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Background: The beneficial effect of thermogenic adipocytes in maintaining

body weight and protecting against metabolic disorders has raised interest in

understanding the regulatory mechanisms defining white and beige adipocyte

identity. Although alternative splicing has been shown to propagate adipose

browning signals in mice, this has yet to be thoroughly investigated in

human adipocytes.

Methods: We performed parallel white and beige adipogenic differentiation

using primary adipose stem cells from 6 unrelated healthy subjects and

assessed differential gene and isoform expression in mature adipocytes by

RNA sequencing.

Results: We find 777 exon junctions with robust differential usage between white

and beige adipocytes in all 6 subjects, mapping to 562 genes. Importantly, only

10% of these differentially spliced genes are also differentially expressed,

indicating that alternative splicing constitutes an additional layer of gene

expression regulation during beige adipocyte differentiation. Functional

classification of alternative isoforms points to a gain of function for key

thermogenic transcription factors such as PPARG and CITED1, and enzymes

such as PEMT, or LPIN1. We find that a large majority of the splice variants arise

from differential TSS usage, with beige-specific TSSs being enriched for PPARg
and MED1 binding compared to white-specific TSSs. Finally, we validate beige

specific isoform expression at the protein level for two thermogenic regulators,

PPARg and PEMT.

Discussion: These results suggest that differential isoform expression through

alternative TSS usage is an important regulatory mechanism for human adipocyte

thermogenic specification.
KEYWORDS

beige adipocyte, human thermogenic adipocytes, adipose differentiation, transcriptomics,
alternative transcript isoforms, alternative splicing, human adipose stem cells (hASCs)
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1 Introduction

Adipose tissue has become a major research focus because of its

capacity to store energy in the form of lipids in white adipocytes and

dissipate energy by heat in brown and beige (thermogenic)

adipocytes. Thermogenic adipose tissue is found in human adults

(1–3) as brown and beige depots in posterior regions of the neck,

thorax and abdomen, and as beige adipocytes interspersed within

white fat depots (4, 5). White adipocytes, which make up the

majority of adipocytes in white fat depots, store energy in the

form of lipids, while brown and beige adipocytes can dissipate

energy as heat by uncoupling mitochondrial respiration from ATP

production, or by activating other ATP-consuming futile cycles (6–

8). Beige adipocytes arise in white depots by differentiation of

progenitors and by conversion from a white phenotype in

response to cold, or to PPARg-agonist treatment. Thermogenic

adipocyte activity correlates with increased insulin sensitivity and

decreased incidence of obesity and type-2 diabetes in humans (9),

thus elucidating the regulatory mechanisms defining white vs beige

adipocyte specification may provide new targets for treating

metabolic diseases.

Alternative splicing increases transcriptome and proteome

diversity by modulating the combination of exons expressed from

a single gene, thereby regulating diverse processes such as cell

differentiation and signal transduction (10). Whole or parts of

exons may be substituted by selection of the 5’ or 3’ splice sites

by the key components of the spliceosome, or by accessory splicing

factors which recognize weak signals in the surrounding RNA

sequence (11). Alternative splicing events are classified into

several types: exon skipping, mutually exclusive exons, intron

retention and alternative 5’ and 3’ splice site usage (12).

Sometimes included in this list are alternative first exons, which

can be generated by alternative promoters or transcription start

sites (TSS) (13, 14). Differences in alternative splicing between

conditions can be assessed in short read RNA-seq by algorithms

inferring differential splicing by assigning reads to isoforms found

in a transcriptome, or by directly detecting exon-exon junctions (15,

16). Alternative splicing may influence protein function,

localization or degradation, and the 5’ and 3’ untranslated regions

of mRNAs also affect their secondary structure, export and

translation efficiency (17). Thus, assigning functionality to the

products of alternative splicing is still challenging. However,

recent developments such as the establishment of protein isoform

annotation databases and associated scoring tools now provide

insights into variant functionality (18–21).

Alternative splicing has emerged as a key mechanism regulating

white and thermogenic adipogenesis. Splice variants in nuclear

corepressors and nuclear transcription factors have been shown

to directly regulate adipogenesis (22, 23). In addition, perturbation

of splicing factors in mice affects thermogenesis in brown (24, 25)

and white adipose depots (26, 27). Recent evidence has suggested a

potential role for splicing in the browning process of human

adipocytes (28). Indeed, transcriptomic analysis of adipose tissue

from patients with pheochromocytoma tumors revealed a global

downregulation of splicing factors’ expression, a trend confirmed in

cold-exposed mouse inguinal adipose tissue (28). However, the
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isoform specific gene expression program characterizing

thermogenic adipocytes has not been comprehensively investigated.

Here, we analyze differential gene and transcript expression in

white and beige adipocytes differentiated from 6 human primary

adipose stem cell (ASC) lines. We unveil a high-confidence set of

differentially spliced genes, including in key thermogenic regulators

for which we validate beige-specific isoform expression at the

protein level. Our results suggest that the regulation of isoform-

specific expression is an important regulatory mechanism for the

thermogenic function of human adipocytes.
2 Materials and methods

2.1 Cell culture

Primary ASCs were isolated from subcutaneous fat obtained by

liposuction from six unrelated female donors (Supplementary

Table 1) after informed consent (approval by the Regional

Committee for Research Ethics for Southern Norway, REK 2013/

2102 and 2018-660). ASCs were cultured in DMEM/F12 (17.5 mM

glucose) with 10% fetal calf serum and 20 ng/ml basic fibroblast

growth factor (proliferation medium). Upon confluency, fibroblast

growth factor was removed, and cells cultured for 72 h in DMEM/F12

(17.5 mM glucose) with 10% fetal calf serum (basal medium) before

induction of differentiation. For white adipose differentiation, ASCs

were induced with a cocktail of 0.5 µM 1-methyl-3 isobutyl xanthine,

1 µM dexamethasone, 10 µg/ml insulin and 200 µM indomethacin in

basal medium. Differentiation media was renewed every 3 days until

day 9, after which cells were maintained in DMEM/F12 (17.5 mM

glucose) with 10% fetal calf serum and 10 µg/ml insulin. For beige

adipose differentiation, media were supplemented with 1 µM

Rosiglitazone (Sigma, R2408) until day 15. Samples were harvested

15 days after induction. All differentiation experiments were done in

at least three biological replicates between passage 3 and 8.
2.2 Microscopy and image analysis

Cells were differentiated for 15 days on 12-mm diameter

coverslips in 24-well plates. Cells were washed 3 times with PBS

before fixation in 4% paraformaldehyde for 10 min. Cells were then

incubated in Bodipy (1µg/ml, Invitrogen D3922) for 15 min and

washed 3 times in PBS before mounting in DAKO Fluorescence

Mounting Medium (S3023, Agilent). Images were acquired on an

IX81 microscope (Olympus) fitted with epifluorescence, an 100×

1.4 NA objective mounted on a piezo drive, and a DeltaVision

personalDV (Applied Precision, Ltd.) imaging station. The Bodipy

surface per field was quantified on threshold-adjusted images using

ImageJ software.
2.3 Immunoblotting

Proteins were resolved by gradient 4-20% SDS–PAGE,

transferred onto nitrocellulose membranes (BioRad) and blocked
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with 5% BSA. Membranes were incubated for 1h at room

temperature or overnight at 4°C using the following antibodies:

Perilipin1 (Progen, GP29), CITED1 (Novus, H00004435-M03),

UCP1 (Abcam, 23841), PPARg (Thermofisher, MA5-14889),

PEMT (Novus, NBP1-59580), and gTubulin (Sigma, T5326).

Proteins were visualized using IRDye-800-, IRDye-680-, or HRP-

coupled secondary antibodies. Bands were quantified by

densitometry (Image Lab; BioRad) using gTubulin for

normalization. Uncropped membranes are presented as

Supplementary Data 1-4.
2.4 RNA-sequencing and gene
expression analysis

RNA sequencing (RNA-seq) was done in biological triplicates

for 6 independent donors. Total RNA was isolated from samples

harvested at differentiation endpoint (day 15) using the RNeasy kit

(QIAGEN). PolyA-selected RNA was sequenced from paired-end

libraries (TruSeq Stranded mRNA kit; Illumina) using Novaseq

platform (Illumina). Reads were filtered with fastp, aligned to the

hg38 genome (GENCODE 32 annotation) with hisat2, and counted

using featureCounts (Supplementary Table 2). Low abundance

genes were filtered using filterByExpr from edgeR and then

normalized using the trimmed mean of M values method (29).

Beige and white gene expression was compared pairwise for each

donor using the robust eBayes method with limma-voom

adjustment (30). Less than 100 genes changed according to the

fraction of reads assigned to genes (adjusted p-value < 0.01), when

this was included as a continuous variable in the model.
2.5 RT-qPCR and semi-quantitative PCR

RNA was isolated using RNeasy kit (QIAGEN) and 1 µg was

used for cDNA synthesis using High-Capacity cDNA Reverse

Transcription Kit (ThermoFisher). RT-PCR was done using IQ

SYBR green (Bio-Rad Laboratories) with SF3A1 as a reference gene.

PCR conditions were 95°C for 3 min and 40 cycles of 95°C for 30 s,

60°C for 30 s, and 72°C for 20 s. PCR primers are listed in

Supplementary Table 3.
2.6 Alternative splicing analysis

Reads were aligned to the hg38 genome with STAR using the

GENCODE 32 reference annotation. ENCODE options from the

STAR manual were used as well as –outSAMstrandField

intronMotif –outSAMtype BAM Unsorted (Supplementary

Table 2). Split reads with at least 6 bp of anchor sequence and an

intron length between 20 bp and 1 Mb were extracted using regtools

(31). Introns sharing splice sites were clustered using LeafCutter’s
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leafcutter_cluster_regtools.py script, requiring at least 30 reads per

library supporting each cluster for introns of up to 1 Mb in size.

Differences in intron excision were tested between white and

beige triplicates with donor as a confounding variable. Strict

prefiltering required that an intron was found in at least 14 (of

36) libraries and that clusters had at least 12 libraries per condition

with 20 or more spliced reads. The differential_splicing function

from LeafCutter R package version 0.2.9 was used to implement the

Dirichlet-multinomial generalized linear model (15). LeafCutter

assigns a DPSI to each intron and a p-value to each cluster, which

contains introns that share splice sites and thus belong to alternative

isoforms of that gene or genes. Effect size and cluster significance

output files were merged into a single table containing both DPSI
and cluster p-value (Supplementary Table 4). LeafCutter p-values

are adjusted by FDR.
2.7 Annotation of introns

Introns were assigned to transcripts, with the priority for

annotations: GENCODE 32 > RefSeq GCF_000001405.40-

RS_2023_10 > FANTOM CAT robust (32). In other words, only

if an intron was missing from the GENCODE annotation was it

compared to the RefSeq annotation and so on. Normalized TRIFID

prediction scores were downloaded for the GENCODE 37 and

RefSeq110 annotations. Where multiple transcripts were possible

for a single intron excision event, TRIFID scores were averaged, but

if no score was found -0.1 was used. To calculate a TRIFID

difference, the top two intron-excision events were compared for

clusters with at least one significant junction (| DPSI | > 0.1 &

p.adjust < 0.05) (Supplementary Table 5).

For ChIP-Seq profiles at TSSs, for each significant exon-exon

junction, the most upstream annotated TSS was selected to avoid

oversampling of junctions. For Unibind differential enrichment

(beige vs white) at TSSs, overlapping -2 kb/+0.5 kb windows

were merged.
2.8 Chromatin immunoprecipitation-seq

Day 15 differentiated white and beige samples were trypsinized,

resuspended in HBSS, 0.5% BSA, and centrifuged 200g for 5 min to

isolate floating mature adipocytes. Purified nuclei were fixed with

1% formaldehyde; lysed for 10 min in ChIP lysis buffer (1% SDS, 10

mM EDTA, 50 mM Tris-HCl, pH 8.0, proteinase inhibitors, 1 mM

PMSF, 20 mM Na Butyrate) and sonicated for 30 sec ON/OFF for

10 min in a Bioruptor®Pico (Diagenode) into ~200 base-pair

fragments. After sedimentation, the supernatant was diluted 10

times and chromatin incubated with anti-H3K27ac (Diagenode

c15410174), anti-H3K4me3 (Diagenode c15410003), anti-

H3K27me3 (Diagenode c15410069) or anti-H3K4me1 (Diagenode

c15410037) antibodies, each at 2.5 mg/106 cells, for 2 h at 4°C. ChIP
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samples were washed, cross-links reversed, and DNA eluted for 2 h

at 68°C. DNA was purified using phenol-chloroform

isoamylalcohol and dissolved in H2O. Libraries were prepared

using a Microplex kit (Diagenode) and sequenced on a NextSeq

500 or NovaSeq (Illumina).

ChIP-Seq reads for histone modifications were filtered with

fastp, aligned to the genome with bowtie2, and deduplicated

(Supplementary Table 2). Log ratio ChIP/Input tracks were

generated using deepTools bigwigCompare from reads per

genome coverage (RPGC) normalized tracks, created with

bamCoverage. Profile plots were generated using deeptools

computeMatrix and plotProfile.

PPARg and MED1 ChIP-Seq were downloaded from Gene

Expression Omnibus (GEO) accession GSE59703 (33). Reads

from replicates were merged and aligned to hg38 using Bowtie2

(Supplementary Table 2). Peaks were detected using MACS3. ChIP/

Input ratio tracks were generated using bamCompare in deepTools.

PPARg and MED1 ChIP/Input mean ratios were calculated for +/-

250 bp windows around the TSS using multiBigwigSummary

from deepTools.
2.9 Alphafold predictions

Energy minimized structures of PEMT isoforms were predicted

using Alphafold via ColabFold (34). Molecular graphics and

analyses performed with UCSF ChimeraX (35).
2.10 Statistical analysis

Fisher’s exact test, implemented in ClusterProfiler (36), was used

for overrepresentation analysis of genes in ontologies and pathways

from MSigDb v2023.1 (37). For bioinformatic analyses, two-way

ANOVA were conducted in R, followed by pairwise t-tests or

Wilcoxon tests with Holmberg adjustment for multiple comparisons.
3 Results

3.1 ASC-derived adipocytes have
differential beiging capacity

To characterize the alternative splicing events that may specify

the beige thermogenic phenotype of human adipocytes, we

differentiated primary ASCs from 6 unrelated, normal-weight

female subjects (S1-S6) into beige or white adipocytes, in the

presence or absence of rosiglitazone, respectively. After 15 days,

differentiation efficiency is similar in all 6 ASC line-derived

adipocytes, based on lipid droplet accumulation (Figures 1A, B)

and Perilipin1 expression (Figures 1C, D, Supplementary Figure 1).

As expected, rosiglitazone treatment elicits the expression of the
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beige adipocyte markers CITED1 and UCP1 in all donors

(Figure 1C), albeit to a different extent, confirming that efficient

beige adipogenesis is achieved with all 6 ASC lines. Accordingly,

transcriptome analysis shows that differentially expressed genes

(DEGs) in beige vs white adipocytes from all subjects are

significantly enriched for Gene Ontology (GO) terms

“Mitochondrial matrix” (GO:0005759), “Monocarboxylic acid

metabolic process” (GO:0032787) and “Fatty acid metabolic

process” (GO:0006631) (Figure 1E, Supplementary Table 4).

Further analysis of the thermogenic gene expression signature

using BATLAS beige-curated gene list (38) clearly segregates

white from beige differentiated adipocytes (Figure 1F), with the

median expression of BATLAS beige markers being significantly

increased in beige adipocytes (Figure 1G). Hence, PPARg agonist

treatment efficiently elicits a beige adipocyte transcriptional

program in all 6 ASC lines.
3.2 Differential splicing in beige and white
adipocytes gives rise to functionally
distinct transcript isoforms

We next assessed differential splicing events in the white and

beige adipocyte transcriptomes using LeafCutter, an annotation-

free method that allows the identification and quantification of

alternative splicing events by focusing on intron excision events,

which are inferred from reads spanning exon–exon junctions (15).

LeafCutter analysis identifies 777 exon junctions with robust

differential usage between white and beige adipocytes in all 6

subjects (Figure 2A, Supplementary Table 5). Strikingly, genes

with highly significant differences in intron excision, quantified by

percent spliced-in (DPSI), include beiging markers (CITED1,

PANK1), genes involved fatty acid and phospholipid remodeling

(FAR2, PEMT, PLD1, LPIN1) or glucose metabolism (PC) as well as

PPARG itself. Amongst the cell type specific exon junctions detected

by LeafCutter, 723 could be annotated to known transcripts from

either Gencode, RefSeq, or Fantom databases (Figure 2B). However,

the remaining 54 cryptic exon junctions display canonical 5’ and 3’

motifs, and mostly result from differential 5´ splice site usage

(Supplementary Figures 2A-C). Differential exon junctions

detected in the beige vs white adipocyte transcriptomes map to

562 genes. Strikingly, only a minor fraction of these differentially

spliced genes (DSGs) are also differentially expressed (Figure 2C),

indicating that differential isoform expression constitutes an

additional mechanism for gene expression regulation during beige

adipocyte differentiation.

To assign functionality to differential exon junction usage, we

mapped each junction to its matching transcripts and leveraged the

TRIFID database to score protein functionality (18). TRIFID predicts

protein functionality based on a number of transcript features

including the presence of functional domains, cross-species

conservation, transcript length and annotation database agreement.
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The TRIFID score (between 0 and 1) represents the likely functional

relevance of protein isoforms. Both beige- and white-specific

transcripts using spliced-in exon junctions have significantly higher

average TRIFID functionality scores compared to the total

transcriptome and to non-enriched exon-exon junctions from the
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same genes (Figure 2D), supporting a functional outcome for

alternative isoform expression. Indeed, differential TRIFID score

(DTRIFID) for DSGs predicts higher functionality for PC, CA5B,

CITED1, RTN4 and PPARG isoforms in beige adipocytes (Figure 2E,

Supplementary Table 6), and genes related to “Adaptive
B

C

D

E

F

G

A

FIGURE 1

Model validation. (A) Bodipy staining of lipid droplets of day 15 differentiated white and beige adipocytes from 6 unrelated human subjects. Scale bar:
10µM. (B) Lipid droplet area per field quantified from (A) (ns non-significant; two-way ANOVA with Tukey’s multiple comparison; n>= 15 fields per
condition from 3 independent experiments). (C) Western blot analysis of Perilipin1, CITED1, and UCP1 expression in day 15 differentiated white (W)
and beige (B) adipocytes from 6 subjects. gTubulin is shown as a loading control. (D) Perilipin1 signals normalized to gTubulin, quantified from
western blots (ns, non-significant; two-way ANOVA with Sidák’s multiple comparisons test; n=3). (E) Overrepresentation analysis of genes
upregulated in beige vs white adipocytes from all donors (p < 0.05; RNA-seq) using GO and Hallmark gene sets from MSigDb (adjusted p-values <
1.2 x10-6). The gene ratio is the fraction of differentially expressed genes in each gene set. (F) Heatmap of relative gene expression (z-score
transformed FPKM) for differentially expressed beige marker genes (p < 0.01 in any donor, eBayes method, limma package) from the BATLAS gene
set (37). (G) Median gene expression of beige marker genes from the BATLAS gene set in day 15 white and beige adipocytes from 6 human subjects
(*p < 0.05, **p < 0.01, ***p < 0.001; two-way ANOVA and t-tests with Holmberg adjustment).
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thermogenesis”, “Fatty acid metabolism” and “Mitochondrial matrix”

show either an increase or decrease in predicted isoform functionality

in beige adipocytes (Figure 2F). Altogether, these results argue for a

functionally relevant impact of alternative isoform expression on the

regulation of beige vs white adipocyte functions.
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3.3 Beige-specific isoforms arise from
differential TSS usage

To understand the mechanism driving beige-specific intron

excision events, we first mapped these events along transcripts. We
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FIGURE 2

Functional classification of beige and white alternative isoforms. (A) Volcano plot of changes in exon-exon junction percentage spliced-in (PSI)
between white and beige adipocytes and adjusted p-values per cluster from LeafCutter. (B) Annotation of exon junctions to transcript databases.
(C) Venn diagram showing the overlap between differentially spliced genes (DSGs) and differentially expressed genes (DEGs) (D) Mean TRIFID score
for exon junctions with white and beige enrichment (| DPSI> 0.1 & p < 0.05) compared to junctions with low differential enrichment (| DPSI< 0.1)
from significant clusters (p < 0.05; n subsampled to 280), and non-significant junctions (p > 0.05; n subsampled to 280; Kruskal-Wallis test and t-
tests with Holmberg adjustment). (E) Change in normalized TRIFID scores (D TRIFID) between white and beige isoforms (averaged per exon junction)
plotted against LeafCutter DPSI adjusted p-value. (F) Network representation of genes pertaining to “Mitochondrial Matrix” (GO:0005759) “Fatty acid
metabolism” (GO:0006631) and “Adaptive thermogenesis” (GO:1990845) GO terms, colored by D TRIFID score.
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find a largemajority of differential events occurring in the first intron of

transcripts (Figure 3A), suggesting that DSGs between white and beige

adipocytes may result from alternative TSS usage. This is further

supported by the absence of consistent changes in expression of

splicing regulators between white and beige adipocytes, and the

minor overlap with splicing-driven alternative transcript expression
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described for adrenergic-induced adipocyte beiging (Supplementary

Figures 3, 4) (28). We thus examined the epigenetic state of white and

beige specific TSSs in mature adipocytes by ChIP-seq. Enrichment

profiles for the active histone marks H3K4me3 and H3K27ac at beige

TSSs are similar in beige and white adipocytes (Figures 3B, C,

Supplementary Figures 5A, B), indicating that beige TSSs are already
B C

D E

F G
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A

FIGURE 3

Splice variants arise from differential TSS usage. (A) Proportion of differentially spliced junctions (DSJs) mapping to the first intron of a transcript,
arranged by annotation database. (B) Enrichment of H3K4me3 ChIP-Seq (log ratio of input) at differential TSSs in white and beige adipocytes. TSSs
belonging to non-significant DEGs and non-significant DSGs are used as a control (n=23,529). (C) Quantification of H3K4me3 enrichment around
the TSS (-1 kb/+2 kb), scaled within each condition (ns, non-significant, ** p < 0.01: ***p < 0.001; two-way ANOVA and Wilcoxon test with
Holmberg adjustment). (D) Top 10 differentially enriched transcription factor binding sites at beige vs white TSSs (-2 kb/+0.5 kb) identified by
Unibind. (E) Proportion of promoters (TSSs -2 kb/+0.5 kb) that intersect PPARg ChIP-Seq peaks (beige promoters n=170; white promoters n=174)
and promoters from non-significant DSGs and DEGs (n=12 257). Overlapping white and beige promoter regions are shown separately (n=63). (F, H)
PPARg and MED1 ChIP profiles around white (left panel) and beige (right panel) TSSs. (G, I) Quantification of PPARg (TSS ± 250 bp) and MED1 (TSS ±
500 bp) ChIP enrichment around white, beige, and non-significant TSSs (***p < 0.0001; two-way ANOVA and Wilcoxon test with
Holmberg adjustment).
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in an active state in white adipocytes. In line, we find a similar bimodal

H3K4me1 enrichment around white and beige TSSs, and no

enrichment for the repressive histone mark H3K27me3 is detected at

beige TSSs in white adipocytes (Supplementary Figures 5C-G). Hence,

differential TSS usage in beige vs white adipocytes is not driven by a

transition in chromatin state.
3.4 Beige-specific TSSs are bound by
PPARg in beige and white adipocytes

We reasoned that beige TSS activation might result from

differential binding of transcription factors. Using Unibind’s

binding site predictions (39), we find PPARg and CEBPa
transcription factor binding sites as the most differentially

enriched in beige compared to white TSSs (Figure 3D). Analysis

of PPARg ChIP-Seq data in human white and beige adipocytes (33)

confirms that a higher proportion of beige TSSs overlap PPARg
peaks compared to white TSSs and non-significantly enriched TSSs

(Figure 3E). Accordingly, average PPARg enrichment levels are

higher at beige TSSs in both beige and white adipocytes (Figures 3F,

G). Since cell type-specific enhancers are enriched for MED1

binding in beige vs white adipocytes (33), we examined MED1

binding in each TSS subclass (Figure 3H). Similar to PPARg, MED1

signals are significantly enriched at beige vs white TSSs (Figure 3I).

However, rosiglitazone treatment does not result in increased

MED1 binding, indicating that promoter-enhancer contacts at

beige TSSs are also established in white adipocytes (Figures 3H,

I). Altogether, our results show that beige-specific TSSs are in an
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active chromatin state and bound by PPARg in both white and beige
adipocytes, implying that rosiglitazone activation of PPARg triggers
cell type-specific isoform expression in beige adipocytes.
3.5 Distinct PPARg isoform balance
between white and beige adipocytes

LeafCutter analysis reveals that white and beige adipocytes

express distinct proportions of PPARG isoforms (see Figure 2A).

Indeed, exon junction reads spanning PPARG1 exon 1 and 2 are

overrepresented in white adipocytes, while PPARG2 first exons are

most expressed in beige adipocytes (Figures 4A-C). In agreement

with whole TSS analyses, PPARG1 and PPARG2 TSSs are similarly

enriched with broad domains of H3K4me3 and H3K27ac, marking

active promoters (Figure 4B). However, only the PPARG2 TSS region

shows an enrichment for PPARg transcription factor binding and

several MED1 peaks, suggestive of promoter-enhancer interaction

(Figure 4B). Interestingly, PPARG2 TSS activation does not result in a

global increase in PPARG expression in beige adipocytes (Figure 4D),

but rather in a switch in the proportion of PPARG isoforms as

confirmed by isoform-specific RT-qPCR (Figure 4E). Importantly, we

show that both isoforms of PPARg are readily detected at the protein

level (Figure 4F), and rosiglitazone treatment results in a shift in

PPARg isoform expression with PPARg2 becoming the main isoform

in all ASC lines (Figure 4G), while total PPARg protein expression

remains unchanged (Figure 4H). Thus, altered balance of PPARg
isoform expression in beige adipocytes may underlie the activation of

beige-specific TSSs upon rosiglitazone treatment.
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FIGURE 4

Beige specific isoform expression of PPARG. (A) Schematic representation of differential splicing pattern across the PPARG gene. (B) Integrative
genomics viewer (IGV) tracks showing an overlay of S1-S6 RNA-seq reads on the forward strand, PPARg and MED1 ChIP-seq over input ratios (33),
and H3K4me3 and H3K27ac signals across PPARG1 and PPARG2 TSSs in beige vs white adipocytes. (C) DPSI on exon1-exon2 junction for PPARG1
(left panel) and PPARG2 (right panel) in white vs beige adipocytes derived from 6 ASC lines (p < 0.0001; LeafCutter). (D) Total PPARG expression level
(FPKM) in white vs beige adipocytes (**p < 0.01, ns, non-significant; eBayes method, limma package; n=3) (E) Relative expression of PPARG1 (upper
panel) and PPARG2 (lower panel) assessed by qPCR using isoform specific primers (*p < 0.05, **p < 0.01, ***p < 0.001; two-way ANOVA with
Tukey’s multiple comparison; n=3). (F) Representative western blot and (G, H) quantification of PPARg isoforms and total protein expression
normalized to gTubulin (*p < 0.05, **p < 0.01, ***p < 0.001; two-way ANOVA with Sidák’s multiple comparisons test; n=3).
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3.6 Beige cryptic PEMT isoform is
efficiently translated

Amongst highly significant DSGs is PEMT, encoding the

phosphatidylethanolamine methyltransferase (Figures 5A–C; see

Figure 2A), an enzyme found at mitochondria-associated

membranes and involved in the regulation of thermogenesis in

vivo (40). PEMT encodes two major protein isoforms: short PEMT-

S is liver-specific and highly active, while the long variant PEMT-L

has an additional 37 N-terminal amino acids, reduced activity, and

is expressed at low levels across a broad range of tissues (41)

(Figure 5D; Supplementary Figures 6 and 7). Unlike most DSGs,

PEMT expression is strongly induced in beige adipocytes

(Figure 5E; see Figure 2C) and RNA-seq read alignment suggests

this is driven by upregulation of a novel isoform (Figures 5A, B).

Indeed, LeafCutter identifies a switch from PEMT-L to a cryptic

isoform of PEMT (hereafter referred to as PEMT-C) in beige

adipocytes, with a first exon-exon junction matching a predicted

transcript from RefSeq (XM_006721418.5) (Figures 5A-C), with a

TRIFID functionality score similar to that of the PEMT-L isoform

(see Figure 2F). However, no RNA-seq reads map over the first 250

bp of XM_006721418.5’s first intron, suggesting PEMT-C rather

arises from a second downstream TSS, which is readily detected in

Fantom robust CAGE-seq clusters (Figure 5B, right panel), and is a

prominent PEMT TSS in differentiated adipocytes based on

Fantom5 CAGE-Seq signal (Supplementary Figure 8). While

PEMT-C promoter is similarly bound by PPARg and MED1 in

white and beige adipocytes, its upregulation in beige adipocytes

correlates with an enrichment for the active promoter marks
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H3K4me3 and H3K27ac around its TSS (Figure 5B); this implies

that the recruitment of chromatin modifiers underlies PEMT-C

isoform expression in beige adipocytes.

Analysis of PEMT isoform expression using primers spanning

isoform-specific exon junctions reveals that PEMT upregulation in

beige adipocytes results from the induction of PEMT-C isoform

only, while PEMT-L expression remains constant (Figure 5F).

Importantly, only one PEMT isoform is detected at the protein

level, with a molecular weight similar to that of the canonical

PEMT-S isoform (Figure 5F). In agreement with RNA-seq and

qPCR analysis, we find PEMT protein expression is significantly

increased in beige adipocytes derived from all 6 ASC lines

(Figures 5G, H). Thus, beige adipocytes express high levels of a

novel PEMT isoform variant which is structurally close to the highly

active PEMT-S variant (Figure 5D). Altogether, our results indicate

that differential alternative TSS usage significantly impacts the beige

adipocyte proteome.
4 Discussion

An increasing number of studies indicate that expression of

alternative transcript isoforms plays an important role in adipose

tissue physiology and pathophysiology (42). By analyzing

differential gene and transcript expression in white and beige

adipocytes differentiated from 6 human ASC lines, we uncover

consistent switches in splicing patterns for more than 500 genes

between the two lineages, likely resulting in the expression of

functionally distinct protein isoforms.
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FIGURE 5

Beige-specific isoform expression of PEMT. (A) Schematic representation of differential splicing pattern across PEMT gene. (B) Integrative genomics
viewer (IGV) tracks showing an overlay of S1-S6 RNA-seq reads on the reverse strand, PPARg and MED1 ChIP-seq over input ratios (33), H3K4me3
and H3K27ac signals and Fantom CAGE-seq peaks across PEMT TSSs in white vs beige adipocytes. (C) DPSI on exon1-exon2 junction for PEMT-L
(left panel) and PEMT-C (right panel) in beige vs white adipocytes derived from 6 ASC lines (p < 0.0001; LeafCutter). (D) Alphafold models for PEMT-
S, PEMT-L and PEMT-C isoforms. The additional N-terminal amino acids in PEMT-L and PEMT-C are highlighted in yellow. (E) Total PEMT expression
level (FPKM) in white vs beige adipocytes (***p < 0.0005, eBayes method, limma package, n = 3). (F) Relative expression of PEMT-C (left panel) and
PEMT-L (right panel) assessed by qPCR using isoform specific primers (***p < 0.001, ns, non-significant, two-way ANOVA with Tukey’s multiple
comparison, n = 3). (G) Representative western blot and (H) quantification of PEMT protein expression normalized to gTubulin (*p < 0.05, **p < 0.01,
***p < 0.001; two-way ANOVA with Sidák’s multiple comparisons test; n=3).
frontiersin.org

https://doi.org/10.3389/fendo.2024.1395750
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hazell Pickering et al. 10.3389/fendo.2024.1395750
Alternative splicing is a major driver of transcription

heterogeneity, and splicing variations linked to age, sex, and

ancestry contribute to phenotypic diversity (43). Our approach

based on paired, parallel white and beige adipose differentiation

from 6 unrelated subjects circumvents the issue of interindividual

variability within the subpopulation. We identified splicing events

using LeafCutter, a computational tool that estimates differential

splicing directly from splice junction reads (15). While this approach

has the major advantage of being annotation-independent, thus

allowing cryptic event discovery, it also presents some limitations.

Indeed, it cannot identify retained introns and relies on high read

coverage across exon junctions, limiting splicing event identification

for lowly expressed genes. However, the fact that only a fraction of

DSGs are also differentially expressed suggests that variation in

expression levels is not a strong bias in our dataset. In addition,

interpretation of individual exon junction events is complicated by

the relativization of PSI within clusters, which may link adjacent

genes due to low coverage readthrough transcripts. However, linked

genes are clearly identified in the output. Thus, by using an exon

junction approach combined with stringent cut offs, we identify a set

of robust, high-confidence splicing patterns characterizing white vs

beige adipocytes in our system.

Recent evidence has highlighted a potential role for alternative

splicing in the regulation of noradrenergic cAMP-mediated adipocyte

beiging (25, 28). Indeed, sustained adrenergic stimulation elicits a

global downregulation of splicing factors' gene expression in the

pathological context of pheochromocytoma (28). Interestingly, such

transcriptional remodeling of the splicing machinery was not observed

upon rosiglitazone-induced beiging, a discrepancy that likely results

from inherently different transcriptomic responses elicited by PPARg-
and cAMP-induced adipocyte browning (44). Instead, we find that

differential isoform expression upon rosiglitazone-induced beiging

mostly results from alternative TSS usage, rather than from

alternative splicing of downstream exons. Nonetheless, both studies

point to differential isoform expression as an important regulatory

mechanism for thermogenic adipocyte specification and activation.

Rosiglitazone is a PPARg agonist, and it is therefore not

unexpected to find enriched PPARg binding at beige-specific

TSSs. Sequencing of nascent RNA in rosiglitazone-treated 3T3-L1

adipocytes highlights a redistribution of transcription towards

PPARg-driven enhancers (45). Intriguingly, rosiglitazone

treatment also triggers gene downregulation through decreased

coactivator binding at sites devoid of PPARg, a mechanism which

could account for the absence of overall gene upregulation upon

PPARg-dependent TSS activation, as we observe for PPARG itself.

The functional significance of the switch in PPARg protein isoform

expression we observe in human beige adipocytes is supported by a

recent study showing the differential effect of Pparg1 and Pparg2
deficiency on weight gain and thermogenic capacity (46). Indeed,

mice with selective deficiency of PPARg1 maintain body

temperature better than PPARg2-deficient mice and are protected

against rosiglitazone induced weight gain. These results and ours

point to PPARg2 as the main PPARg isoform driving adipocyte

thermogenic response to rosiglitazone.
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We find that PPARg agonist-induced beiging triggers a

consistent and strong upregulation of a new PEMT isoform.

PEMT is most active in the liver where it is expressed as a short

isoform, while its activity is thought to be only marginal in other

tissues where the longer variant is expressed. PEMT-deficient mice

are cold intolerant, a phenotype which has been linked to both

compromised hepatic glucose production (40) and to lack of UCP1

expression in the brown adipose tissue (47). While the effect of

PEMT deficiency in white adipose tissue has not been investigated,

in vitro studies suggest that PEMT upregulation is required for

efficient adipogenic differentiation (48). Our data together with

public datasets identifies an adipose-specific TSS for PEMT, leading

to the expression of a cryptic isoform which only differs by 16

additional amino acids from the highly active, liver specific PEMT-

S. While the specific activity of this isoform needs to be examined,

its strong upregulation in beige adipocytes is likely to alter the

phosphatidylcholine to phosphatidylethanolamine ratio, which may

modulate mitochondrial dynamics and function (49). Interestingly,

the PEMT gene contains a splice junction quantitative trait loci

(sQTL) which is associated with triglyceride levels and waist-to-hip

ratio in genome-wide association studies (50). The same study

identified numerous sQTLs associated with cardiometabolic traits

in subcutaneous adipose tissue, supporting the contribution of

alternative isoform usage to metabolic health. Further studies

involving single-nuclei, isoform-level analysis of transcript

expression in human adipose tissue will be needed to further

establish the physiological relevance of beige-specific

transcript expression.
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37. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The
Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. (2015)
1:417–25. doi: 10.1016/J.CELS.2015.12.004

38. Perdikari A, Leparc GG, Balaz M, Pires ND, Lidell ME, Sun W, et al. BATLAS:
deconvoluting brown adipose tissue. Cell Rep. (2018) 25:784–797.e4. doi: 10.1016/
j.celrep.2018.09.044
Frontiers in Endocrinology 12
39. Puig RR, Boddie P, Khan A, Castro-Mondragon JA, Mathelier A. UniBind: maps
of high-confidence direct TF-DNA interactions across nine species. BMC Genomics
(2021) 22:482. doi: 10.1186/s12864-021-07760-6

40. Gao X, van der Veen JN, Fernandez-Patron C, Vance JE, Vance DE, Jacobs RL.
Insufficient glucose supply is linked to hypothermia upon cold exposure in high-fat
diet-fed mice lacking PEMT. J Lipid Res. (2015) 56:1701–10. doi: 10.1194/JLR.M059287

41. Morita SY, Takeuchi A, Kitagawa S. Functional analysis of two isoforms of
phosphatidylethanolamine N-methyltransferase. Biochem J. (2010) 432:387–98.
doi: 10.1042/BJ20100490

42. Naing YT, Sun L. The role of splicing factors in adipogenesis and thermogenesis.
Mol Cells. (2023) 46:268. doi: 10.14348/MOLCELLS.2023.2195
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