysis on alanine aminotransferase

(ALT) levels, aspartate aminotransferase (AST) levels, serum

albumin (ALB) levels, and liver fat percentage in relation to air

pollutants to bolster the persuasiveness of our findings. The causal

relationship between air pollution and NAFLD was assessed

through two-sample Mendelian randomization analyses. The

flowchart of the Mendelian randomization study and the

fundamental hypotheses of this research are depicted in Figures 1,

2, respectively.
Frontiers in Endocrinology 03
2.2 Data sources

The data used in this study were obtained from the Open GWAS

database, as detailed in Table 1. The exposure factors of air pollutants

(PM2.5, PM10, nitrogen dioxide, nitrogen oxides) were sourced from

a prospective study involving over half a million participants in the

UK, with phenotype and genetic details already published. We

utilized European population GWAS samples for the study,

including PM2.5 (GWAS ID: ukb-b-10,817), PM10 (GWAS ID:

ukb-b-589), nitrogen dioxide (GWAS ID: ukb-b-2,618), and

nitrogen oxides (GWAS ID: ukb-b-12,417). Additionally, NAFLD

and liver indicators (ALT, AST, ALB, percent liver fat) were used as

outcome measures, sourced from European populations: NAFLD

(GWAS ID: ebi-a-GCST90091033), ALT (GWAS ID: ebi-a-

GCST004940), AST (GWAS ID: ebi-a-GCST005064), ALB (GWAS

ID: ebi-a-GCST90025992), Percent liver fat (GWAS ID: ebi-a-

GCST90016673). Specific SNP information and corresponding

R2 and F-statistics, are shown in Supplementary Tables 1–5.
FIGURE 1

Flow chart of this Mendelian randomization study.
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2.3 Selection of instrumental variables

We employed the following steps to select valid SNPs (1):

setting the genome-wide significance level at P < 5×10−8 to meet

the first key assumption that these SNPs are significantly

associated with the exposure (2). Linkage disequilibrium

clustering (r2 < 0.001, region size = 10,000 kb) to ensure the

independence of SNPs (3). Interpretation and strength of R2 and

F-statistic tests to eliminate low-strength SNPs (F-statistic < 10).

R2 = 2×EA×(1−EAF)×betaˆ2/(2×EAF×(1- EAF) × betaˆ2) +
Frontiers in Endocrinology 04
2×EAF×(1−EAF) × SE×N×betaˆ2, F = R2×(N−2)/(1−R2) (4).

Utilizing PhenoScanner V2 to query SNP phenotypes when

necessary, excluding SNPs closely related to confounding factors

to meet the second assumption of exclusivity (27). Initially setting

the significance level at P < 5×10−6 revealed the presence of

outliers and horizontal pleiotropy, with further analysis

indicating no causal relationship between the two. To enhance

result accuracy, we decided to uniformly set the P-value at P <

5×10−8, significantly reducing outliers and addressing pleiotropy,

ensuring result reliability without altering statistical outcomes.
TABLE 1 Summary of the genome-wide association studies (GWAS) included in this two-sample MR study.

Exposures/
outcomes

Dataset
Sample
size

Number
of SNPs

Population Consortium Sex Years

Particulate matter (PM2.5) ukb-b-10,817 423,796 9,851,867 European MRC-IEU
Males
and Females

2018

Particulate matter (PM10) ukb-b-589 455,314 9,851,867 European MRC-IEU
Males
and Females

2018

Nitrogen dioxide (NO2) ukb-b-2,618 456,380 9,851,867 European MRC-IEU
Males
and Females

2018

Nitrogen oxides ukb-b-12,417 456,380 9,851,867 European MRC-IEU
Males
and Females

2018

NAFLD
ebi-
a-GCST90091033

778,614 6,784,388 European NA
Males
and Females

2021

ALT ebi-a-GCST004940 9,731 16,987,168 European NA
Males
and Females

2017

AST ebi-a-GCST005064 9,463 18,153,643 European NA
Males
and Females

2017

Percent liver fat
ebi-
a-GCST90016673

32,858 9,275,407 European NA
Males
and Females

2021

ALB
ebi-
a-GCST90025992

400938 4219040 European NA
Males
and Females

2021
front
"NA" usually refers to "Not Available" or "Not Applicable". This indicates that a data point has no available data or is not applicable in a specific situation.
FIGURE 2

Basic assumptions of Mendelian randomization and main design of this study.
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2.4 Mendelian randomization analysis

In this study, we employed five methods for data analysis,

including Weighted median, MR-Egger, IVW, Simple mode, and

Weighted mode. Among these, the IVW method played a

predominant role. IVW is the primary method for conducting

MR analysis, as it is the most commonly used and convincing

MR statistical method when SNPs are valid and show no evidence of

pleiotropy (28). The IVW test selects a fixed or random effects

model based on the presence of heterogeneity. The MR-Egger

method allows for the intercept of the regression line to vary in

the presence of pleiotropy in the IVs. It assesses the magnitude of

pleiotropy between IVs using the intercept, while the slope serves as

an estimate of the causal effect, providing consistent estimates even

when all instrumental variables exhibit genetic pleiotropy (29). The

strength of the Weighted median method lies in its ability to

consistently estimate causal relationships even with over 50% of

invalid instrumental variables. Therefore, the study utilized MR-

Egger regression and Weighted median as complementary

methods. A significance level of P < 0.05 was considered

statistically significant.
2.5 Sensitivity analysis

Furthermore, we conducted analyses on pleiotropy,

heterogeneity, and sensitivity. Heterogeneity testing using

Cochran’s Q statistic, with no significant heterogeneity among the

instrumental variables, led IVW to adopt fixed effects models

uniformly. Outlier detection using the MR-PRESSO method

revealed P > 0.05, indicating no outliers were detected. Horizontal

pleiotropy testing with MR-Egger showed no evidence of horizontal

pleiotropy, with P > 0.05 (Table 2). Additionally, stability

assessment of MR results through leave-one-out analysis

indicated that no single SNP significantly influenced the stability

of the study results. Therefore, the MR results on the association

between air pollutants and NAFLD and its liver indicators were

deemed reliable.
2.6 Statistical analysis

All analyses were conducted using the “TwoSampleMR” and

“MR-PRESSO” packages in R version 4.2.2. The statistical

significance threshold for evidence was set at P < 0.05.
3 Results

3.1 Air pollutants and NAFLD

The results of the MR analysis are presented in Table 3, along

with scatter plots (Figure 3), leave-one-out analysis plots (Figure 4),

forest plots (Figure 5), and funnel plots (Figure 6). In this study, four

common air pollution-related exposures (PM2.5, PM10, nitrogen

dioxide, and nitrogen oxides) were used forMR analysis with NAFLD
Frontiers in Endocrinology 05
as the outcome. The results between air pollutants and NAFLD

showed no statistically significant correlation: PM2.5: P=0.808, 95%

CI=0.37-3.56; PM10: P=0.238, 95%CI=0.33-1.31; nitrogen dioxide:

P=0.629, 95%CI=0.40-4.61; nitrogen oxides: P=0.123, 95%CI=0.13-

1.28. The leave-one-out analysis also did not reveal any abnormal

SNPs. The corresponding values of R2 and F statistics can be found in

Supplementary Table 1.
3.2 Air pollutants and liver indicators

The MR analysis results are presented in Table 2. To further

investigate the causal relationship between air pollution and

NAFLD, we selected several liver indicators closely related to

NAFLD (ALT, AST, ALB, percent liver fat). The IVW method

results indicated no causal relationship between air pollutants and

ALT (PM2.5: P=0.317; PM10: P=0.869; nitrogen dioxide: P=0.784;

nitrogen oxides: P=0.081), nor between air pollutants and AST

(PM2.5: P=0.150; PM10: P=0.143; nitrogen dioxide: P=0.317;

nitrogen oxides: P=0.060), nor between air pollutants and ALB

(PM2.5: P=0.068; nitrogen dioxide: P=0.298; nitrogen oxides:

P=0.143), nor between air pollutants and percent liver fat (PM2.5:

P=0.331; PM10: P=0.051; nitrogen dioxide: P=0.830; nitrogen

oxides: P=0.868).

It is worth mentioning that, after controlling for heterogeneity

and multiple effects, our study found a statistically significant

association between PM10 and ALB (P=0.019, 95% CI=1.02-

1.27). The corresponding R2 and F statistics values can be found

in Supplementary Tables 3–5.
4 Discussion

Previous studies have extensively investigated the causal

relationship between air pollution and various diseases and

related indicators using Mendelian randomization (MR) methods,

such as cardiovascular diseases, diabetes, and thyroid diseases.

However, existing evidence regarding the association between air

pollution and NAFLD is primarily limited to cross-sectional and

cohort studies, which have been subject to considerable controversy

and skepticism. Therefore, it is essential to explore the specific

relationship between air pollutants and NAFLD, as this

understanding would play a crucial role in the early diagnosis and

treatment of NAFLD. In this study, we utilized genetic data

retrieved from genome-wide association studies (GWAS)

databases and systematically evaluated the causal associations

between major air pollutants and the onset of NAFLD. Our

results revealed no causal relationship between major air

pollutants (PM2.5, PM10, nitrogen dioxide, nitrogen oxides)

and NAFLD.

Despite the increasing number of studies on the pathogenesis of

NAFLD in recent years, the mechanisms underlying its

development remain incompletely understood due to its

complexity (30). The current pathogenesis of NAFLD is primarily

explained by the “double-hit” and “multiple-hit” theories,

suggesting that factors such as abnormal lipid metabolism,
frontiersin.org
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oxidative stress, inflammatory stimuli, insulin resistance,

mitochondrial dysfunction, and disrupted gut microbiota

contribute to the occurrence of NAFLD.

Previous research has shown that air pollutants can increase fat

inflammation and insulin resistance in diet-induced obese mouse

models (31), induce NASH-like phenotypes in mice, impair hepatic

glucose metabolism in animal models (32, 33), and disrupt liver

glucose and lipid synthesis pathways (34, 35). Clinical studies have

demonstrated a significant correlation between air pollution and
Frontiers in Endocrinology 06
increased diabetes prevalence in populations, particularly in young,

overweight, or obese individuals (36). Air pollution has been

identified as a risk factor for type 2 diabetes and is known to

promote the development of diabetes and cardiovascular diseases,

with cardiovascular diseases being the leading cause of death in

NAFLD patients.

Therefore, it is crucial to pay close attention to the impact of air

pollution on NAFLD. In contrast to our study, a cross-sectional study

(37) analyzed data from 269,705 hospitalized patients diagnosed with
TABLE 2 Mendelian randomization (MR) analysis of air pollution (particulate matter, nitrogen dioxide, and nitrogen oxides, exposure) with Liver
Indicators in NAFLD in the European population (IVW method).

Exposures Outcomes
(biomarkers)

Beta
(95%
CI)

P Number
of SNPs

R2 F P (Cochran’s Q
heterogeneity

test)

P (MR-
PRESSO

global test)

P (MR-Egger
intercept

test)

Particulate
matter (PM2.5)

Alanine
transaminase

(ALT)

0.319
(0.75,2.57)

0.317 2 0.014% 30.058 NA NA NA

Aspartate
aminotransferase

(AST)

0.808
(0.75,6.76)

0.150 1 0.008% 33.149 0.060 NA NA

Serum
albumin (ALB)

-0.473
(0.38,1.04)

0.068 2 0.024% 49.979 0.011 NA NA

Percent liver fat 0.217
(0.80,1.92)

0.331 7 0.061% 36.783 0.032 0.644 0.781

Particulate
matter (PM10)

Alanine
transaminase

(ALT)

0.033
(0.70,1.52)

0.869 6 0.689% 44.727 0.021 0.070 0.289

Aspartate
aminotransferase

(AST)

-0.221
(0.60,1.08)

0.143 10 0.103% 38.972 0.050 0.059 0.987

Serum
albumin (ALB)

0.131
(1.02,1.27)

0.019 9 0.087% 43.911 0.450 0.522 0.574

Percent liver fat -0.270
(0.58,1.00)

0.051 22 0.178% 36.834 0.431 0.467 0.478

Nitrogen
dioxide (NO2)

Alanine
transaminase

(ALT)

0.163
(0.37,3.76)

0.784 2 0.015% 34.024 0.042 NA NA

Aspartate
aminotransferase

(AST)

0.402
(0.68,3.28)

0.317 1 0.007% 33.273 NA NA NA

Serum
albumin (ALB)

-0.334
(0.38,1.34)

0.298 3 0.034% 38.846 7.823 NA 0.740

Percent liver fat -0.079
(0.45,1.91)

0.830 5 0.042% 38.370 0.122 0.171 0.116

Nitrogen oxides Alanine
transaminase

(ALT)

0.442
(0.95,2.56)

0.081 2 0.014% 32.108 0.622 NA NA

Aspartate
aminotransferase

(AST)

0.687
(0.97,4.07)

0.060 1 0.007% 33.405 NA NA NA

Serum
albumin (ALB)

-0.357
(0.42,1.13)

0.143 3 0.028% 42.126 0.001 NA 0.921

Percent liver fat -0.034
(0.64,1.48)

0.868 8 0.062% 35.466 0.539 0.555 0.940
"NA" usually refers to "Not Available" or "Not Applicable". This indicates that a data point has no available data or is not applicable in a specific situation.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1396032
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 3 Mendelian randomization (MR) analysis of air pollution (particulate matter, nitrogen dioxide, and nitrogen oxides, exposure) with NAFLD outcome in the European population.

F
P(Cochran’s Q
heterogeneity test)

P(MR-PRESSO
global test)

P(MR-Egger
intercept test)

68% 36.78344 0.278 0.275 0.896

64% 37.30839 0.178 0.180 0.935

42% 38.37019 0.511 0.536 0.250

62% 35.46614 0.252 0.254 0.512
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Table
Exposures

Outcomes Methods Beta P
Number
of SNPs

R2

Particulate
matter (PM2.5)

NAFLD

MR-Egger 0.418 0.851

7 0.0

Weighted median -0.252 0.727

IVW 0.140 0.808

Simple mode -0.488 0.700

Weighted mode -0.504 0.681

Particulate
matter (PM10)

MR-Egger -0.490 0.628

20 0.1

Weighted median -0.352 0.459

IVW -0.414 0.238

Simple mode -0.770 0.353

Weighted mode -0.433 0.540

Nitrogen dioxide (NO2)

MR-Egger 4.363 0,232

5 0.0

Weighted median 0.588 0.473

IVW 0.302 0.629

Simple mode 1.077 0.423

Weighted mode 1.077 0.390

Nitrogen oxides

MR-Egger 1.092 0.721

8 0.0

Weighted median -0.784 0.265

IVW -0.899 0.123

Simple mode -0.395 0.764

Weighted mode -0.207 0.860
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NAFLD and estimated average annual PM2.5 exposure using a spatial

exposure model to investigate the relationship between environmental

PM2.5 exposure and hospitalized patients with NAFLD. The results

indicated a significant association between NAFLD and PM2.5 exposure

(P< 0.01, 95% CI 1.15-1.33), which was more pronounced in certain

populations and regions. Additionally, a cohort study (38) analyzing

medical examination data from 2005 to 2017 involving 17,106 hospital

patients found a link between long-term environmental PM2.5 exposure

and an increased risk of NAFLD, with females, lean individuals, and

younger people being more susceptible to the effects of PM2.5. However,

these retrospective studies are limited by recall bias and the inclusion of a

limited number of cases and geographical regions, rendering their results

less reliable.
Frontiers in Endocrinology 08
Therefore, we chose the MR method to conduct gene-level

causal analysis of common major air pollutants and NAFLD using

single nucleotide polymorphisms (SNPs) closely associated with air

pollution as instrumental variables (IVs) to enhance the accuracy

and reliability of our study. Our research indicates a lack of

statistically significant causal relationships between the current

major air pollutants and NAFLD, reducing the likelihood of their

clinical relevance and refuting the role of air pollution in the onset

of NAFLD. However, in further MR analysis of air pollutants and

liver indicators related to NAFLD, we found a statistical association

between PM10 and ALB (Beta: 0.131, 95% CI: 1.02-1.27; P = 0.019).

Given the current lack of specific biomarkers for NAFLD, its

clinical diagnosis primarily relies on liver tissue biopsy (39, 40).
FIGURE 3

Scatter plots for causal single nucleotide polymorphism (SNP) effect of air pollution (particulate matter, nitrogen dioxide, and nitrogen oxides) on
NAFLD in the European population. We plot each black point to represent each SNP on the exposure (horizontal axis) and the outcome (vertical
axis), with error bars corresponding to each standard error (SE). The slope of each line corresponds to the combined estimate using each method of
the inverse variance weighted (light blue line), the MR-Egger (blue line), the simple mode (light green line), the weighted median (green line), and the
weighted mode (pink line). (A) PM2.5; (B) PM10; (C) Nitrogen dioxide; (D) Nitrogen oxides.
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However, due to the invasive nature of tissue biopsy, patients’

willingness to undergo liver tissue biopsy is often low, posing

challenges to the diagnosis and treatment of NAFLD.

Furthermore, due to the heterogeneity of NAFLD, not all NAFLD

patients exhibit obesity and high lipids; there are also many lean

NAFLD patients. From the perspective of liver enzyme levels, ALT

and AST are primarily present within liver cells, and their release

into the blood occurs when liver cells are damaged. In patients with

mild to moderate NAFLD, due to the strong compensatory capacity

of liver cells, their liver enzyme levels may remain within normal
Frontiers in Endocrinology 09
ranges, with significant liver enzyme level abnormalities typically

seen in more severe cases of NASH. Therefore, it is imperative to

approach these results with a rational mindset.

ALB, a crucial protein synthesized by the liver, constitutes

approximately 60% of serum proteins and plays a vital role in

maintaining acid-base balance, vascular permeability, colloid

osmotic pressure, and combating oxidative stress (41–43).

Clinically, low albumin levels are often associated with chronic

liver disease, malnutrition, and tumors, among others (44).

Hypoalbuminemia (<3.5g/dL) is typically the result of hepatocyte
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FIGURE 4

Leave-one-out analysis plot for causal SNP effect of air pollution (particulate matter, nitrogen dioxide, and nitrogen oxides) on NAFLD in the
European population. The error bars indicate the 95% confidence interval (CI). (A) PM2.5; (B) PM10; (C) Nitrogen dioxide; (D) Nitrogen oxides.
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death and impaired albumin synthesis due to chronic liver disease.

Under inflammatory conditions, ALB levels may also decrease

(45, 46). Our study identified a significant association between

environmental particulate matter PM10 and ALB (Beta: 0.131, 95%

CI: 1.02-1.27; P=0.019). Currently, there is a lack of research on the

relationship between fine particulate matter PM10 and ALB, but

existing studies suggest that environmental PM10 can increase the

production of pro-inflammatory cytokines, such as IL-1b and IL-6

(47). To some extent, this may explain our findings that
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environmental PM10 might affect the synthesis of ALB in liver

cells, but further in vivo and in vitro experiments are needed to

validate this hypothesis.
4.1 Advantages and limitations

To the best of our knowledge, this is the first Mendelian

randomization (MR) study analyzing the relationship between air
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FIGURE 5

Forest plots for causal SNP effect of air pollution (particulate matter, nitrogen dioxide, and nitrogen oxides) on NAFLD in the European population.
The error bars indicate the 95% confidence interval (CI). (A) PM2.5; (B) PM10; (C) Nitrogen dioxide; (D) Nitrogen oxides.
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pollutants and non-alcoholic fatty liver disease (NAFLD) to

elucidate the impact of air pollution on NAFLD. The main

strength of this study lies in the utilization of large-scale genome-

wide association study (GWAS) data for MR analysis, which has

increased the sample size and facilitated the identification of reliable

causal relationships. The MR-Egger method reduces bias caused by

reverse causation and confounding factors. The combination of the

inverse-variance weighted (IVW) and MR-Egger methods enhances

the reliability of this study.
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However, this study also has some limitations. We only used data

from individuals of European descent, and further validation is needed

to determine if this relationship also exists in other populations.

Additionally, although our MR study was based on results with a P-

value of 5×10-8, only a small number of instrumental variables (IVs)

were identified, potentially reducing statistical power. Therefore,

despite the F-statistic indicating no clear IV bias, caution should be

exercised in interpreting these results. We also tested a threshold of

adjusted P-value of 5×10-6 for SNP selection, but the results remained
FIGURE 6

Funnel plots for causal SNP effect of air pollution (particulate matter, nitrogen dioxide, and nitrogen oxides) on NAFLD in the European population.
(A) PM2.5; (B) PM10; (C) Nitrogen dioxide; (D) Nitrogen oxides.
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unchanged. Lastly, despite the removal of SNPs with confounding

factors and the establishment of strict thresholds for horizontal

pleiotropy, NAFLD is a broad disease category with challenging

clinical diagnosis, and the biological functions of many current

genetic variants remain unclear. In addition to natural environmental

factors such as air pollutants, social environmental factors, including a

patient’s socioeconomic status, income level, and education level, exert

varying degrees of influence on NAFLD. Research indicates that a

lower socioeconomic status is independently associated with an

increased risk of NAFLD (48, 49). Thus, complete avoidance of

horizontal pleiotropy may not be achievable.
5 Conclusion

In conclusion, our study indicates that major air pollutants

(PM2.5, PM10, nitrogen dioxide, and nitrogen oxides) do not show

a clear causal relationship with NAFLD. Furthermore, we are

excited to report a statistically significant association between

environmental particulate matter PM10 and ALB, but further

experimental and mechanistic studies are needed to explore this

relationship in depth.
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