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Metabolic syndrome (MetS) and cognitive dysfunction pose significant

challenges to global health and the economy. Systemic inflammation,

endocrine disruption, and autoregulatory impairment drive neurodegeneration

andmicrocirculatory damage in MetS. Due to their unique anatomy and function,

astrocytes sense and integrate multiple metabolic signals, including peripheral

endocrine hormones and nutrients. Astrocytes and synapses engage in a

complex dialogue of energetic and immunological interactions. Astrocytes act

as a bridge between MetS and cognitive dysfunction, undergoing diverse

activation in response to metabolic dysfunction. This article summarizes the

alterations in astrocyte phenotypic characteristics across multiple pathological

factors in MetS. It also discusses the clinical value of astrocytes as a critical

pathologic diagnostic marker and potential therapeutic target for MetS-

associated cognitive dysfunction.
KEYWORDS
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1 Introduction

MetS is a syndrome of multiple metabolic disorders that seriously jeopardize

cardiovascular health. MetS leads to myocardial metabolic, hemodynamic, and

microcirculatory dysfunction by activating the sympathetic nervous system, the renin-

angiotensin system, and pro-inflammatory adipokines (1, 2). Combining several

recognized diagnostic criteria, the main diagnostic features of MetS include abdominal

obesity, dyslipidemia, hyperglycemia, insulin resistance (IR), and elevated blood pressure

(3–10). The multivessel risk factors of MetS jeopardize the cerebral vasculature and reduce

cerebral perfusion while accelerating neuronal cell senescence and degeneration (11, 12).

Evidence from diverse studies supports the association of MetS with vascular dementia and

Alzheimer’s disease dementia (13). Various components of MetS have been found in cross-

sectional and longitudinal studies to cause decreases in learning memory, attention,
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visuospatial and executive functions, and processing speed (14, 15).

A 15-year follow-up analysis of 176,000 non-demented participants

found that MetS led to a 12% increased risk of developing all-cause

dementia (16).

Astrocytes are the primary glial cells and are essential for

maintaining brain homeostasis. Astrocytes endfeet envelop

neurons and the cerebral vasculature, linking cerebrovascular

nutrient uptake transport to high oxygen- and sugar-dependent

synaptic activity. Astrocytes shape synapses and their surrounding

microenvironment, regulate cerebrovascular structure and

perfusion, and influence neuroinflammation. Astrocytes become

“reactive astrocytes” when stimulated by metabolic changes (e.g.,

glucose and lipid metabolism) (17). Reactive astrocytes are

traditionally thought to have a double-edged role in cytotoxicity

and neuroprotection (18). Cytotoxicity of astrocytes is defined as

driving pathologic progression through the release of toxic factors

such as inflammatory cytokines. Neuroprotective effects are usually

heavy in ischemic injury, and reactive astrocytes promote vascular

repair and remodeling. Escartin et al. (19) have pointed out the

shortcomings of this binary division in recent years based on

transcriptomic studies, suggesting that heterogeneity of reactive

astrocytes should be emphasized.

Chronic low-level inflammatory states, peripherally and

centrally, and systemic IR, are critical in the MetS, leading to

cognitive dysfunction (20). A more detailed understanding of the

underlying molecular mechanisms of MetS-related cognitive

dysfunction will facilitate the development of new approaches to

prevention and treatment. MetS-related nutritional and hormonal

changes can significantly alter blood metabolic signaling, thereby

regulating astrocytes’ responsive activation and specific genomic

programs and functional transitions (17). Astrocyte activation is
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often considered an adaptive mechanism for metabolic adaptation

and relief of neuronal stress, but it can also have multifaceted effects

on cognitive function and metabolic homeostasis (21). However,

persistent astrocyte proliferation and neurotoxic phenotype are

essential causes of neuroinflammatory spread and chronicity (18,

22). Identifying the activation state of these astrocytes and the

associated molecular mechanisms may provide new targets for

treating MetS-related cognitive dysfunction (23).

In this review, we overview the multifaceted role of astrocytes in

MetS-related cognitive impairment. Recent discoveries on astrocyte

subpopulations and their regulation of cognitive and metabolic

functions are highlighted.
2 MetS and cognitive dysfunction

Neuroimaging changes associated with MetS have been

observed in clinical studies, including reduced gray matter

volume, cerebral white matter microstructural changes, cerebral

atrophy, and lacunar cerebral infarcts (24, 25). Reduced resting-

state functional connectivity between MetS-related vascular risk

factors and multiple higher-order cognitive function-related neural

networks (26). MetS leads to cerebrovascular injury and

neurodegenerative lesions through complex mechanisms that

ultimately produce altered cognitive function (27) (Figure 1).

MetS components such as low-density lipoprotein (LDL), high-

density lipoprotein (HDL), hypertension, and advanced glycation

end products (AGEs) accumulation all contribute to cerebral

atherosclerosis, accelerating white matter damage, lacunar

microinfarcts, and microhemorrhages (28, 29). The cerebral

circulatory system has the capacity for adaptive regulation to
FIGURE 1

MetS leads to cognitive dysfunction through multiple pathologic factors. Multiple peripheral metabolic disorders in MetS, such as persistent
hyperglycemic states, disorders of lipid metabolism, hypertension, metabolic inflammation, and disturbances in intestinal microbiota, are contributing
to neurocognitive decline. Neuropathology in the brain leads to a vicious cycle of cognitive decline caused by neuroinflammation, cerebral
microcirculatory dysfunction, impaired glial lymphatic system drainage, and accumulation of pathologic proteins. Astrocytes are potentially central to
this vicious cycle. Metabolic stress pressure drives reactive activation of astrocytes and influences their interactive dialog with surrounding cells.
Glu-gln, glutamate-glutamine; TJ, Tight Junction.
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maintain cerebral perfusion in fluctuating arterial blood pressure.

MetS contributes to decreased cerebral microvascular density and

blood flow, impairing cerebrovascular responsive autoregulation

and blood flow reserve functions (30, 31). Excessive or unstable

arterial blood pressure levels reduce cerebrovascular autoregulation,

leading to cerebral hypoperfusion and neurodegenerative

pathologies (32) and amyloid-b (Ab) protein deposition by

mechanical stretch (33). Stimulation by high blood pressure

arterial wall shear stress increases vascular smooth muscle cell

hypertrophy and proliferation, leading to vascular remodeling

(34, 35). High-fat diet(HFD) rats were more sensitive to

ischemia-reperfusion injury. Compared to normal diet rats, they

exhibited more significant decreases in cerebral blood flow (CBF)

and elevated levels of oxidative stress (36).

Oxidative stress and mitochondrial malfunction in MetS also

promote neuroinflammation and neurodegeneration (37). High

levels of circulating inflammatory markers are a common feature

of MetS and cognitive dysfunction (38, 39). Ectopic fat

accumulation, fatty inflammation (40), and disruption of

intestinal flora (41) during the MetS disease process lead to a

chronic low-grade inflammatory state. High levels of circulating

pro-inflammatory cytokines in MetS disrupt and cross the blood-

brain barrier (BBB) into the brain, thereby activating astrocytes and

microglia to trigger a neuroinflammatory response, leading to a

critical mechanism of MetS-related cognitive dysfunction (42, 43).

Peripheral inflammation leads to neuroinflammation and oxidative

stress, impairing energy supply to synaptic mitochondria (44).
3 Neurocognitive perspectives
of astrocytes

Astrocytes serve as a communication bridge between the central

and peripheral nervous systems. They are essential components of

the neurovascular unit and communicate extensively with neurons,

endothelial cells, and glia via dendritic structures (45). The complex

and diverse dynamic network of astrocytes is the anatomical basis

for their maintenance of metabolic and immune homeostasis of the

brain. The astrocyte network integrates nutrient metabolic signals

and interacts with hypothalamic functional neurons to exert central

feedback regulation of appetite regulation, glucose sensing, and

other systemic metabolism (46–48).
3.1 Astrocyte participate in
neurosynaptic activity

Synaptic plasticity and presynaptic vesicle release in neurons are

the mechanisms underlying working memory. Astrocytes are a new

target for improving cognitive function, forming glial isolates that

wrap 50-60% of brain synapses and regulate synaptic plasticity

through glycolytic energy supply and release of multiple

neuroactive substances (e.g., glutamate, ATP, adenosine, and D-

ser ine) (49) . Astrocytes regu la te the neurosynapt ic

microenvironment with their unique glial-isolated structure and
Frontiers in Endocrinology 03
immunometabolic properties (50, 51). Perisynaptic astrocyte

processes (PAPs) constitute the glial segregation of the synaptic

gap. Astrocytes regulate glutamate concentration through

glutamate transporter subtype 1(GLT-1) and deliver lactate

through monocarboxylate transporters1 and 4 (MCT1, MCT4).

Aging and atrophy of PAPs are accompanied by a decline in

glutamate clearance and a decrease in Ca2+ events, and excess

glutamic acid spillage in the synaptic gap will activate N-methyl-

D-aspartic acid (NMDA) receptors to reduce the amplitude of the

neuron’s long-term potentiation (LTP) (52). Furthermore,

astrocytes control synaptic plasticity by producing neurotrophic

factors, releasing and clearing neurotransmitters, and regulating ion

levels in the extracellular environment (53).

In addition to regulating synapses, astrocytes regulate the

electr ical act ivi ty of neuronal networks by releasing

gliotransmitters such as ATP, glutamate, and Ca2+ wave

oscillations (54). Computational model studies of working

memory suggest that astrocytes can store traces of neuronal

activation in information processing (55). In contrast, memory

extraction depends on astrocytes’ modulation of spiking neuron

network connections (56). Astrocytes influence memory

performance through states of conscious vigilance and basal

arousal. Sustained neuronal firing in the hippocampus induces

astrocytic g-aminobutyric acid G protein-coupled receptor signals

that control the oscillatory activity of the q and g oscillations of the
hippocampal neuronal network (57).

Astrocytes coordinate interneuronal network projections

between the hippocampus and cortex, thus participating in

memory consolidation and storage. Astrocytes modulate

communication between hippocampal CA1 and cingulate cortex

to promote memory consolidation and retention (58).

Dysfunctional cell division in astrocytes impairs hippocampal-

prefrontal theta synchronization (59).
3.2 Astrocyte maintain brain
energy metabolism

The neural axons and telopods of astrocytes wrap around the

cerebral vascular system to detect nutrients and metabolic

hormones in the arterial blood that enters the brain (60).

Astrocytes form an intercellular communication network with

each other through connexins, bridging the intravascular nutrient

supply with the energy demand of neuronal activity. The astrocyte

network enables the propagation and sharing of small molecule

nutrient metabolic signals at the cellular network level (61).

Astrocytes are the primary cells for glycogen storage and

glycolysis in the brain. They shape the fundamental pattern of

brain energy metabolism by coupling with neuronal oxidative

phosphorylation (62, 63). Astrocytes can bridge the transient

energy demands of neurosynaptic activity with the supply of

circulating fuel (64).

Astrocytes store lipid droplets (LDs) by taking up excess fatty

acids (FAs) from neurons via rich acid transport protein and lipid

transport protein, making them critical sites for fatty acid oxidation.
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Astrocytes take up FAs produced by neuronal metabolism and help

highly active neurons relieve lipid oxidative stress through astrocyte

consumption of LDs for ATP production via NMDA receptor-

mediated mitochondrial b-oxidation (65).

Recent studies have shown that astrocyte function is equally

dependent on mitochondria and oxidative phosphorylation (66).

Mitochondrial disorders in astrocytes affect brain oxidative

phosphorylation metabolism and contribute to forming metabolic

stresses such as reactive oxygen species (ROS) (67). Astrocytes can

exert neuroprotective effects by delivering mitochondria to neurons.

Peroxisome proliferator-activated receptor gamma coactivator-1

alpha (PGC-1a) and mGluR5(metabotropic glutamate receptor 5)

modulate the mitochondrial network of astrocyte cells and produce

positive Ca2+ signaling ion conductance to synapses (68). Restoring

mitochondrial biogenesis in astrocytes may be a therapeutic target

for neuropsychiatric disorders with impaired synapse formation.
3.3 Astrocyte control of
the cerebrovasculature

The endfoot of astrocytes envelop the endothelium of the

cerebral microcirculation. Astrocytes rapidly regulate CBF to meet

neurocognitive energy demands, ensuring nutrient and oxygen

delivery (69). Arachidonic acid, prostaglandin E2, and nitric oxide

produced by astrocytes connect directly with small smooth muscle

cells in the arteries (70). Additionally, astrocytes monitor cerebral

perfusion pressure and regulate blood flow by modulating the

diameter of cerebral arteries through their unique anatomical

location and pressure-sensitive membrane structures (71). The

end-foot of astrocytes abutting endothelial cells expresses the

transient potential receptor vanilloid 4 (TRPV4) and is influenced

by transmural pressure in penetrating arterioles and blood flow

levels (72).

The endfoot of astrocytes with tight junction (TJ) proteins are

the basic structures that comprise the BBB (73). Ablating astrocytes

increases BBB permeability and impairs repair (74). Astrocytes

regulate the TJ structure through the vascular permeability factor,

matrix metalloproteinase (75). Astrocyte endfoot around blood

vessels are tightly connected by connexins 30 (Cx30) and

connexins 43 (Cx43), which allow ion exchange in the peri-

endothelial astrocyte network. Deletion of these connexins

weakens the BBB, leading to its opening under increased

hydrostatic vascular pressure (76). Physiologically, astrocytes

Cx30 and Cx43 are involved in memory formation (77).

Astrocyte Cx43 controls the rate of synaptic vesicle release to

regulate presynaptic function, controls glutamate levels and allows

glutamine release to maintain synaptic transmission (78).

Astrocyte-specific Cx30 and Cx43 double knockouts lead to

widespread activation of astrocytes and microglia, significant

suppression of neuronal excitability, excitatory synaptic

transmission in hippocampal CA1 region, and decrease of spatial

learning and memory (79). In addition, astrocytes secrete a variety

of vasoactive substances, among which angiopoietin-1 (ANG-1),

sonic hedgehog (SHH), and insulin-like growth factor-1 (IGF-1)

protect the BBB. In contrast, vascular endothelial growth factors
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(VEGF), matrix metalloproteinases (MMP), nitric oxide, glutamate,

and endothelin-1 lead to structural damage of the BBB (80).

Damage to astrocyte structures reduces BBB permeability, thus

allowing pathogens and toxins to enter the central nervous system

(81). Peripheral inflammatory factor across BBB and drives the pro-

inflammatory phenotype of glial cells. This is a crucial pathway by

which systemic inflammation triggers neuroinflammation (82).
4 MetS alters astrocyte phenotype

Astrocytes undergo adaptive activation both anatomically

morphologically and functionally as they respond to and maintain

homeostasis in the brain’s internal environment. Both clinical and

animal studies have found that disorders of glucolipid metabolism and

hypertension can induce reactive activation of brain astrocytes and

overexpression of glial fibrillary acidic protein (GFAP) (83).

Astrocytes, as reactive cells, are regulated by complex factors of

circulating origin. Different types of stimuli induce specific reactive

changes. In addition, sex was an essential variable in the analysis of

MetS and cognitive dysfunction, and there was sex- and age-related

heterogeneity in the altered responsiveness of astrocytes (84). The

prevalence of MetS and related complications is higher in men than in

women at ages younger than 50 years. The risk of MetS and associated

complications in women exceeds that of men, with a decline in

estrogen levels after menopause (85, 86). Recent reports suggest that

astrocyte numbers, differentiation, and function differ between the

sexes. Sex differences in reactive astrocytes are responsible for the

emergence of sex differences in neuroendocrine regulation and

cognitive function. Astrocytes isolated from female rats were more

resistant to cell death induced by hypoxia, palmitic acid (PA), and

lipopolysaccharide (LPS) than male astrocytes (87–89).
4.1 Hypertension

Increased numbers and morphological hypertrophy of reactive

astrocytes in the brain have been observed in several animal models

of hypertension (Table 1). 26-week-old SHR showed increased

numbers and areas of immunoreactive positive astrocytes in the

prefrontal cortex, occipital cortex and significantly higher numbers

of GFAP immunoreactive positive astrocytes in the hippocampal

region, compared to the same-week-old WKY rats (94). In the

chronic hypertension model induced by 8 weeks of AngII infusion,

a linear positive correlation between astrocyte morphology and

elevated arterial blood pressure proliferated in cerebral white matter

(95). Astrocyte endfoot are in contact with cerebral blood vessels,

directly sensing circulating hemodynamic changes and releasing

vasoactive substances to modulate slight arterial tone to maintain

CBF independent of blood pressure fluctuations (96). Astrocyte

reactive activation accompanied by transient potential receptor

vanilloid 4 (TRPV4) activation was observed in the hippocampus

of an AngII 28-day injection-induced mouse model of chronic

hypertension. In this study, astrocyte TRPV4 mediated an increase

in spontaneous Ca2+ events within microdomains, which enhanced

parenchymal arteriole tone and decreased cognitive function (90).
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Studies in hypertensive humans and hypertensive rat models

have shown that an overactive brain renin-angiotensin system

(RAS), which leads to oxidative stress and neuroinflammation in

several brain regions, including the brainstem cardiovascular

centers and the hippocampus (97, 98). The overactive brain RAS

in hypertension also contributes to cognitive dysfunction and

exacerbates hypertension through sympathetic excitation. In

several experimental and genetic models of hypertension,

including spontaneously hypertensive rats (SHR) (99, 100) and

desoxycorticosterone acetate salt hypertensive rats (101),

hyperactivity of the central RAS was observed, especially

increased levels of angiotensin II (AngII), angiotensin III (AngIII)

and angiotensin II receptor type 1 (AT1R). In vitro studies have

shown the expression of AT1R and AT2R on human astrocytoma

cell lines (102)and primary cerebral cortex astrocytes (103).

Therefore, it has been suggested that astrocytes may play a role in

neuroinflammation and oxidative stress caused by AngII and

AngIII in the brain RAS (102). Studies conducted on primary

astrocytes isolated from SHR have shown that AngII causes the

secretion of IL-6 from astrocytes through the activation of NF-kB/
ROS and overexpressing cyclooxygenase 2 via astrocyte AT1R (104,

105). In primary rat astrocytes derived from SD rats, AngIII targets

AT1R to activate extracellular regulated protein kinases (ERK)1/2

MAP kinases and c-Jun N-terminal kinase (JNK) phosphorylation

to promote astrocyte proliferation (106).
4.2 Lipid metabolism disorders

Astrocyte activation and proliferation in the hippocampus and

hypothalamus have been observed in HFD-induced obese rat

models (Table 2) (114–117).
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HFD-induced obesity also affects astrocyte lipid oxidation and

mitochondrial metabolism. Fatty acid b-oxidation (FAO) in the brain
occurs mainly in astrocytes. Astrocytes store overloaded free fatty

acids as LDs, which are used via FAO to energize neurons and protect

them from lipotoxic damage. Obesity leads to the accumulation of

astrocyte misfolded proteins, induced endoplasmic reticulum stress,

and thus crosstalk with neurodegenerative (21). Obesity decreases

fatty acid oxidation in hypothalamic astrocytes, leading to disturbed

mitochondrial dynamics (118). In the hippocampus of mice raised on

a HFD for 1 month, astrocytes’ lipid and cholesterol content was

elevated, accompanied by an increase in the number of secondary

branches and lobules of neural protrusions (119). In vitro studies have

found that saturated and unsaturated fatty acids have opposite

regulatory effects on astrocyte lipoprotein lipase (LPL). TGs and

palmitic acid decrease LPL expression and oleic acid elevate LPL.

HFD-induced elevation of LPL in hypothalamic astrocytes of obese

rats increases the accumulation of LDs. It impairs glycolytic

metabolism, impairing glucose tolerance, increases food intake, and

aggravates obesity (120).

In addition, obesity and pathologic fat accumulation lead to

decreased function of astrocyte-neuron crosstalk, in which high

serum levels of leptin inhibit astrocyte excitatory amino acid

transporter protein (EAAT) expression and promote sympathetic

overactivation (121). Obesity impairs glutamate clearance from the

synaptic gap by astrocytes and attenuates the endogenous

cannabinoid pathway and the synaptic plasticity it mediates in

vertebral neurons in the orbitofrontal cortex (111). Astrocytes

present a compensatory neuroprotective effect in the early stages

of lipid metabolism disorders and are progressively bettered by

chronic stressful pressures. It was found that 8 weeks of HFD

induced astrocyte proliferation and limited neuronal damage by

releasing heat shock protein 70 (HSP70) and ciliary neurotrophic
TABLE 1 Effects of hypertension on astrocyte pathology and cognitive functions.

Experimental animal Brain region Astrocyte Phenotypes Potential/associated impacts Molecular
mechanisms

Reference

Animal Model Control Activation Dysfunctions Neuropathology Behavioral

C57BL6
(male), 8
weeks/
NM

Ang II for 14
or 28 days
(pump in,600
ng/kg/min)

NM Cortex GFAP↑
Number
of cells↑

Ca2+ activity↑ PA tone↑
Myogenic
responses↑

NM TRPV4
channel

Ramiro
et al.,
2019 (90)

SD rats
(male), 8
weeks/
200-230 g

Partial
occlusion of
left
renal artery

Renal artery
was only
exposed but
not occluded

Cortex
Hippocampus

GFAP↑ TRAF6↑
IkB-a↓
pP38↓
pERK1/2↓

NM NM CD40L Ali et al.,
2017 (91)

SHRs (male) 32 and 64
weeks/NM

WKY rats
(male) 32 and
64 weeks/NM

Hippocampus Cell body↑
Branches↑

PPARg↓ Bax↑
Bcl-2↑
Caspase-3↑
INOS↓
Gp47phox↓

NM NM Yali et al.,
2016 (92)

SD rats
(male), 8
weeks/
NM

Partial
occlusion of
left
renal artery

Renal
artery exposed

Cortex
Hippocampus

GFAP↑
Processes↑
Cell body↑

NM NM NM NM Shahnawaz
Ali et al.,
2018 (93)
fr
Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; CD40L, CD40 Ligand; GFAP, Glial fibrillary acidic protein; pERK, Phospho extracellular regulated protein kinases; SD rat, Sprague
dawley rat; SHR, Spontaneously hypertensive rats; TRAF6, TNF receptor associated factor; TRPV4, Transient receptor potential vanilloid 4; PPARg, Peroxisome proliferator-activated receptor g;
iNOS, Inducible nitric oxide synthase; NM, Not mentioned.
↑, Increase; ↓, Decrease.
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factor (CNTF). In contrast, the compensatory neuroprotective effect

of astrocytes was depleted after 20 consecutive weeks of HFD (122).
4.3 Glycemic derangement

High blood glucose levels in both in vivo and ex vivo studies

resulted in reactive activation of astrocytes accompanied by changes

in metabolic processes (Table 3). The astrocyte glycolytic effect is

two-sided, with increased glycolytic flux supplying neurons with

energy and antioxidants (133), while glycolysis also provides

energetic support for inflammatory responses (134). A

comprehensive review of astrocyte glycolysis in cellular metabolic

immunity is lacking, but some studies have suggested that it

undergoes the same progression from compensation to

decompensation as immune cells (135). Multiple in vitro studies

have found increased glycogen content and glycolytic activity in

astrocytes chronically exposed to high glucose (136). In a 1H NMR-

based metabonomic approach study, an increase in glucose uptake,

glycolytic activity lactate release, and downregulation of TCA

cycling activity were found in astrocytes after 72 hours of high-

glucose exposure (137). High glucose promotes glucose uptake and

glycogen storage in primary astrocytes but reduces maximal
Frontiers in Endocrinology 06
respiratory and glycolytic reserve capacity (138). It is suggested

that high glucose leads to an increase in astrocyte glucose metabolic

flux, but the efficiency of cellular energy utilization is reduced,

making it more vulnerable to stressful pressures.

Astrocyte metabolic plasticity has a double-edged role, feeding

the inflammatory immune response process and acting as a buffer

against metabolic stress. The astrocyte pentose phosphate pathway

and glutathione levels increase with blood glucose, reduce ROS

production, and protect neurons from oxidative stress damage

(139). In vitro metabolomics studies have found that astrocytes

produce and transport more lactate in high-sugar environments,

which may work to enhance astrocyte-neuron lactate shuttling (137).

High glucose leads to increased secretion of multiple pro-

inflammatory factors by astrocytes, leading to neuroinflammation

(140). High glucose increases the expression and secretion of pro-

inflammatory cytokines IL-6 and IL-8 in human primary astrocytes

and U-118MG astrocytoma cells via STAT-3 (141). Hyperglycemia

induces enlargement of astrocytes in the hippocampus and is linked

to peripheral recruitment of leukocytes to the cerebrovascular system

(142). High glucose exacerbates neuroinflammation via ROS/

mitogen-activated protein kinase (MAPK)/NF-kB, ERK, and JNK

pathways by upregulating matrix metalloproteinase-9 expression in

rat brain astrocytes (143, 144). The toll-like receptor (TLR) of
TABLE 2 Effects of hyperlipidemia and obesity on astrocyte pathology and cognitive functions.

Experimental animal Brain region Astrocyte Phenotypes Potential/associated impacts Molecular
mechanisms

Reference

Animal Model Control Activation Dysfunctions Neuropathology Behavioral

C57BL/6N
mice (male),8
weeks/NM

HFD for
12 weeks

CD for
12 weeks

VAc NM GLAST↓
GLT-1↓

Glutamatergic
inputs↑

Depression
(SPT, FST)

NM Tsai et al.,
2022 (107)

C57BL/6 mice
(male),7-8
weeks/20 g

HFD for
1 month

CD for
1 month

Hippocampus GFAP↑ NM BDNF↓
NLRP3↑
ASC↑
IL-1b↑
TNF-a↑

Depression
and anxiety
(OFT, EPM,
SPT, FST)

NM Li et al.,
2022 (108)

C57BL/6 mice
(male),
NM/NM

HFD for 8
weeks
+ CSDS

CD for 8
weeks
+ CSDS

mPFC Spreading
area↑

D-
serine↑,
Glutamate↑

sIPSCs↓
sEPSCs↓

Depression
(SPT, TST)

JNK–STAT3 Yu et al.,
2022 (109)

C57BL/6J mice
(male),6
weeks,NM

HFD for
12 weeks

LFD for
12 weeks

GFAP↑ AQP4↓ GS functions↓
CBF↓
Neuropathological
alterations

Cognitive
dysfunction
(MWM)

NM Zhan et al.,
2024 (110)

Long-Evans
rats (male),
NM/NM

Cafeteria
diet for
40 days

CD for
40 days

OFC GFAP↑
Astrocyte
hypertrophy↑

GLT-
1 function↓

LTD of
GABA
transmission↓

NM NM Lau et al.,
2021 (111)

SD rats (male),
NM/250-270g

HFFD for
7 days

CD for
7 days

Hippocampus GFAP+ cell
number↑
GFAP area↑

NM NM NM NM Erika et al,
2014 (112)

WKY rat
(male),6
weeks/NM

HFrD for
12 weeks

CD for
12 weeks

Hippocampus GFAP↑ NM NM NM NM Liu et al.,
2018 (113)
fr
AQP4, Aquaporin 4; BDNF, Brain-derived neurotrophic factor; CBF, Cerebral blood flow; CD, Control diet; CSDS, Chronic social defeat stress; EPM, Elevated plus maze; FST, Forced swim test;
GFAP, Glial fibrillary acidic protein; GLAST, Glutamate aspartate transporter; GLT-1, Glutamate transporter-1; GS, Glutamine synthetase; HFD, High-fat diet; HFFD, High-fat and High-
fructose diet; HFrD, High-fructose diet; IL-1b, Interleukin-1 beta; JNK, c-Jun N-terminal kinase; STAT3, Signal transducer and activator of transcription 3; LTD, Long-term depression; LFD,
Low-fat diet; MWM, Morris water maze; MyD88, Myeloid differentiation primary response 88; NLRP3, NOD-like receptor thermal protein domain associated protein; NM, Not mentioned;
OFT, Open field test; POMC, Pro-opiomelanocortin; SPT, Sucrose preference test; TST, Tail suspension test; TNF-a, Tumor necrosis factor alpha; VAc, Ventral hippocampus; sEPSCs,
Spontaneous excitatory postsynaptic currents; sIPSCs, Spontaneous inhibitory postsynaptic currents.
↑, Increase; ↓, Decrease.
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TABLE 3 Effects of hyperglycemia on astrocyte pathology and cognitive functions.

Experimental animal Brain region Astrocyte Phenotypes Potential/associated impacts Molecular
mechanisms

Reference

Animal Model Control Activation Dysfunctions Neuropathology Behavioral

C57BL/
6J mice
(male),
8
weeks/
NM

HFFD for
9 weeks

CD for
9 weeks

Hypothalamic GFAP↑
Vimentin ↑

HMG20A↑ NM NM HMG20A Petra I
et al.,
2021 (123)

C57BL/
6N
mice
(male),
8
weeks/
NM

HFD for 4
weeks (from
20 to 24
weeks old)

CD for
4 weeks

Ventral
hippocampal

Process
lengths,
branch
points,
intersections↓
GFAP↑

NM NM Depression
(OFT, EPM)
Cognitive
dysfunction
(ORT)-

NM Ying-Yiu
et al.,
2021 (124)

Wistar
rats
(male),
6
weeks/
NM

HFD for 50
days + STZ
(35mg/kg
bw i.p)

CD for 50
days+
sodium
citrate
buffer i.p

Hippocampus GFAP↑ NM NM NM NM Velia et al.,
2022 (125)

C57Bl/6
J mice
(male),
4
weeks/
NM

HFD for
17 weeks

CD for
17 weeks

Hippocampus
CA1 DG

GFAP↑ NM NM NM NM Saieva
et al.,
2022 (126)

POCTX GFAP↑

FCTX GFAP-

SD rats
(male),
8
weeks/
200-
230 g

HFD for 16
weeks + STZ
(40mg/kg on
5 consecutive
days i.p)

CD for
16 weeks

ARC
of
hypothalamus

GFAP↑ PDK2
p-PDH↑

Tnf-a↑
Il-1b↑
Il-6↑
NPY/
AgRP neurons↑

Feeding
behavior
dysregulation

PDK2-lactic
acid axis

Rahman
et al.,
2020 (127)

C57BL/
6 mice
(male),
6
weeks/
NM

MLDS STZ
(40mg/kg on
5 consecutive
days i.p)

Sodium
citrate
buffer i.p

Hippocampus GFAP↑
Hypertrophic
morphology

NM Tnf-a↑
Il-6↑

Cognitive
dysfunction
(NOR,
Y maze)

LCN2 ↑ Anup
et al.,
2019 (128)

Obese Zucker rats(male),
12 weeks/NM

LZRs, 12
weeks/NM

Hippocampus GFAP↑ NM NM NM NM Daniele
et al.,
2013 (129)

KK-Ay mice(male), 5
months/NM +HFD for
3 months

C57BL/6J
mice male),
5 months/
NM + CD
for
3 months

Hippocampal Cell body↓
Branches↓

vGLUT1↑
GLUT1↓
EAAT2-
GDNF↓

IL‐1b↑
TNF‐a↑
BDNF↓

Cognitive
dysfunction
(MWM)

NM Si et al.,
2020 (130)

db/db(male), 15
weeks/NM

C57BLKS/J
(male), 15
weeks/NM

Hippocampal GFAP↑ Glu-gln cycle↑
GAD↑
GLS↑
GS↑
Lactate↑
Taurine↑
Pyruvate↓
Succinate↓
Citrate↓

TUNEL↑ Cognitive
dysfunction
(MWM)

NM Yongquan
et al.,
2016 (131)

db/db(male), 8 weeks/NM C57BLKS/J
(male), 8
weeks/NM

Hippocampal GFAP↑ C3↑
S100A10↓

IL-6↑
IL-1b↑
TNF-a↑
IL-18↑
TfR1↑
DMT1↑
FPN1↓

Cognitive
dysfunction
(MWM)

NM Ji-Ren
et al.,
2023 (132)

(Continued)
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astrocytes serves as an essential target of the innate immune system,

and high glucose promotes neuroinflammation and altered cellular

metabolism via the TLR/MAPK/PPARs pathway (145).

Astrocyte responsiveness to high glucose affects microcirculatory

endothelial barrier structure. Hyperglycemia induces increased

secretion of VEGF protein in astrocytes, impairment of gap

junctional Cx43 and Cx30 proteins, and reduced transendothelial cell

electrical resistance (TEER), which are critical factors for reduced BBB

permeability (146, 147). Sustained hyperglycemia induces the non-

enzymatic glycosylation of various proteins and the resulting formation

of advanced glycation endproducts (AGEs), which mediate the

development of diabetic complications by targeting the receptor of

advanced glycation endproducts (RAGE). Primary astrocytes from

mice cultured with high glucose showed increased expression of

immune complement C3 and decreased synaptic number, suggesting

that high glucose promotes synaptic phagocytosis of the complement

pathway in astrocytes. In this study, the RAGE-p38MAPK-NF-kB
pathway was a vital upstream of the synaptic phagocytosis promoted

by high glucose in astrocytes (148).
5 MetS leading to
cognitivedysfunction via
astrocyte pathology

The hippocampus is a major brain region involved in memory

functions, and its synaptic plasticity activities of vesicular and ionic

channel activity depend on continuous energy support and are

susceptible to nutrient metabolism (149). The release of gliotransmitters

in astrocytes modulates neural theta oscillations between the dorsal

hippocampus and prefrontal cortex, which are involved in memory

formation and storage (59). Morphologic, immunologic, and metabolic

alterations in astrocytesmediate the contribution of multiple factors to the

development of cognitive dysfunction in MetS (Figure 2).
5.1 Astrocyte morphologic alteration

In MetS, astrocytes undergo reactive changes in cell

morphology, as demonstrated by increased cell proliferation and

hypertrophy, neural protrusion density and axon length. It was
Frontiers in Endocrinology 08
found that glial segregation and TJ barrier structures constituted by

astrocytes proliferating their endfoot can limit neuroinflammatory

damage (73). The morphologic plasticity of astrocytes is compatible

with their functional transformation to limit the spread of

inflammation and support nerve regeneration (150).

The altered morphology of astrocytes leads to impaired

communication with other cells in the neural vascular unit, which

in turn impairs the barrier immunity and energy substance uptake

function of the BBB (151). Both in vivo and ex vivo studies have

shown that a hyperglycemic state impairs gap junction

communication in astrocytes, inducing swelling of the astrocyte

endfoot and detachment from the endothelial cell basement

membrane (146). Astrocyte endfoot processes (ACfp) from the

neurovascular unit (NVU) were observed in the prefrontal cortex of

female diabetic db/db mice. Loss of ACfp/NVU adhesion has been

suggested as a potential mechanism contributing to impaired

cognitive function in diabetes (152). Obesity induces reactive

proliferation of astrocytes, which in turn induces structural

remodeling of the neuroglial interface in multiple brain regions

and alters the immune and transport functions of the BBB (153,

154). HFD-induced glial proliferation of astrocytes affects the BBB

structure in the arcuate nucleus region. It makes it more difficult for

neuropeptide Y (NPY) and proopiomelanocortin (POMC)

neuronal cytosomes and dendrites in this region to reach the

vasculature (155). Obesity is accompanied by increased serum

leptin levels, which activate hypoxia-inducible factor 1-alpha

(HIF-1a)-VEGF signaling in hypothalamic astrocytes, thereby

inducing structural remodeling of the glial interface (156).

Astrocytes isolated from stroke-prone spontaneously hypertensive

rats (SHRSP) cause TJ damage and high resistance in endothelial

cells by secreting large amounts of lactate (157).

Several studies have found that the overall neural processes of

astrocytes are shortened in states of metabolic dysregulation,

diminishing their modulation of synapses. A HFD for 12 weeks

induced an increase in GFAP expression in the rat hippocampus but

in turn impaired the length of neural protrusions in astrocytes, as

well as the expression of the proteins glutamate aspartate

transporter (GLAST), GLT-1, and Cx43, which are associated

with synaptic plasticity (124, 158, 159). Chronic overnutrition

leads to the shortening of the central neural protrusions of

astrocytes through upregulation of the IkB kinase b (IKKb)/
TABLE 3 Continued

Experimental animal Brain region Astrocyte Phenotypes Potential/associated impacts Molecular
mechanisms

Reference

Animal Model Control Activation Dysfunctions Neuropathology Behavioral

MDA↑
SOD↓
GSH↓
ROS↑
fr
AgRP, Agouti-related peptide; ARC, Arcuate nucleus; BDNF, Brain-derived neurotrophic factor; CD, Control diet; C3, Complement component 3; DMT1, Divalent metal transporter 1; db/db,
Diabetic (leptin receptor deficient) mice; EPM, Elevated plus maze; EAAT2, Excitatory amino acid transporter 2; FCTX, Frontal cortex; FPN1, Ferroportin 1; GAD, Glutamate decarboxylase;
GDNF, Glial cell-derived Neurotrophic Factor; GFAP, Glial fibrillary acidic protein; GLS, Glutaminase; GLUT1, Glucose transporter 1; GSH, Glutathione; HFD, High-fat diet; HFFD, High-fat
and high-fructose diet; HMG20A, High Mobility Group 20A; Il-1b, Interleukin 1 Beta; IL-6, Interleukin 6; IL-18, Interleukin 18; LCN2, Lipocalin-2; MDA, Malondialdehyde; MWM, Morris
water maze; NPY, Neuropeptide Y; NM, Not mentioned; NOR, Novel object recognition test; OFT, Open field test; ORT, Object recognition test; PDK2, Pyruvate dehydrogenase kinase 2;
POCTX, Posterior cortex; p-PDH, Phosphorylated pyruvate dehydrogenase; ROS, Reactive oxygen species; S100A, S100 protein; SOD, Superoxide dismutase; STZ, Streptozotocin; TfR1,
Transferrin receptor 1; Tnf-a, Tumor necrosis factor alpha; TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling; vGLUT1, Vesicular glutamate transporter 1; Y maze, Y-
shaped maze task.
↑, Increase; ↓, Decrease.
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nuclear factor-kB (NF-kB) pathway, which in turn affects their

glutamate uptake in the synaptic gap and modulation of synaptic

excitability (160).
5.2 Astrocyte immunoreactivity

Astrocytes are thought to be critical regulators of

neuroinflammation (161). Peripheral immune signaling drives

glial cell immune function switching as a potential mechanism for

systemic inflammation to trigger neuroinflammation (82).

Astrocytes play a vital role in developing and expanding

neuroinflammation by interacting with various central nervous

system in situ immune cells, including microglia and T cells (162,

163). Moreover, astrocytes drive perivascular leukocyte recruitment

to the brain by secreting C-C motif chemokine ligand 2 (CCL2) and

C-X-C motif chemokine ligand 10 (CXCL10) (163, 164). GFAP,

S100 calcium-binding protein B (S100B), monoamine oxidase-B

(MAO-B), chitinase-3-like protein 1 (YKL-40), and D-serine were

used as biomarkers to assess the reactivity and proliferation
Frontiers in Endocrinology 09
intensity of astrocytes in tissues, cerebrospinal fluid, and blood

(165, 166). High glucose activation of the complement 3 (C3)

pathway in astrocytes can lead indirectly and directly to synaptic

loss. C3 secreted by astrocytes is able to interact with microglial

component 3a (C3a) receptors to modulate synaptic phagocytosis in

microglia (167). Reduced secretion of complement factor C3/C3a in

high glucose-treated primary astrocytes leads to synaptic protein

damage and cognitive dysfunction (168).

As previously described, multiple factors in MetS, such as

peripheral metabolic glucolipid metabolism disorders and

metabolic inflammation, can drive astrocyte reactive activation.

Several studies have demonstrated that enhanced GFAP

immunoblotting is observed for T2DM disease states lasting 2-4

weeks, whereas GFAP expression is significantly reduced in more

extended weekly studies (169, 170). HFD induces increased

hippocampal GFAP expression in rats, which is associated with

neuroinflammation, microvascular damage, and subsequent

cognitive dysfunction (171, 172). The IKKb/NF-kB of astrocytes

is an essential pathway for HFD-induced hypothalamic

inflammation. Knockdown of IKKb in astrocytes can improve
FIGURE 2

Pathologic alterations of astrocytes in metabolic syndrome leading to cognitive dysfunction. Astrocytes undergo reactive activation driven by a
disturbed metabolic state. Activation of the astrocyte HIF-1a pathway secretes multiple factors, including VEGF, that impair BBB-linked proteins,
leading to increased blood-brain barrier permeability. At the same time, the lipid, glucose, and amino acid metabolism coupling pathway between
astrocytes and neurons is impaired, leading to an imbalance in neuronal excitability and decreased synaptic plasticity. AP-1, activator protein-1; CB1,
cannabinoid 1; Cx43, connexin 43; GABA, g-aminobutyric acid; GLAST, glutamate aspartate transporter; Glu, glutamate; GLUT1, glucose transporter
type 1; GLT-1, glutamate transporter subtype I; HIF1-a, hypoxia-inducible factor1-a; HMG20A, high mobility group domain protein 20A; HO-1, heme
oxygenase-1; LDH, lactate dehydrogenase; LTD, long-term depression; MAPK, mitogen-activated protein kinase; MCT, monocarboxylate transporter;
mGluR5, metabotropic glutamate receptor 5; MyD88, myeloid differentiation primary response 88; NFkB, nuclear Factor-kB; NOX, nicotinamide
adenine dinucleotide phosphate oxidase; ROS, reactive oxygen species; TJ, tight Junction; TREE, trans-endothelial/epithelial electrical resistance;
VEGF, vascular endothelial growth factor.
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HFD-induced hypothalamic neuroinflammation, insulin resistance

status, and glucolipid metabolism (173). HFD induces upregulation

of hypothalamic potassium inwardly rectifying channel subfamily J

member 2 Gene (Kcnj2), Complement 4b (C4b) and discoidin

domain receptor 1 (Ddr1) and co-localizes with GFAP, and is

therefore considered an early marker of obesity and diabetes-

related cognitive dysfunction (174). Secretion of inflammatory

factors by astrocytes is associated with synaptic loss. In neuron-

astrocyte co-culture cell studies, LPS increased astrocyte secretion of

inflammatory factors and correlated with decreased neuronal

synaptophysin (SYN) (175).

MetS leads to the activation of astrocytes, thereby affecting their

regulatory role in cognition and behavior. Reactive astrocytes are a

potential therapeutic target for ameliorating vascular and

neurodegeneration-related cognitive dysfunction (176, 177).

Targeting the neurotoxic phenotype of reactive astrocytes

alleviates cognitive-behavioral alterations induced by MetS-related

factors (169).
5.3 Astrocyte immunometabolic disorders

Reactive astrocytes respond to metabolic stress by

reprogramming metabolic processes and exerting various adaptive

compensatory effects to maintain neuronal energy supply (178,

179). Various components of MetS can act directly on metabolic

processes such as glycolysis and mitochondrial metabolism in

astrocytes . Astrocyte metabol ism progresses towards

dysregulation under metabolic stress, with mitochondrial

malfunction, energy failure, and oxidative stress, which can affect

the energy supply of neurosynapses and impaired lymphatic efflux

of Ab proteins (180). Astrocyte glycolysis, gluconeogenesis, and

lipid metabolism are plastic to undergo reprogramming during

MetS metabolic stress to maintain neuronal energy homeostasis

(181). Excessive chronic stressful pressure leads to a compensatory

decrease in astrocyte energy metabolism, which may be impaired by

promoting cerebral insulin resistance, decreased glucose uptake,

and oxidative stress (66).

Central leptin signaling activation in HFD rats reduces

astrocytic ghrelin transporter protein and EAAT1 and EAAT2 in

the arcuate nucleus of the hypothalamus, resulting in decreased

ghrelin uptake and reduced glutamine synthesis (121). Chronic

lipid exposure-induced ectopic lipid loading in astrocytes leads to

reduced insulin-induced protein kinase B (AKT) phosphorylation

and dysregulated glycogen metabolism (182). The metabolomic

study showed that selenium amino acid metabolism, urea cycle, and

glutamate metabolism were up-regulated in human astrocytes in a

palmitic acid-induced lipotoxic environment for several amino acid

metabolic pathways (183). Several tricarboxylic acid cycle

intermediates, such as succinate and citrate were reduced,

glutamine synthetase was increased, and glutaminase and

glutamic acid decarboxylase decreased in the hippocampal region

of db/db mice (131). During physiological states, lipid synthesis and

metabolism in astrocytes regulate hippocampal synapse

development and function. Diminishing of sterol regulatory
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element-binding protein 2 (SREBP2) cleavage-activating protein

(SCAP) resulted in lower levels of the synaptosome associated

protein 25(SNAP-25) and reduced numbers of synaptic vesicles in

the hippocampus of mice (184). Diabetes mellitus leads to impaired

brain cholesterol synthesis and reduced synapse number by

reducing the transcription factor SREBP2 (185).

Metabolic reprogramming of astrocytes is also thought to be an

adaptive change in response to central insulin resistance (186).

Astrocytes express insulin receptor and insulin-like growth factor 1

(IGF1), which regulate glucose transporter type 1 (GLUT1)

expression to take up circulating glucose (187). In another study,

IR knockdown in astrocytes was found to impair tyrosine

phosphorylation of Munc18c, reduce ATP cytokinesis, and

subsequently lead to reduced neuronal dopamine release and

depressive-like behavior (188).

The process of reactive activation of astrocytes is accompanied by a

metabolic paradigm shift (189). Activation andmaintenance of reactive

astrocytes depend on a continuous supply of energy from glycolytic

metabolism. The downright inflammatory response of astrocytes to

LPS is accompanied by elevated glycolytic flux and elevated activity of

critical metabolic enzymes, such as 6-phosphofructose-2-kinase/

fructose-2,6-bisphosphatase isoform 3 (PFKFB3) (190). 2-DG

glycolysis inhibitor and glycogen phosphorylase inhibitor intervened

to regulate the astrocyte glycolysis process and significantly attenuated

LPS-induced cytokine release and NF-kB phosphorylation (134).

Inhibition of pyruvate dehydrogenase kinase-2(PDK2) in

hypothalamic astrocytes of diabetic rats inhibited cellular glycolysis

and its inflammatory activation, thus reducing hypothalamic

inflammation as well as lactate levels and reversing the increase in

food intake (127). The peroxisome proliferator-activated receptor

(PPAR) pathway is one of the critical pathways of astrocyte

immunometabolism, among which PPARg stimulates glucose and

glutamate uptake and lactate release from astrocytes. At the same

time, PPARa induces fatty acid b-oxidation in the presence of

impaired glucose metabolism (191). Regulators of aerobic glycolysis,

such as HIF-1a and AMPK in astrocytes, are affected by inflammation

(192). Nicotinamide phosphoribosyltransferase (NAMPT)-dependent

nicotinamide adenine dinucleotide (NAD+) upregulation in astrocytes

provides energy for cellular activation and drives transcriptional

inflammatory program rearrangements, and inhibition of

endogenous NAD+ synthesis impairs astrocyte transcriptional

responses to LPS/Interferon-g(IFNg) stimulation and attenuates

activation-associated neuroinflammation (193).
6 Clinical practice of astrocyte in
MetS-related cognitive dysfunction

In summary, it has been elaborated that astrocytes are

susceptible to morphologically and functionally responsive

changes in metabolically disturbed environments. Reactive

astrocytes are involved in pathological processes such as

neuroinflammation, energy metabolic homeostasis, and cross-

barrier transport of nutrients and amyloid in MetS-associated

cognitive dysfunction (165, 194).
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6.1 Diagnostic markers

Astrocytes express and secrete a variety of specific molecular

substances during pathological processes, which are considered

promising targets for the development of early screening with

humoral or imaging biomarkers (195). Several studies and meta-

analyses have found a strong association between astrocyte

biomarkers and cognitive decline (166). In a clinical study of 121

older adults, cerebrospinal fluid and plasma levels of GFAP and

YKL-40 were shown to relate to Ab and tau pathology and to

mediate hippocampal volume atrophy (196).

Proteomic studies have identified increased levels of the

metabolism-related proteins lactate dehydrogenase B-chain (LDHB),

pyruvate kinase (PKM), and glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) in M4 Astrocyte in cerebrospinal fluid,

which can be used as a biomarker for the early diagnosis of cognitive

impairment (197). In addition, at the level of genetic material,

astrocyte-derived extracellular vesicles (EVs) and a variety of

miRNAs therein are thought to potentially become biomarkers for

neurodegenerative diseases (198). Increased secretion of miR-141-3p

and miR-30d is detected in primary human astrocytes activated by

stimulation with the neuroinflammatory factor IL-1b (199). Regarding

imaging, astrocyte metabolic levels and associated metabolites are

visualized and analyzed by PET/CT imaging with 11C-acetate and

18F-fluorodeoxyglucose (18F-FDG). In a study, astrocyte acetate

hypermetabolism and neuronal glucose hypometabolism were used

as a visual diagnostic strategy for early diagnosis of Alzheimer’s disease

(200). In addition, machine learning research is an emerging tool for

constructing diagnostic models. In a study, automata theory was used

to build a diagnostic computational model to monitor the astrocyte

metabolic end-product lactate, thereby characterizing the level of

glycogen metabolism in the brain (201).

Astrocytes have been progressively recognized as potential

biomarkers for the development of cognitive impairment. At the

same time, these markers are highly expressed in MetS and its related

components. A joint examination of astrocytes in both diseases is still

lacking. However, as reactive cells, their immunometabolic flexibility

and sensitivity make them valuable as potential diagnostic markers of

MetS-associated cognitive disorders.
6.2 Therapeutic strategies

Conventional treatments have focused on neuron-focused

mechanistic interventions, but drug development and clinical

translation have been limited. It is currently considered effective in

improving the homeostasis of synapses and their adjacent

microenvironments through systems biology and multi-targeted

therapeutic approaches. The supportive role and pathologic

criticality of neuroglia for neuronal function are gradually being

demonstrated. Astrocytes have been proposed at multiple levels as

potential targets for drug development to ameliorate central

neuropathy and restore cognitive function (202, 203). Based on the

altered functional and molecular pathways in astrocytes in MetS,

targeting their biological processes may have therapeutic value.
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Astrocytes have a central role in neuroinflammation (204).

Several studies have targeted toll-like receptor proteins (TLRs)

(205), NF-kB, and the transcription factor NF-E2-related factor 2

(Nrf2) (206) in astrocytes, thereby limiting their cell proliferation and

neurotoxicity (207). In addition, the repair of astrocyte TJ protein

structures resulted in the amelioration of BBB permeability damage.

In vitro and in vivo studies showed that inhibition of astrocyte Cx43

hemichannel opening prevented astrocyte proliferation (astrogliosis)

and improved BBB permeability (208). Clomipramine is a classical

tricyclic antidepressant. Epoxomicin is a natural selective proteasome

inhibitor and has an anti-inflammatory effect. Both drugs have been

attempted as inhibitors of intermediate filament proteins and

vimentin associated with astrogliosis, thereby facilitating the

limitations on nerve regeneration imposed by persistent, excessive

glial proliferation (209).

Astrocytic metabolic plasticity allows astrocytes to act as critical

cells in maintaining homeostasis (210), with their glycolytic

metabolism and derived metabolites, such as lactate and serine,

providing energy support to synapses and maintaining homeostasis

of neural excitability (211). Therefore, regulation of astrocyte

metabolism has also been recognized as a potential therapeutic

target (212). The astrocyte glycolytic metabolite L-lactate and

secreted vesicles have also been identified as potential targets in

neurological disorders (213). Antidiabetic drugs have been found to

improve brain glucose uptake by targeting astrocytes. Metformin,

which crosses the BBB, increases glucose consumption and lactate

release in astrocytes (214). Metformin treatment normalized

GLUT-1 expression in STZ-induced diabetic rats and partially

restored hippocampal glucose uptake and transport (215).

Notably, glucagon-like peptide-1 (GLP-1) receptor agonists have

been shown preclinically in small pilot trials to improve cerebral

glucose metabolism and functional connectivity (216, 217).

Liraglutide (an analog of GLP-1) improves cognitive function by

enhancing astrocyte-promoted aerobic glycolysis and alleviating

OXPHOS activation to maintain neuronal support (133).

In addition, promoting the transformation of astrocytes into

neurons or other glial cells is a potential but controversial

therapeutic modality. Several drug tools for astrocyte-specific

delivery have been developed, including pluripotent stem cell

therapies (218) and effective viral vectors (219) to control

astrocyte-specific gene expression. Some studies have used

lineage-tracing strategies to target astrocytes in vivo for

transformation into neurons (220). Other studies have attempted

to reprogram astrocyte lineage cells into oligodendrocyte cells by

targeting Sox2 and Sox10. This method could relieve astrocyte glial

scarring and promote myelin regeneration of neural axons

(221–223).
7 Conclusions and future perspectives

MetS causes multiple disorders that worsen in the peripheral

circulation and affect the brain, which is considered its target organ

for generating metabolic stress damage. As a result, MetS accelerates

cognitive decline through the acceleration of neurodegeneration
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and cerebral circulatory disturbances. Astrocytes change their

metabolic and immune phenotypes in response to peripheral

metabolic stressors, leading to early compensatory regulation of

local neurological microenvironmental homeostasis. However, this

compensation is lost when the stressors become too much, leading

to worsened neuroinflammation. Astrocytes interact with a wide

range of cells in the vascular, neural unit to influence BBB

permeability and glial lymphatic system drainage functions and

also form structures with neural synapses known as tripartite

synapses, which play diverse and complex regulatory roles in

neural circuit modulation.

The sensitive metabolic and functional plasticity of astrocytes

makes them potential targets for improving the maintenance of

brain energy metabolism and sustaining synaptic energy support.

Also their cellular markers with specific functional proteins are also

being developed as diagnostic markers for cognitive disorders.

However, the complex and challenging nature of targeting

astrocytes by transgenic techniques still poses a challenge due to

the rich diversity of astrocytes and their overlap with other CNS cell

genetic lineages (224). Contradictory findings in basic research cast

doubt on the transdifferentiation capacity of astrocytes (225, 226).

Additionally, there is still caution in clinical development regarding

immunogenicity mapping in viral manipulation and the potential

off-target risk of transgenic manipulation. Nevertheless, this cell

implantation strategy could potentially enable endogenous

neuronal regeneration in the future.
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Glossary

18F-
FDG

18F-fluorodeoxyglucose

AMPK 5'-AMP-activated protein kinase

PFKFB3 6-phosphofructose-2-kinase/fructose-2 6-bisphosphatase isoform 3

AGEs Advanced glycation end products

AGT Ang II precursor molecule angiotensinogen

ANG-1 Angiopoietin-1

ANG Angiotensin

ACfp Astrocyte end-feet foot processes

ACfp Astrocyte endfoot processes

BBB Blood-brain barrier

CCL2 C-C motif chemokine ligand 2

CBF Cerebral blood flow

YKL-40 Chitinase-3-like protein 1

CNTF Ciliary neurotrophic factor

C4b Complement 4b

Cx43 Connexin 43

CXCL10 C-X-C motif chemokine ligand 10

Ddr1 Discoidin domain receptor 1

EAAT Excitatory amino acid transporter protein

EVs Extracellular vesicles

FAs Fatty acids

GFAP Glial fibrillary acidic protein

GLUT1 Glucose transporter type 1

GLAST Glutamate aspartate transporter

GLT-1 Glutamate transporter subtype 1

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

HSP70 Heat shock protein 70

HDL High density lipoprotein

HFD High fat diet

HIF-1a hypoxia-inducible factor 1-alpha

HIF-1a hypoxia-inducible factor 1-alpha

IKK b Inhibitor kappa B kinase b

IR Insulin resistance

IGF-1 Insulin-like growth factor-1

IKK b IkB kinase b

LDHB Lactate dehydrogenase B-chain

LDs Lipid droplets

LPS Lipopolysaccharide

(Continued)
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LTP Long-term potentiation

LDL Low density lipoprotein

MetS Metabolic syndrome

MCT Monocarboxylate transporter

mGluR5 Metabotropic glutamate receptor 5

MAO-B Monoamine oxidase-B

NPY Neuropeptide Y

NVU Neurovascular unit

NAD+ Nicotinamide adenine dinucleotide

NAMPT Nicotinamide phosphoribosyltransferase

NMDA N-methyl-D-aspartic acid

NF-kB Nuclear factor-kB

NF-kB Nuclear transcription factor kappa B

PAPs Perisynaptic astrocytes processes

PGC-1a Peroxisome proliferator-activated receptor gamma coactivator-
1 alpha

PPAR Peroxisome proliferator-activated receptor

Kcnj2 Potassium inwardly rectifying channel subfamily J member 2

POMC Proopiomelanocortin

PTG Protein targeting glycogen

PKM Pyruvate kinase

ROS Reactive oxygen species

RAGEs Receptors for advanced glycosylation end products

RAS Renin-angiotensin system

SHH Sonic hedgehog

Nrf2 Transcription factor NF-E2-related factor 2

TEER Transendothelial cell electrical resistance

TRPV4 Transient potential receptor vanilloid 4

VEGF Vascular endothelial growth factor
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