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children and adolescents
in the NHANES 2015–2016
Ziqin Liu*

The Department of Endocrinology Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
Background: The association between 25(OH)D and pubertal timing has not

been well studied. The aim of this study was to assess the relationship between

25(OH)D levels and pubertal timing in children.

Methods: Participants aged 6–14 years who had available nutritional and serum

sex hormone (total testosterone (TT) and estradiol (E2)) information (n =1318)

were included. We conducted a cross-sectional analysis of the associations

between 25(OH)D and sex steroid hormones among children in the National

Health and Nutrition Examination Survey, 2015–2016. Puberty was indicated by

high levels of steroid hormones (TT≥50 ng/dL in men, E2≥20 pg/ml in women)

or menarche.

Results: Serum 25(OH)D and pubertal status showed the same trend in both

males and females. In the male population, the OR values of serum 25(OH)D

between 50 and <75 and ≥75 nmol/L were 0.52 (0.25, 1.08) and 0.64 (0.23, 1.75),

respectively, compared with serum 25(OH)D<50 nmol/L. The OR of serum 25

(OH)D ≥50 nmol/L compared with <50 nmol/L was 0.54 (0.26, 1.10), and the P

value was statistically significant (P=0.048). In the female population, when the

serum 25(OH)D concentration was <50 nmol/L, the ORs corresponding to a

serum 25(OH)D concentration between 50 and <75 and ≥75 nmol/L were 0.53

(0.29, 0.98) and 0.50 (0.19, 1.30), respectively. The OR of serum 25(OH)D≥50

nmol/L compared with <50 nmol/L was 0.52 (0.19, 0.96), and the P value was

statistically significant (P=0.037).

Conclusions: A lower 25(OH)D level was associated with earlier puberty in

both girls and boys. There was a negative association between 25(OH)D

concentrations and pubertal timing.
KEYWORDS

25(OH)D, pubertal timing, precocious puberty, national health and nutrition
examination survey, NHANES
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1 Introduction

Vitamin D and vitamin D receptor (VDR)-activating enzymes

are expressed throughout the hypothalamus–pituitary–gonadal

(HPG) axis (1, 2), and vitamin D is metabolized in the

developing gonads (1, 3), suggesting a local role for vitamin D

during development. The serum 25-hydroxyvitamin D (25(OH)D)

concentration is used to evaluate individual vitamin D status and is

the best indicator of vitamin D stores; indeed, it is the main

circulating form of vitamin D and has a half-life of 2–3 weeks (4).

The biological actions of vitamin D are mediated through the VDR,

which is distributed across various tissues, including the skeleton

and parathyroid glands, as well as reproductive tissues. The rich

presence of the VDR in the hypothalamus is consistent with the

distribution of other neurosteroids (5), and the VDR has been

found in the human pituitary gland (6) as well as in the human

endometrium (7). In women, VDR mRNA has been shown to be

expressed in the ovaries (8). Peripubertal vitamin D3 sufficiency is

important for an appropriately timed pubertal transition and

maintenance of normal female reproductive physiology, and

vitamin D3 is a key regulator of neuroendocrine and ovarian

physiology (9). In men, VDR was detected in human testicular

tissue homogenates using titrated vitamin D (10), and VDR was

detected in human sperm, with binding sites in the nucleus and the

midpiece of the sperm (11). The role of 25(OH)D in the activation

of the HPG axis and in influencing the timing of puberty has been

reported (12, 13). Furthermore, 25(OH)D has been found to be

involved in the functioning of the reproductive system in several

studies (1, 14, 15).

Puberty activates the HPG axis, leading to psychological and

physical maturation, accelerated linear growth, the development of

secondary sexual characteristics, and gonadal maturation (16).

Common factors affecting pubertal development include genetics,

environment, diet, and nutrition (17). Among the nutritional

factors, vitamin D is very important. Vitamin D deficiency and

insufficiency are global health issues that affect more than one

billion children and adults worldwide (18). The role of vitamin D

deficiency in puberty or precocious puberty remains controversial.

Considering that there are only a few relevant studies, which

had small sample sizes and mostly included girls but not boys, we

performed a literature search to provide evidence for the association

between vitamin D and pubertal timing. To fill these knowledge

gaps, we analyzed data on 6- to 14-year-old participants from the

National Health and Nutrition Examination Survey (NHANES)

and explored the effects of vitamin D status on puberty.
2 Methods

The datasets generated and analyzed in the present study are

available at the NHANES website (https://www.cdc.gov/nchs/

nhanes/index.htm). The NHANES is a nationally representative

survey of the civilian, noninstitutionalized US population that was

conducted by the National Center for Health Statistics (NCHS) of

the Centers for Disease Control and Prevention (CDC). We
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downloaded data from one cycle of the NHANES from 2015 to

2016. The data contained five parts: demographic data, dietary data,

examination data, laboratory data, and questionnaire data. All

procedures and study procedures were approved by the NCHS

Ethics Review Board, and written informed consent was obtained

from all participants (19).
2.1 Study design and population

A total of 1318 participants were included in this study.

Participants who were younger than 6 years or older than 14

years of age (n = 7982) or who had missing data (n = 671) were

excluded, while 1318 participants from the 2015–2016 NHANES

who had available data on serum total testosterone (TT), estradiol

(E2) and sex hormone binding globulin (SHBG) were included. The

flowchart of the participant selection process is presented

in Figure 1.
2.2 Measurement of sex
hormone indicators

The test principle for the CDC method utilizes high-

performance liquid chromatography−tandem mass spectrometry

(HPLC−MS/MS) for the quantitative detection of 25(OH)D. Serum

25(OH)D levels were categorized according to the Endocrine

Society Clinical Practice guidelines (17) as follows: <49.99 nmol/L

was considered to indicate vitamin D deficiency; 50.00–74.99 nmol/

L was considered to indicate vitamin D insufficiency; and ≥75.00

nmol/L was considered to indicate vitamin D sufficiency (20).

Serum TT and E2 levels were measured using isotope dilution

high-performance liquid chromatography tandem mass

spectrometry (ID-LC−MS/MS), while the concentrations of SHBG

were quantified based on the reaction of SHBG with antibodies and

chemiluminescence measurements of the reaction products via a

photomultiplier tube. The lower limits of detection (LLODs) for TT,

E2 and SHBG were 0.75 ng/mL, 2.994 pg/m and 0.800 nmol/l,

respectively. Puberty was indicated by high levels of steroid

hormones (TT≥50 ng/dL in men, E2≥20 pg/ml in women) or

menarche (21).
2.3 Statistical analysis

Descriptive statistics were used to analyze the characteristics and

distribution of the population. Continuous variables are presented as

the means ± standard deviations and were compared with t tests,

whereas categorical variables are presented as counts (%s) and were

compared with the c2 test. The serum 25(OH)D concentration was

included in the linear and multivariate logistic regression models as a

continuous variable (increase in each SD) and as a categorical variable

(tertiles, with the first tertile as the reference group). The adjusted

variables for multivariate regression analysis were age, city of birth,

serum high-density lipoprotein (HDL) level, serum total cholesterol
frontiersin.org
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(TC) level, and body mass index (BMI), BMI-SDS (obese: mean BMI

SDS >+ 2SD, nonobese: mean BMI<=+ 2SD) and race. The

downloaded data were visualized and analyzed using the statistical

package R (R.4.3.1), with a two-tailed P<0.05 considered to indicate

statistical significance.
3 Results

A total of 1318 participants (male: 711, female: 607) were

included in this study, for which the male-to-female ratio was

1.17:1. The participant characteristics are shown in Table 1.

The median levels of serum vitamin D were 65.0 ± 16.7 nmol/L

and 62.8 ± 19.2 nmol/L in pubertal males and females and 58.3 ±

18.5 nmol/L and 53.8 ± 21.9 nmol/L in prepubertal males and

females, respectively.

Compared with prepubescent children, male children at

puberty were much older; were from other countries; had a

higher education level (grade 5 and above); had lower HDL

(p<0.001), TC (p<0.001), and serum 25(OH)D levels (p<0.001);

and had a greater BMI (p<0.001) and waist circumference

(p<0.001). Female children at puberty were older than were

those at prepuberty; were from other countries; had higher

education levels (grade 5 and above); had lower levels of TC

(<0.001), low-density lipoprotein (LDL) (<0.032), and serum 25

(OH)D (<0.001); and had greater BMI (<0.001) and waist

circumference (<0.001).

Regression analysis of serum 25(OH)D and pubertal status

showed that after adjusting for relevant confounders (age, city of

birth, education level, serum HDL levels, serum TC and BMI, race),

there was no statistically significant association between one SD and

the third quartile of serum 25(OH)D and pubertal status in either

the male or female population. Serum 25(OH)D was further

grouped according to clinical criteria <50, 50-<75 and ≥75 nmol/
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L. In the male population, the OR values of serum 25(OH)D and

pubertal status between 50 and <75 and ≥75 nmol/L were 0.52 (0.25,

1.08) and 0.64 (0.23, 1.75), respectively, compared with serum 25

(OH)D<50 nmol/L. The OR of serum 25(OH)D ≥50 nmol/L

compared with <50 nmol/L was 0.54 (0.26, 1.10), and the P value

was statistically significant (P=0.048). In the female population,

when the serum 25(OH)D concentration was <50 nmol/L, the ORs

corresponding to a serum 25(OH)D concentration between 50 and

<75 and ≥75 nmol/L were 0.53 (0.29, 0.98) and 0.50 (0.19, 1.30),

respectively. The OR of serum 25(OH)D≥50 nmol/L compared with

<50 nmol/L was 0.52 (0.19, 0.96), and the P value was statistically

significant (P=0.037). The results are shown in Table 2. The RCS

revealed an inverse correlation between the serum 25(OH)D

concentration and the odds of having reached puberty (Figure 2).

Subgroup analysis of 25(OH)D was performed with forest plots of

adolescent states, and no significant interaction factors were

found (Figure 3).
4 Discussion

In this study, the associations between 25(OH)D and pubertal

timing were investigated, and a negative association was found

between 25(OH)D and pubertal timing. This association was

particularly strong among girls. In girls, 25(OH)D deficiency or

insufficiency was associated with earlier puberty, and 25(OH)D

deficiency was more likely to be associated with earlier puberty in

boys. These findings could lead to clinical and dietary

recommendations for individuals with 25(OH) deficiency and

insufficiency in the childhood population. To our knowledge, this

was the largest sample size in which the link between serum 25(OH)D

levels and pubertal timing was examined in both males and females.

Puberty is the physiological process whereby adolescents reach

sexual maturity and become capable of reproduction. Puberty onset
FIGURE 1

Flow chart of study participants.
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varies naturally among individuals; in addition to genetic and

environmental factors, the importance of nutritional factors, such

as iron, zinc, calcium, and vitamin D, increases during puberty (4).

25(OH)D is a key regulator of neuroendocrine and ovarian

physiology (5). However, the relationship between 25(OH)D

status and pubertal timing is controversial. The findings of several

studies are consistent with our results. For example, in one study,

the probability of menarche was twice as high in vitamin D-

deficient girls than in girls who were vitamin D sufficient. In girls,

vitamin D deficiency has been shown to decrease the age of

menarche by ∼10 months compared with that in girls with

sufficient vitamin D (4, 22). A systematic meta-analysis of six

studies showed that vitamin D-deficient individuals were more

likely to develop precocious puberty (OR = 2.02 [95% confidence
Frontiers in Endocrinology 04
interval 1.65–2.46]) (4, 23). One retrospective study collected data

from 221 girls with idiopathic central precocious puberty (ICPP)

and 144 girls without ICPP, and the serum 25(OH)D levels in the

ICPP group were significantly lower than those in the non-ICPP

group (p < 0.001). A low serum 25(OH)D is an independent risk

factor for ICPP (4, 24). Another meta-analysis showed that the

average serum vitamin D concentration in individuals with

precocious puberty was 1.16 ng/mL, which was lower than that in

the control group (12).

However, in adult female mice, peripubertal 25(OH)D

deficiency was associated with delayed puberty (5). In a study

involving 713 (25.0%) Chinese men, participants with

hypogonadism had significantly lower 25(OH)D levels and

greater BMIs (25). In this study, both adolescent boys and adults
TABLE 1 Baseline demographic characteristics of the study population.

Pubertal state(male)
P

Pubertal state(female)
P

no yes no yes

number 485 226 391 216

age 8.7±1.9 12.8±1.2 <0.001 8.2±1.7 11.5±1.2 <0.001

Total family income($) 10.6±11.9 10.6±12.5 0.983 11.9±16.3 10.6±13.7 0.338

Country of birth 0.012 0.022

Unite State 466(96.1) 206(91.2) 373(95.4) 195(90.3)

Other country 19(3.9) 20(8.8) 18(4.6) 21(9.7)

Race 0.360 0.251

Mexican American 104(21.4) 47(20.8) 102(26.1) 62(28.7)

Other Hispanic 80(16.5) 30(13.3) 61(15.6) 25(11.6)

Non-Hispanic White 131(27.0) 66(29.2) 102(26.1) 45(20.8)

Non-Hispanic Black 98(20.2) 57(25.2) 77(19.7) 50(23.1)

Other Race 72(14.8) 26(11.5) 49(12.5) 34(15.7)

Education (%) <0.001 <0.001

Less than 5th grade 404(83.3) 16(7.1) 358(91.8) 55(25.5)

5th grade-9th 81(16.7) 210(92.9) 32(8.2) 161(74.5)

Biochemical index

HDL.mmol/L 1.5±0.4 1.4±0.3 <0.001 1.4±0.4 1.4±0.4 0.269

TC.mmol/L 4.1±0.7 3.8±0.7 <0.001 4.1±0.7 3.9±0.7 <0.001

LDL.mmol/L 1.9±0.5 2.1±0.7 0.360 2.8±0.5 2.2±0.8 0.032

Tg.mmol/L 0.5±0.2 0.8±0.7 0.176 1.2±0.4 0.8±0.5 0.068

VD.nmol/L 65.0±16.7 58.3±18.5 <0.001 62.8±19.2 53.8±21.9 <0.001

Physical examinations

BMI.kg/m2 18.9±4.3 22.6±5.8 <0.001 18.9±4.4 22.1±4.9 <0.001

BMI SDS <0.001 0.01

Obese (BMI SDS>2), n(%) 9(1.9) 26(11.5) 9(2.3) 15(6.9)

Nonobese (BMI SDS≤2), n(%) 476(98.1) 200(88.5) 382(97.7) 201(93.1)

Waist circumference.cm 65.9±12.7 78.7±15.5 <0.001 65.0±12.3 75.6±11.2 <0.001
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were included. In another cross-sectional study, although females

who had vitamin D deficiency were more likely to report an early

age of menarche (i.e., at or before 9 years of age), this relationship

disappeared after controlling for age at screening, race/ethnicity and

BMI (4, 26). A retrospective study of 145 girls monitored for ICPP

revealed that the mean 25(OH)D concentration was 27.6 ± 17.3 ng/

mL, without any correlation with the pubertal characteristics of the

subjects (4, 27). Another cross-sectional study showed no

significant differences in 25OHD concentrations between ICPP

patients and control participants. There were no significant

differences in 25(OH)D concentrations between the CPP (25.4 ±
Frontiers in Endocrinology 05
8.6 ng/mL) and control groups (28.2 ± 7.4 ng/mL) (28). However,

most studies have described the association between vitamin D and

menarche, which occurs in the middle or late stages of puberty.

Therefore, one possible explanation for the differences between

studies is that our study focused on the association between

pubertal status and vitamin D levels in almost healthy participants.

The onset of puberty varies between males and females. Almost

all previously published studies included only girls. However,

whether vitamin D levels affect the occurrence of puberty and its

role in males have been less studied. Our study revealed that the OR

of serum 25(OH)D≥50 compared with <50 was 0.54 (0.26, 1.10),
TABLE 2 Logistic regression analysis of serum 25(OH)D and pubertal status.

VD (nmol/L) N Case (%)
Unadjusted model Adjusted model

OR (95%CI) P OR (95%CI) P

male

Increase by 1SD 711 226(31.8) 0.66(0.55,0.79) <0.001 0.86(0.62,1.19) 0.364

Tertiles

<52.5 199 92(46.2) ref ref

52.5-66.8 250 72(28.8) 0.47(0.32,0.70) <0.001 0.56(0.27,1.16) 0.118

>66.8 262 62(23.7) 0.36(0.24,0.54) <0.001 0.64(0.29,1.43) 0.280

Trend test <0.001 0.274

Categories 1

<50 156 74(47.4) ref ref

50-<75 397 113(28.5) 0.44(0.30,0.65) <0.001 0.52(0.25,1.08) 0.081

≥75 158 39(24.7) 0.36(0.22,0.59) <0.001 0.64(0.23,1.75) 0.387

Trend test <0.001 0.291

Categories 2

<50 156 74(47.4) ref ref

≥50 555 152(27.4) 0.42(0.29,0.60) <0.001 0.54(0.26,1.10) 0.048

female

Increase by 1SD 607 216(35.6) 0.63(0.53,0.76) <0.001 0.82(0.62,1.07) 0.145

<52.5 239 119(49.8) ref ref

52.5-66.8 188 59(31.4) 0.46(0.31,0.69) <0.001 0.63(0.32,1.23) 0.177

>66.8 180 38(21.1) 0.27(0.17,0.42) <0.001 0.53(0.25,1.16) 0.111

Trend test <0.001 0.095

Categories 1

<50 200 108(54.0) ref ref

50-<75 298 83(27.9) 0.33(0.23,0.48) <0.001 0.53(0.29,0.98) 0.042

≥75 109 25(22.9) 0.25(0.15,0.43) <0.001 0.50(0.19,1.30) 0.154

Trend test <0.001 0.068

Categories 2

<50 200 108(54.0) ref ref

≥50 407 108(26.5) 0.31(0.22,0.44) <0.001 0.52(0.29,0.96) 0.037
Adjusted variables: age, city of birth, race, education level, serum high density lipoprotein, serum total cholesterol, BMI and BMI-SDS.
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and the P value was statistically significant (P=0.048) in males,

which was the same trend as that in females. Treatment with active

vitamin D3 and VDR showed that VD3/VDR had a positive

regulatory effect on Cyp11a1 expression and testosterone

secretion. The VDR promotes testosterone synthesis in male mice

by upregulating Cyp11a1 expression, which plays an important role

in male reproduction (29). Testosterone is produced by Leydig cells

and is responsible for male sex characteristics. LH induces

steroidogenesis by increasing cyclic AMP production and the

intracellular concentration of calcium ions (Ca2+) in Leydig cells,

and 1,25-dihydroxyvitamin D3 might influence this calcium-

dependent LH response (30, 31).

The prevalence of precocious puberty is sexually dimorphic and

greater in girls than in boys (15–20 girls for every boy) (32). Based

on our findings, it is possible that both males and females require
Frontiers in Endocrinology 06
vitamin D during puberty. Recently, several studies have shown that

overweight and obesity are significantly associated with increased

odds of ICPP among girls (33, 34). In a cross-sectional study of 220

females and 164 males (aged 7–16 years), vitamin D deficiency was

found in 49% of the total patients and was significantly more

prevalent in females than in males (33.1% in females; 15.9% in

males, P < 0.001). Puberty is an additional risk factor for vitamin D

deficiency, especially in girls and obese children (35). Our study

showed that even after adjusting for BMI and BMI-SDS, vitamin D

still plays an important role in pubertal timing, and that trend

occurs in both sexes.

25(OH)D deficiency is prevalent worldwide, but the optimal

concentration of serum 25(OH)D has not been determined. There

are no data on how much vitamin D is required to prevent vitamin

D deficiency in children aged 1–9 years, and no scientific evidence
A B

FIGURE 2

VD and the restricted cubic spline curve of pubertal state.
FIGURE 3

25(OH)D (each 1-SD increase) and pubertal state was analyzed by forest plots.
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to date has demonstrated an increased requirement for vitamin D

for children aged 9–18 years (24). Our study showed that vitamin D

supplementation during peripuberty is equally important for males

and females. The supplemental doses for males and females may

need to be individualized.

There are several limitations to our study. First, since this was

an observational study, cause and impact could not be determined.

In addition, we did not perform a more detailed, stratified analysis

by stage of puberty, and this subgrouping may have had a critical

influence on the results.
5 Conclusion

After multivariate adjustment, there was a negative association

between 25(OH)D concentrations and pubertal timing. These

results highlight the potential advantages of monitoring and

evaluating 25(OH)D status during puberty. The systemic effects

of 25(OH)D have added another dimension to the endocrinology

of puberty.
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