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Classifying driver mutations of
papillary thyroid carcinoma on
whole slide image: an automated
workflow applying deep
convolutional neural network
Peiling Tsou and Chang-Jiun Wu*

Department of Genomic Medicine, University of Texas, MD Anderson Cancer Center, Houston,
TX, United States
Background: Informative biomarkers play a vital role in guiding clinical decisions

regarding management of cancers. We have previously demonstrated the

potential of a deep convolutional neural network (CNN) for predicting cancer

driver gene mutations from expert-curated histopathologic images in papillary

thyroid carcinomas (PTCs). Recognizing the importance of whole slide image

(WSI) analysis for clinical application, we aimed to develop an automated image

preprocessing workflow that uses WSI inputs to categorize PTCs based on

driver mutations.

Methods: Histopathology slides from The Cancer Genome Atlas (TCGA)

repository were utilized for diagnostic purposes. These slides underwent an

automated tile extraction and preprocessing pipeline to ensure analysis-ready

quality. Next, the extracted image tiles were utilized to train a deep learning CNN

model, specifically Google’s Inception v3, for the classification of PTCs. The

model was trained to distinguish between different groups based on BRAFV600E

or RAS mutations.

Results: The newly developed pipeline performed equally well as the expert-

curated image classifier. The best model achieved Area Under the Curve (AUC)

values of 0.86 (ranging from 0.847 to 0.872) for validation and 0.865 (ranging

from 0.854 to 0.876) for the final testing subsets. Notably, it accurately predicted

90% of tumors in the validation set and 84.2% in the final testing set. Furthermore,

the performance of our new classifier showed a strong correlation with the

expert-curated classifier (Spearman rho = 0.726, p = 5.28 e-08), and correlated

with the molecular expression-based classifier, BRS (BRAF-RAS scores)

(Spearman rho = 0.418, p = 1.92e-13).

Conclusions: Utilizing WSIs, we implemented an automated workflow with deep

CNN model that accurately classifies driver mutations in PTCs.
KEYWORDS

papillary thyroid carcinoma, driver mutations, whole slide images, convolutional neural
network, digital pathology, deep learning
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1 Introduction

Thyroid cancer is the most prevalent type of endocrine

mal ignancy (1) . Papi l lary thyroid carc inoma (PTC),

which accounts for nearly 80% of all thyroid cancers, is a

mitogen-activated protein kinase (MAPK) -driven malignancy

characterized by two mutually exclusive driver mutations:

BRAFV600E and mutated RAS , each triggering different

downstream signaling events (2). The BRAFV600E mutation is

present in almost half of all PTC cases. RAS point mutations,

affecting specific loci (codons 12, 13, and 61) in the N-RAS, H-

RAS, or K-RAS genes, occur in 10% to 15% of PTC patients (3).

Notably, the BRAFV600Emutation not only correlates with increased

tumor aggressiveness (4) but also hampers the tumor’s ability to

uptake radioactive iodine (RAI) (5), resulting in unfavorable

prognoses (6, 7). Tumors with the BRAFV600E mutation do not

respond to the ERK-mediated negative feedback on RAF, causing

elevated MAPK signaling (8). Conversely, tumors driven by RAS

activate RAF dimers that are sensitive to ERK (extracellular signal-

regulated kinases) negative feedback, which in turn decreases

MAPK signaling. These differences in signaling mechanisms lead

to significant phenotypic divergence, which could be crucial for

therapeutic or prognostic strategies.

Recent advancements in artificial intelligence have facilitated

the use of various imaging modalities for early detection of

malignancies (9) as well as the implementation of digital

pathology in precision oncology (10–15). Current mutation

detection techniques, such as immunohistochemistry, real-time

polymerase chain reaction (PCR) and automated platforms all

require a substantial amount of tumor tissue for analysis (16).

Recently, image-based analysis has demonstrated great potential in

predicting mutations (13, 17, 18), which is especially useful when

the tumor sample is insufficient for direct testing. Our work (19),

along with research from various groups (16, 20–23), has shown

that deep CNN models can predict actionable gene mutations from

histopathologic images. While it is improbable that deep learning-

based mutational predictions will soon replace direct molecular

testing of tissue samples, these computational techniques can offer

vital insights to pathologists and oncologists, assisting in clinical

management decisions and helping prioritize patients for

comprehensive sequencing.

However, the manual examination of slide images remains a

tedious process prone to variability and bias among different raters.

Tasks like tissue segmentation and preprocessing of whole slide

image (WSI) are crucial in automated digital pathology workflows.

Recently, the U.S. approval of the first WSI scanner for primary

diagnosis has marked a significant step forward in integrating

digital pathology into clinical practices (24, 25). WSI technology

has improved archiving efficiency, facilitated remote diagnosis, and

accelerated clinical judgments and research processes (12, 13, 26).

In this study, we sought to expand upon our previous work (19)

by developing an automated pipeline. This new system begins with

a tile-selection mechanism applied to raw WSIs, continues with
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image preprocessing steps, and concludes with a classifier for

driver mutations.
2 Materials and methods

2.1 Sample selection

We obtained WSIs, genomic data, and corresponding

demographic and clinical information for matched patient samples

from the TCGA website (https://gdc.cancer.gov/). Although each

patient might have several slides available, we chose to analyze only

one diagnostic slide for each patient. The tumor tissue was

hematoxylin and eosin (H&E)-stained, fixed in formalin, and

embedded in paraffin (FFPE). An Aperio SVS file stores an image

at multiple resolutions, including the highest resolution at which

the section image was captured. These SVS files were downloaded in

their native format.

A total of 235 samples exhibited BRAFV600E mutations, while 52

samples showed RAS hotspot mutations. However, one sample

(TCGA-EM-A4FV) was identified as harboring both mutations and

was consequently excluded from the analysis. The histological

classification distribution for all BRAFV600E and RAS mutation

samples can be found in Supplementary Table S1. Notably, all 51

RAS mutation samples were included in the study. Conversely, 52

samples were randomly chosen from the 234 cases with BRAFV600E

mutations, ensuring a general match in the distribution of

histological types (Figure 1). The characteristics of the patients

are detailed in Supplementary Table S1. Patients were randomly

assigned to distinct groups for training (60%), validation (20%), and

final testing (20%). These sets were used for training the model and

evaluating its performance.

Tumors carrying different driver mutations exhibit distinct

distributions of pathological classification. Supplementary Table S1

indicates that classical PTCs are the predominant type in cases with

the BRAFV600 mutation, comprising 76.5% of the cases. Additionally,

5.1% are classified as the follicular variant, and 11.5% as the tall cell

variant. In tumors with RAS mutations, pathological assessments

were conducted on 49 out of 51 samples, identifying 29 as follicular

variant and 20 as classical PTCs.
2.2 Tile extraction and
image preprocessing

We implemented an automated image tile extraction approach

to select high-quality and high-cellularity patches. Briefly, we first

used the HistoQC package (27) to identify tissue regions on theWSI

and mask out low-quality regions such as blood, bubbles, blurred

regions, or pen marks. Next, color normalization was applied to the

tissue region on the whole slide. Subsequently, we iterated over the

WSI for candidate 512x512 pixel patches at 20X magnification

and implemented a nuclear segmentation python package
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HistomicsTK (28) to characterize cellular nuclei and calculate the

numbers, staining density, and dimension ratios of nuclei in the

patch. Up to 300 image patches were extracted from each WSI. The

details of our automatic workflow are described in Supplementary

Table S2B. Two hundred image patches were randomly chosen

from preprocessed patches per sample for model training. We

subsequently implemented an image augmentation technique on

the training data. By applying vertical and horizontal flips, along

with 90-degree rotations, we generated 8 possible variations for each

patch, from which two were randomly selected for the training data.
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No augmentation was applied for validation and final testing

tile images.
2.3 Network architecture and training,
validation, and final testing procedures

Our imaging classification model was derived from a modified

Inception v3 architecture (29), with Adam optimizer (learning rate

of 0.001) and final softmax activation layer implemented with
FIGURE 1

The workflow of an automated mutation classifier using WSI. The upper panel illustrates the sample selection, allocation, and analysis strategy.
Hematoxylin and eosin (H&E)- stained images of formalin-fixed, paraffin-embedded (FFPE) slides were obtained from the GDC repository. Samples
exhibiting RAS or BRAFV600E mutations were distributed into training, validation, and testing sets at ratios of 60%, 20%, and 20%, respectively. The
flow for extracting image tiles and the preprocessing steps is depicted in the bottom panel.
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Tensorflow in Python. The classifier processes a 512x512x3 image

tile as input and outputs the probability that the tile originates from

an RAS-mutated tumor. We adapted the model to facilitate a two-

label output classification. The architecture of the model is

described in Supplementary Table S2A.

Patients were randomly allocated to non-overlapping training

(60%), validation (20%), and final testing (20%) subsets (Figure 1).

There were 24,400 patches for training, 4,200 for validation, and

4,200 patches for final testing. In total, our model was trained

through 200 epochs, equivalent to 610,000 iterations with a batch

size of 8. At the end of each epoch, log-loss and accuracy on the

validation data were calculated. The final model was selected based

on the lowest cross-entropy loss observed in the validation data.
2.4 Performance evaluation

2.4.1 Evaluation metrics for
algorithm performance

We assessed the performance of our CNN model using receiver

operating characteristic (ROC) curves, where a higher area under

the ROC curve (AUC) indicates superior prediction capability. The

significance (p-value) of the predictions was determined through

Fisher’s exact test. Additionally, we utilized confusion matrices to

summarize prediction accuracy.

2.4.2 percRAS score
The final softmax layer of our CNN model computed the

probability of BRAFV600E or RAS mutations for each input image

tile. With the automatic extraction pipeline, each tumor generates

multiple tiles, which are inputted into the classification network.

While evaluating performance tile by tile is straightforward,

assessing performance at the tumor level can be approached in

various ways. Our approach involved utilizing all tiles associated

with a patient sample and determining the fractions of the two

mutation types as the class probabilities for that sample. An image

tile was categorized as RAS if the probability predicted by the model

for RAS mutant was 50% or higher. At the tumor sample level,

predictions of mutation classes were based on a probability cutoff

level of 0.75. For each tumor, a percRAS score was calculated as the

percentage of tiles predicted as RAS mutation class. We classified a

tumor as RAS mutated if the percRAS score exceeded 0.75, and as

BRAFV600E mutated if the percRAS score was below 0.25. If the

percRAS score fell between 0.25 and 0.75, the mutation class was

not predicted.

2.4.3 BRAF-RAS score
The BRS values were derived from the landmark research of

TCGA (2), which involved comparing 391 samples with both

exome and RNA sequencing data to establish a 71-gene signature.

This signature was used to calculate correlations, resulting in a

continuous measure ranging from -1 to +1, where BRAF-like (BVL)

PTCs exhibit negative values and RAS-like (RL) PTCs display

positive values.
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3 Results

3.1 An automated pipeline for image tile
extraction and preprocessing

Using expert-guided patch selection, we previously obtained

decent results (19), comparable to recent studies by other

researchers who used the TCGA resource to investigate different

types of cancer (20, 30). To compare the performance of the newly

developed automatic image preprocessing pipeline, we utilized the

same samples, CNN framework, and analysis strategies as shown in

the upper panel of Figure 1. Furthermore, to automate the selection

and preprocessing of high-quality, high-cellularity patches from

WSIs, we developed a workflow, as depicted in the lower panel

of Figure 1.
3.2 Deep learning models derived by
automated workflow effectively
differentiated BRAFV600E and RAS mutation
using WSIs in PTCs

The newly developed pipeline effectively differentiated between

BRAFV600E and RAS mutations using WSIs in PTCs. Figure 2

displays representative histopathological images along with

activation maps of BRAFV600E and RAS mutations. As described

in Figure 3A, the best model achieved AUC values of 0.86 for

validation and 0.865 for final testing subsets. Overall, the model

accurately predicted 90% of validation cases and 84.2% of the final

testing tumor samples.

In line with our previous findings and those of others (2, 19), the

prediction demonstrated better performance in detecting RAS

mutations compared to BRAFV600E mutations. In the final testing

subset, the prediction accuracy was 70% for the BRAFV600E group

and 100% for the RAS group. Supplementary Table S3 provides

detailed confusion matrices highlighting the disparities among

various classifications.
3.3 The performance from the automatic
image extraction and preprocessing
pipeline was comparable to that of an
expert curated ROI approach

With expert-guided patch selection, we previously achieved

solid results with an AUC of 0.878 – 0.951, comparable to recent

work on other cancer types using TCGA resource. Using the same

samples and deep CNN framework, the performance (Figure 3A) by

automated preprocessing pipeline slightly declined (AUC 0.860 –

0.865). We further checked to see whether the classification results

from these two classifiers were consistent. Compared to the expert-

curated Region of Interest (ROI) classifier, the automated tile

extraction and preprocessing classifier achieved consistent results

(Spearman rho = 0.726, p = 5.28 e-08), as shown in Figure 3B.
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3.4 Analyses from images correlate well
with BRS

Previously, we showed that the expert-curated classifier had a

strong correlation with BRS, a pattern based onmRNA expression (19).
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We have now assessed the new classifier to determine its correlation

with mRNA expression data. As shown in Figure 3C, there was a

significant correlation (Spearman’s rho = 0.418, p = 1.92e-13) between

mRNA-based BRS and the information from histopathology images.

Specifically, of the 180 tumors identified as BRAF-like (BRS < 0),
A B C

FIGURE 3

CNN models effectively differentiated BRAFV600E and RAS mutations in PTCs based on histopathological images. (A) ROC curves for the best model
showed AUC values of 0.86 for the validation subset and 0.865 for the final testing subset at 20X magnification. (B) The results from the new classifier
showed a strong correlation with those from an expert-curated classifier using manual ROI selection (Spearman rho = 0.726, p < 0.001). (C) The
outcomes from the new classifier correlated well with those from BRS, a molecular expression-based classifier (Spearman rho = 0.556, p < 0.001).
FIGURE 2

Representative histopathological images alongside corresponding activation maps for RAS or BRAFV600E mutations. The upper panel displays images
from BRAFV600E mutated samples, showcasing the Classical Histological Type. The bottom panel features images from RAS mutated samples,
illustrating the Follicular Variant Type.
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145 were categorized into the BRAFV600E group. Additionally, 45 out of

48 tumors identified as RAS-like (BRS > 0) were classified with RAS

mutations. Supplementary Table S3 includes confusion matrices that

highlight the differences among the various classifications.
4 Discussion

CNN techniques remain the state of the art in applying deep

learning to histopathology (31). Several CNN models have been

deployed in classifying tissue images in cancer research, including

AlexNet, ResNet-101, VGG16/19, Inception v3 and other networks

(31, 32). Different architectures excelled in different specific tasks

(32). Inception v3 was used in a study to classify mutation types in

NSCLC with high accuracy (20). We followed our previous work

(19) and used the Inception V3 architecture in the current driver

mutation prediction study.

The current study described an automated workflow that applied

deep learning approaches to identify driver mutations fromWSIs. In

our previous work (19), we effectively showcased the potential of

correlating genomic information with histopathologic images.

However, our approach did not incorporate automated WSI

segmentation. Instead, it involved labor-intensive selection of ROIs

within each slide, requiring expert guidance. In this study, we

introduced automatic image tile extraction and preprocessing to

enhance efficiency and include a larger portion of each slide in

training and prediction processes.

It has been shown that an image-based classifier trained with

mutation-stratified slides performs well in distinguishing tumors

with different oncogene expression patterns (10, 33). Similarly, our

classifier, which was trained on samples stratified by mutations,

demonstrated a strong correlation between image-based

classification and mRNA expression patterns (BRS). It is likely

that these specific mutations influence downstream signaling

pathways. Therefore, both mRNA expression profiles and the

structural features observed in histopathology comprehensively

reflect these molecular processes.

In our previous work (19), we noticed that our CNN models

were more effective at identifying RAS mutations than BRAF

mutations, and the same finding was also observed in the newly

developed pipeline. This aligns with the observations of a recent

landmark TCGA study on PTCs (2). The study highlighted

fundamental differences in the genomic, epigenomic, and

proteomic profiles between RL-PTCs and BVL-PTCs. Notably, it

also recommended that BRAFV600E PTC should not be treated as a

uniform group in clinical research.

The advancement of AI techniques has significantly accelerated

the resolution of complex problems (34). With the recent FDA

approval of the first WSI system for primary diagnosis in pathology

(24, 25), digital pathology using WSI analysis appears set for

integration into standard clinical practice. While the performance

of our automated workflow, which did not require expert-annotated

ROIs, was slightly lower compared to our previous deep CNN

classifier, it still achieved favorable AUCs and overall accuracy. The
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classification results were in good agreement with both the expert-

curated and molecular classifiers (BRS). Additionally, this approach

offers significant benefits, such as eliminating the need for

labor-intensive manual annotations, reducing the time and cost

associated with data preprocessing, and decreasing inter-rater bias

and variability.

Due to the limited number of cases studied, there is potential for

improvement in our current work. Initially, as a proof of concept, we

focused only on the two predominant mutations found in PTCs:

BRAFV600E and RAS, which together are estimated to account for

over two-thirds of PTC cases. However, without a multi-classifier,

the clinical applicability of our findings remains somewhat restricted.

Future efforts should explore genomic alterations beyond these two

mutations. Additionally, the concept of intra-tumoral heterogeneity

should be considered to provide a more comprehensive

understanding. Last but not least, real-world pathology practices

vary significantly in terms of case mix, patient demographics, and

diagnostic protocols. An automated system that performs well in one

clinical setting may not generalize to others without additional

validation and fine-tuning. Thus, while automated pipelines for

digital pathology in WSI offer promising advancements, addressing

biases and ensuring the generalizability of the system in real-world

clinical settings requires careful consideration. Despite these

limitations, we believe that our automated workflow using deep

CNNs represents a step forward, potentially aiding molecular

pathology and offering valuable clinical insights. Further efforts in

improving data diversity by incorporating diverse and representative

data, cross-institutional validation, continuous learning and

adaptation will be essential for realizing the full potential of these

technologies in improving patient care.
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