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Childhood obesity from the
genes to the epigenome
Senthil Sivakumar, Dechen Lama and Nabil Rabhi*

Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of
Medicine, Boston, MA, United States
The prevalence of obesity and its associated comorbidities has surged dramatically

in recent decades. Especially concerning is the increased rate of childhood obesity,

resulting in diseases traditionally associated only with adulthood. While obesity

fundamentally arises from energy imbalance, emerging evidence over the past

decade has revealed the involvement of additional factors. Epidemiological and

murine studies have provided extensive evidence linking parental obesity to

increased offspring weight and subsequent cardiometabolic complications in

adulthood. Offspring exposed to an obese environment during conception,

pregnancy, and/or lactation often exhibit increased body weight and long-term

metabolic health issues, suggesting a transgenerational inheritance of disease

susceptibility through epigenetic mechanisms rather than solely classic genetic

mutations. In this review, we explore the current understanding of themechanisms

mediating transgenerational and intergenerational transmission of obesity. We

delve into recent findings regarding both paternal and maternal obesity,

shedding light on the underlying mechanisms and potential sex differences in

offspring outcomes. A deeper understanding of the mechanisms behind obesity

inheritance holds promise for enhancing clinical management strategies in

offspring and breaking the cycle of increased metabolic risk across generations.
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Introduction

The global rise in obesity presents a pressing public health challenge that demands

thorough exploration to understand its complex origins and extensive impacts. According

to theWorld Health Organization (WHO) in 2016, a staggering 39% of adults aged 18 years

and over were classified as overweight, amounting to 1.9 billion individuals, with an

alarming 13% falling into the obese category (World Health Organization, 2016).

Projections by the World Obesity Federation suggest that if current trends persist, more

than half (51%) of the global population will be affected by overweight or obesity by 2035

(1). Overweight and obesity are distinguished by Body Mass Index (BMI), with a BMI of ≥

25 kg/m² indicating overweight and ≥ 30 kg/m² indicating obesity (WHO). This

epidemiological trend carries significant implications, as obesity is closely linked to a

myriad of health conditions, including cardiovascular disease (CVD), gastrointestinal
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disorders, type 2 diabetes (T2D), musculoskeletal disorders,

respiratory complications, nonalcoholic fatty liver disease

(NAFLD), chronic kidney disease (CKD), cancer, and psychiatric

disorders (1).

The childhood obesity epidemic is equally worrisome,

demanding urgent attention. In 2020, an alarming 39 million

children below the age of 5 were affected by overweight or obesity,

while over 340 million children and adolescents aged 5-19 faced

similar challenges in 2016 (World Health Organization). What’s

particularly concerning is the steady rise in the age-standardized

mean BMI of children aged 5 to 18, which has increased globally by

0.32 kg/m² per decade from 1975 to 2016 . The consequences of

childhood obesity are profound, encompassing an increased risk of

lifelong obesity, the onset of chronic illnesses, and various

psychosocial impacts (2–7). Notably, the challenges posed by the

COVID-19 pandemic, including lockdowns and disruptions to

routines, have further exacerbated the issue, leading to a troubling

surge in childhood obesity rates (8). At its core, obesity arises from a

complex interplay of imbalanced energy intake and expenditure,

influenced by various factors such as changing lifestyles and dietary

patterns (9, 10). Total energy expenditure includes basal metabolic

rate, energy expended at rest, and physical activity expenditure.

Recent trends underscore a societal transition toward a more

sedentary way of life, contributing to diminished energy

expenditure. Additionally, the obesogenic environment,

characterized by easy access to high-calorie foods and limited

physical activity opportunities, has fueled the prevalence of obesity.

However, over the past decade, it has become clear that additional

factors are involved (11).

Indeed, analysis of dietary data from the National Health and

Nutrition Survey (NHANES) during the period from 1998 to 2006

found a noteworthy average increase of 2.3 kg/m² in BMI within the

USA, even when accounting for dietary intake and exercise levels

(12). These findings imply that factors beyond dietary habits and

exercise participation warrant thorough investigation. Several

plausible etiological factors for obesity have been posited,

encompassing chronic sleep deprivation and circadian

misalignment (13), alterations in the gut microbiome (14), and

specific pharmaceutical agents known to induce weight gain (11,

15). Additionally, a multitude of genome-wide association studies

(GWAS) have been conducted to elucidate genetically mediated

heightened susceptibility to obesity (16). It is noteworthy, however,

that genetic variants associated with obesity exhibit limited

predictive capacity, collectively accounting for a mere ~3% of the

variance in BMI (17). Finally, several lines of evidence

demonstrated that environmental factors and alterations in

nutritional conditions in-utero can exert direct influences on the

epigenome of ancestral germline cells consequently imparting

susceptibility to obesity (18–23). This mechanism is recognized as

transgenerational or intergenerational inheritance of obesity.

Notably, a recent meta-analyses, including 23 clinical studies,

indicate a significant link between parental obesity and childhood

obesity, showing that children with overweight or obese parents are

nearly twice as likely to be obese compared to those with normal-

weight parents (24). The risk escalates considerably when both
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parents are obese (odds ratio: 12.0), and even more so when both

parents are severely obese (odds ratio: 22.3), independent of age,

gender, socioeconomic status, and ethnicity (25). Moreover, studies

predicting the risk of childhood or adolescent obesity have found

that parental BMI and socioeconomic factors are better predictors

of childhood obesity than genetic scores (26, 27). While both

maternal and paternal obesity significantly contribute to the risk

of childhood obesity, findings regarding the relative contributions

of each parent vary across studies. Some studies suggest that

maternal obesity has a stronger impact (25, 28, 29), while others

indicate a greater influence from paternal obesity (26, 30, 31),

highlighting the complexity and the need for further research to

fully understand these dynamics.

In this review, we delve into the current evidence and molecular

mechanisms underlying the inheritance of obesity, with a particular

emphasis on inter- and trans-generational transmission. To ensure a

thorough exploration of the topic, we conducted a comprehensive

literature search, meticulously gathering relevant studies that shed

light on the inheritance patterns of obesity. Our search encompassed

a wide range of sources, including data on familial clustering of

obesity, genetic studies elucidating predisposing factors, and animal

models providing insights into transgenerational inheritance

phenomena. The criteria for selecting studies were rigorously

defined, prioritizing relevance to inter- and trans-generational

inheritance and ensuring the robustness of review designs

employed. By adopting this strategic approach, we aimed to

provide a comprehensive overview of the inheritance mechanisms

contributing to the obesity epidemic, thereby advancing our

understanding of this complex and pressing public health issue.

The terms transgenerational and intergenerational are often used

interchangeably when obesity-related effects are discussed hence

before we continue it is opportune to clarify the definitions as

previously established and used in this manuscript (Figure 1). The

notion of ‘transgenerational effects’ encompasses phenomena

exclusively attributed to factors that cannot be ascribed to the direct

impact of a particular trigger on the affected organism. For instance,

an environmental stimulus can directly influence a developing

embryo, including the already-formed oocytes within a female

embryo in mammals (32–34). Consequently, only modified

phenotypes that emerge in the second generation (in the case of

male transmission) or the third generation (in the case of female

transmission) subsequent to a trigger can be accurately characterized

as transgenerational inheritance in the context of obesity. In contrast,

effects manifesting over shorter temporal intervals are categorized as

‘parental’ or ‘intergenerational’ in nature. It is important to note that

while these intergenerational effects span fewer generations, they may

share underlying mechanistic pathways with transgenerational effects.
The genetics of obesity

The heritability of obesity is estimated to range from between

40% and 75% (35). Genetic forms of obesity manifest along a

continuum of clinical features traditionally classified into three

overarching categories: Mendelian (monogenic) syndromic
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obesity, Mendelian non-syndromic obesity, and polygenic

obesity (36).

Mendelian obesity forms result from rare chromosomal

abnormalities and pathogenic gene variants that impact critical

proteins involved in regulating energy balance. They are typically

rare, early-onset and adhere to a Mendelian inheritance pattern and

can be either autosomal or X-linked (37, 38). Syndromic forms of

Mendelian obesity, also referred to as pleiotropic syndromes, are

relatively uncommon within the general population. Syndromic

obesity is characterized by obesity alongside additional distinctive

features such as intellectual disabilities, dysmorphic traits, and

congenital anomalies affecting specific organ systems. About 79

syndromes have been associated with obesity; notable examples

include Albright hereditary osteodystrophy, Alström, Bardet-Biedl,

and Prader-Willi syndrome (39). Those have been reviewed

recently by Kaur et al. and will not be further discussed here (39).

On the other hand, non-syndromic Mendelian obesity forms

identified thus far are primarily associated with genetic defects in the

leptin/melanocortin pathway, leading to hyperphagic obesity (40, 41).

These encompass mutations in genes encoding key components such

as leptin, the leptin receptor, prohormone convertase 1, pro-

opiomelanocortin, or melanocortin 4 receptor (Figure 2).

In contrast to monogenic obesity, polygenic obesity does not

stem from a single gene with a significant impact on obesity

development. Polygenic obesity is believed to be determined by

the cumulative influence of numerous common genetic variants,
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each exerting modest effect. For instance, common variants located

within intron 1 of the fat mass and obesity-associated gene (FTO)

are among the most prominent contributors to polygenic obesity,

accounting for approximately 1% of the variance in BMI within the

general population.

Polygenic obesity, commonly known as common obesity, differs

markedly from monogenic obesity, as it does not arise from a

singular gene exerting a substantial impact on obesity development.

Instead, polygenic obesity is shaped by the collective influence of

numerous common genetic variants, each exerting modest effects

(42–44). For example, common variants located within intron 1 of

the fat mass and obesity-associated gene (FTO) are among the most

prominent contributors to polygenic obesity, while accounting for

only 1% of the variance in BMI within the general population (43,

44). This multifactorial condition aligns with heritability patterns

observed in complex traits and diseases and shares a foundational

biological framework with monogenic obesity. Specifically, both

forms of obesity implicate the central nervous system (CNS) and the

neural pathways governing food intake’s pleasurable aspects as

crucial determinants of body weight regulation (45). Furthermore,

emerging evidence suggests that mutations responsible for

monogenic obesity may, to some extent, be influenced by an

individual’s polygenic predisposition to obesity (46).

Genome-wide association studies (GWAS) have accelerated the

identification of loci linked to polygenic obesity. Obesity-associated

gene (FTO) was the first GWAS-identified obesity gene. The FTO
FIGURE 1

Schematic representation of intergenerational and transgenerational inheritance of obesity.
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locus has a well-established correlation with obesity but the specific

mechanisms connecting FTO polymorphisms to obesity risks still

need to be researched. Several loci discovered by GWAS are near

genes that are also associated with monogenic obesity, including

MC4R, BDNF, SH2B1, POMC, LEP, LEPR, NPY, SIM1, NTRK2,

PCSK1 and KSR2 (45) (Table 1).
Frontiers in Endocrinology 04
Mechanisms for inter/
transgenerational inheritance

Intergenerational phenotypes encompass alterations that arise

from changes in ancestral generations’ phenotypes, which are distinct

from primary DNA sequence modifications. These alterations involve
FIGURE 2

Leptin-melanocortin pathway. Leptin, primarily secreted by adipocytes, acts as a satiety factor in the hypothalamic arcuate nucleus. It binds to the
leptin receptor (LEPR) on two neuron populations: neuropeptide Y (NPY)–agouti-related protein (AgRP) neurons and pro-opiomelanocortin (POMC)
neurons. This binding downregulates orexigenic AgRP production in NPY-AgRP neurons and upregulates anorexigenic a-melanocyte-stimulating
hormone (a-MSH) in POMC neurons. a-MSH acts as an agonist, while AgRP serves as a reverse agonist of MC4R on neurons in the paraventricular
nucleus, signaling satiety and limiting food intake. Brain-derived neurotrophic factor (BDNF) modulates leptin-mediated synaptic plasticity through its
receptor neurotrophic receptor tyrosine kinase 2 (NTRK2), while Single-minded homologue 1 (SIM1) is a transcription factor essential for the
development of paraventricular nucleus neurons.
TABLE 1 List of genes found to control obesity inheritance in mice models and their functions.

Gene Function Mutant Phenotype References

LEP Signals satiety and binds to neurons in
the hypothalamus

Hyperphagia, early-onset obesity, hypogonadotrophic hypogonadism,
weakened immunity

(47, 48)

LEPR Leptin-receptor present on 2 different neuron
populations (NPY-AgRP and POMC) in the arcuate
nucleus of the hypothalamus

Hyperphagia, early-onset obesity, hypogonadotrophic hypogonadism,
weakened immunity

(49, 50)

MC4R G-Protein coupled receptor present on neurons in the
hypothalamus that regulates satiety

Hyperphagia, early-onset obesity (51, 52)

POMC Cleaved to form melanocortin peptides like the MC4R
agonist a-MSH

Hyperphagia, early-onset obesity, hypoadrenalism, red hair and pale skin (53)

PCSK1 Catalyzes the cleavage of the POMC protein Early-onset obesity, hypogonadotrophic hypogonadism, hypocortisolism,
elevated plasma proinsulin and POMC concentrations, very low insulin levels,
abnormal glucose homeostasis

(54)

SIM1 Transcription factor necessary for the development of
neurons of the paraventricular nucleus

Hyperphagia, reduced energy expenditure, obesity (55–57)

SEMA3A-
G

Direct the development of GnRH neurons in
the hypothalamus

Obesity, hypogonadotropic hypogonadism (58)

BDNF Modulates synaptic plasticity of neurons Hyperphagia, severe obesity, and impaired cognitive function (59–61)

NTRK2 Receptor of BDNF Hyperphagia, severe obesity, and impaired cognitive function (62, 63)

IGF2 Imprinted gene:
Establishes insulin resistance state in mother, regulates
nutrient transport to fetus

Prader-Willi Syndrome:
Hyperphagia, early-onset obesity, hypotonia, growth retardation, altered
intellectual and sexual development, sleep disturbances

(64)

(Continued)
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various epigenetic modifications, including DNA methylation,

histone modifications, and non-coding RNAs. The epigenome is

remarkably sensitive to environmental influences such as lifestyle,

dietary patterns, gut microbiota, and other factors (70, 71). Exposure

early in life or in utero to those can alter metabolic outcomes through

developmental epigenetic reprogramming (72). Understanding the

mechanisms underlying intergenerational inheritance remains a

complex challenge, as maternal lineage is influenced by various

factors, including the intrauterine environment, placental function,

and germ cell epigenetics. While firmly establishing germ cell-

dependent epigenetic inheritance mechanisms presents difficulties,

this section aims to provide insights into the current understanding of

the roles of epigenetic marks in male and female germ cells.

In mammals, the predominant site for DNA methylation is

observed on cytosines that are positioned before a guanine, referred

to as CpG sites. This process involves the methylation of the 5’

carbon atom within the cytosine molecule, facilitated by enzymes

known as DNA methyltransferases (Dnmts). CpG islands represent

extended DNA sequences, typically around 1000 base pairs in

length, characterized by a higher density of CpG dinucleotides

compared to the rest of the genome. Remarkably, approximately

50% of CpG islands encompass well-established transcription start

sites. The methylation of CpG islands plays a pivotal role in the

stable silencing of gene expression. However, it is important to note

that the majority of CpG islands remain unmethylated (73). The

analysis of DNA methylation primarily finds their focus in

population-based investigations. This preference arises from the

relative stability and convenience associated with high-throughput,

array-based assays, making DNA methylation a prominent subject

of research in understanding epigenetic mechanisms.

Histones are pivotal proteins that play a crucial role in

organizing the chromatin. Post-translationally, histones undergo

modifications that exert a profound influence on the compaction

state of chromatin, consequently influencing gene expression. This

intricate regulation gives rise to two distinctive chromatin states:

euchromatin, characterized by a more relaxed and open structure,

facilitating high transcriptional activity; and heterochromatin,

characterized by a tightly compacted configuration that renders it

transcriptionally silent.

Numerous histone modifications contribute to the dynamic

orchestration of chromatin structure and gene regulation,

encompassing processes such as methylation, acetylation,
Frontiers in Endocrinology 05
phosphorylation, and ubiquitination (74). These modifications

constitute fundamental components of the epigenetic machinery,

finely tuning gene expression patterns.

Regulatory non-coding RNAs can mainly be divided into two

categories based on size: short-chain non-coding RNAs (including

siRNAs, miRNAs, and piRNAs) and long non-coding RNA

(lncRNAs) (75).
Paternal inheritance

Fathers play a crucial role in the genetic inheritance of their

offspring, contributing approximately half of the nuclear DNA. This

inheritance not only affects the genetic predisposition to diseases

but also encompasses the transmission of genetic information from

the paternal side. At specific loci known as paternally derived

imprinted loci, the genetic information inherited by offspring is

solely from the paternal allele. This exclusivity arises because DNA

methylation effectively silences the maternal allele, allowing only

the paternal allele to be expressed (76).

Nonetheless, there exists compelling evidence demonstrating

that factors such as paternal age and environmental exposures

possess the capacity to exert a direct influence on the genetic

makeup of offspring, consequently shaping their subsequent traits.

This influence arises from the induction of DNA damage and the

generation of de novo genetic mutations within the male germline

(77–79). Another viable hypothesis is that the paternal environment

may play a role in the selection of specific haploid genomes. This

could occur through mechanisms such as altering the genotype

distribution within the ejaculate or inducing mutations that

subsequently impact sperm function and the probability of

reproductive success (80). For instance, studies in both humans

and rodents showed that male obesity impairs sperm count, motility

and morphology (77, 81–85). While these genetic defects may

contribute to the paternal influence on offspring phenotype, it is

important to clarify that paternal transgenerational obesity is

defined as alterations that manifest independently of any

variations in the offspring’s genotype. This implies that changes

in offspring phenotype are not contingent upon variations in their

genetic makeup. This dist inct ion makes cl inical and

epidemiological data interpretation difficult (86–89). In mice,

however, studies have clearly demonstrated that paternal high-fat
TABLE 1 Continued

Gene Function Mutant Phenotype References

Pref1/
Dlk1

Imprinted gene:
Inhibits adipogenesis, regulates metabolism
and development

Obesity, growth retardation, blepharophimosis, skeletal malformation, and
increased serum lipid metabolites

(65)

Peg1/
Mest

Imprinted gene:
Exact function unknown

Increased body weight and increased weight of kidney and spleen (in mice) (66, 67)

TRIM28 Epigenetic modifier complex mediated by a cohort of
KRAB Zinc finger proteins

Bi-stable obesity (68)

Spag7 Embryonic development, energy homeostasis Obesity, insulin-resistance, low fetal birthweight, reduced skeletal muscle
activity (in mice)

(69)
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diet (HFD) feeding has adverse consequences that manifest in the

subsequent generation independently from the genotype (90–95).

Paternal obesity in rodents has been linked to adverse effects on

offspring health, including lower mitochondrial activity, smaller

offspring size, altered carbohydrate metabolism, delayed cell cycle

progression, decreased blastocyst number, and decreased

blastulation rate (89–92). Fullston et al. have reported that

paternal effects exhibit sex-specific transmission patterns to the

next generation, affecting both first-generations of paternal and

maternal lines (90). Intriguingly, even when both generations of

offspring were maintained on a standard diet, the authors found

that F1 males pass on a predisposition to obesity and insulin

resistance to their F2 female offspring. Conversely, F1 females

transmit a propensity for obesity, impaired metabolic health, and

insulin resistance to their F2 male descendants. It is worth noting

that these intergenerational effects originating from grand-paternal

HFD exposure are most pronounced in F2 male offspring born to F1

females (90). Interestingly, male neonatal overnutrition has been

shown to be sufficient to promote obesity, glucose intolerance and

insulin resistance later in life. Most of the metabolic disorders

excluding obesity were found to be inherited to at least the two next

generations through the male lineage (96). Nevertheless, all the

studies that examined paternal inheritance of metabolic disorders in

successive generations found that those faded in severity with each

generation (90, 96, 97). Finally, although in-utero exposure has a

stronger transgenerational transmissibility, paternal HFD exposure

has been found to have an additive metabolic effect for two

generations (97).

All the studies to date overwhelmingly support the idea that

paternal transmission is influenced by the inheritance of epigenetic

modifications transmitted across successive generations.

Remarkably, both human and rodent studies have consistently

revealed a robust association between dietary habits and the

epigenetic alterations present in sperm (93, 97–102). For example,

paternal low protein diet (LPD) feeding has been shown to promote

sperm hypomethylation leading to increased adiposity, glucose

intolerance, altered gut bacteria profile, and hepatic liver function

resembling fatty liver disease in offspring (103). These epigenetic

modifications were detected in crucial metabolic genes, including

adiponectin and leptin, as well as imprinted genes such as Igf2,

Peg3, Cdkn1c, and Gnas (97, 98, 104–106). Pepin et al. found that

obesity induced alterations in sperm H3K4me3 profile and

suggested it as a metabolic sensor of paternal obesity and the

inheritance of metabolic dysfunction (107). Further pathway

analysis of genes with altered H3K4me3 modification revealed an

enrichment of metabolic, inflammatory, and developmental

processes (107). These processes were found to correlate with

offspring metabolic dysfunction and corresponded to genes

enriched for H3K4me3 in embryos, which also overlapped with

embryonic and placental gene expression profiles (107). In rats,

paternal obesity was found to downregulate histone marks

H3K4me3, H3K9me3, and H4ac, while upregulating H3K27me3

and H3ac were in placentas derived from obese male rats.

Finally, the DNA methylation pattern of SETD2 a histone

methyltransferase, which methylates H3K36me2 to generate

H3K36me3, has been shown to be altered in paternal HFD sperm
Frontiers in Endocrinology 06
suggesting a potential role of SETD2 as an epigenetic carrier for

paternal intergenerational and transgenerational inheritance (93). It

is likely that dietary habits alter multiple epigenetic modifiers’

expression, activity and function which in turn synergically

promote developmental programming and it transmitted across

successive generations.
Maternal inheritance

While both parents contribute equally to the genetic makeup of

offspring, it is important to consider mothers separately in the

context of genetic predispositions to diseases. Mothers have the

unique ability to influence offspring phenotype during gestation and

lactation, making this a critical window during which maternal

factors can significantly impact offspring metabolic outcomes (108–

110). Notably, maternal BMI has emerged as a significant

determinant of offspring health, with some studies suggesting a

stronger influence than paternal BMI (25, 28, 29). However, other

studies using the Northern Finland Birth Cohort found a greater

effect of paternal obesity, suggesting that the mechanisms and

extents of their influences may differ, underscoring the need to

consider both parental roles in obesity-related research (30, 31).

Nerveless, the effect of maternal obesity is rooted in developmental

programming by maternal obesity, although the precise

mechanisms driving this transgenerational phenomenon remain

poorly defined, with existing studies proposing varying mechanisms

(111, 112). Research underscores the pivotal role of nutrient

availability in the uterus in determining offspring obesity risk.

Both fetal undernutrition and overnutrition have been implicated

in shaping altered metabolic phenotypes, indicating the

involvement of multiple mechanisms in the interaction between

maternal nutrition and the transgenerationally transmitted

phenotype (113, 114). Understanding these intricate pathways is

crucial for unraveling the complexities of maternal influence on

offspring health and developing effective interventions to mitigate

the risk of obesity across generations.
Undernutrition as a driver of maternal
inheritance of obesity

The thrifty phenotype hypothesis, proposed by James Neel, offers

an explanation for the observed associations between poor fetal

nutrition and the subsequent development of metabolic disorders

(115). According to this hypothesis, individuals with a thrifty

phenotype are predisposed to store energy as body fat to aid

survival during times of famine or food scarcity. However, in

environments abundant with nutrition, this adaptive trait can

increase the risk of obesity and associated metabolic syndromes.

Supporting evidence for this hypothesis comes from studies of the

Dutch hunger winter, which found that individuals born during the

famine were more prone to developing obesity, diabetes, and other

metabolic diseases compared to those born before the famine, with a

more pronounced risk observed in males (116). Furthermore, infants

exposed to famine during their mother’s first trimester faced a higher
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risk of metabolic diseases, underscoring the heightened susceptibility

of the early developmental stage to environmental influences.

In the Dutch hunger winter study, Heijmans et al. (117)

identified insulin-like growth factor II (IGF2) methylation as a

potential epigenetic marker distinguishing individuals exposed to

famine in utero. IGF2, which is maternally imprinted, exhibits

relatively stable methylation patterns up to middle age, enabling

the detection of in utero epigenetic changes later in life. Their

findings indicated that individuals exposed to famine early in

gestation displayed lower levels of IGF2 methylation compared to

those unexposed, highlighting the lasting impact of temporary

environmental influences on epigenetic modifications, which may

contribute to adult disease risk. Hypomethylation of Igf2 in cord

blood has also been associated with an increased risk of early

childhood obesity (118, 119). The imprinted gene Igf2 plays a

crucial role in fetal metabolism by regulating nutrient transport to

the fetus and inducing insulin resistance in the mother. Fetuses

lacking placental Igf2 were found to be growth-restricted and

hypoglycemic, which may further elucidate the hypomethylation

of Igf2 observed in famine conditions (64).

Recent metabolic studies have revealed that individuals with a

thrifty metabolism exhibit decreased activation of brown adipose

tissue (BAT) in response to cold exposure, potentially contributing

to their increased susceptibility to weight gain (120). This

observation is supported by a recent investigation linking sperm

associated antigen 7 (SPAG7) deficiency to intrauterine growth

restriction, which subsequently manifests as reduced energy

expenditure, obesity and insulin resistance in adulthood (69). The

authors found that SPAG7-deficient mice were born underweight

but developed obesity later in life and identified reduced energy

expenditure as a key driver for the onset of obesity and metabolic

syndrome in these mice (69). Although the underlying mechanisms

remain to be fully elucidated, these studies collectively support the

concept of a ‘thrifty’ phenotype, suggesting the existence of genetic

or epigenetic factors predisposing offspring to increased risks of

metabolic diseases.
Overnutrition as a driver of maternal
inheritance of obesity

Maternal obesity has also been recognized as a major contributor

to offspring obesity, with extensive epidemiological evidence linking

pre-pregnancy BMI to increased offspring weight and subsequent

cardiometabolic complications in adulthood (109, 121–130). Notably,

offspring born after maternal bariatric gastrointestinal bypass surgery

(AMS) exhibit lower birth weights and reduced obesity compared to

siblings born before maternal surgery (131, 132). Moreover,

alterations in maternal hormones, including resistin, insulin-like

growth factor binding protein-1 (IGFBP-1), adiponectin, visfatin,

and kisspeptin-1, have been correlated with variations in offspring

birth weight (133–136). However, despite the correlations observed in

these studies, deciphering the causal mechanisms driving maternal

transgenerational obesity inheritance remains a formidable challenge,

primarily due to constraints in accessing human specimens and

acquiring comprehensive data from maternal-offspring cohorts.
Frontiers in Endocrinology 07
One hypothesis suggests the transgenerational inheritance of

epigenetic modifications from obese mothers. Early studies have

identified correlations between retinoid X receptor alpha (RXRA)

promoter methylation and later childhood adiposity across

independent cohorts (137). Leveraging advancements in Targeted

Bisulfite Sequencing technology, recent studies have conducted

comprehensive genome-wide analyses of fetal umbilical cord

blood from offspring of obese mothers. This scrutiny unveiled a

notable reduction in methylated cytosines within both CpG islands

and promoter regions compared to control groups. Intriguingly,

these epigenetic alterations were found to be enriched in genes

associated with pathways linked to an elevated susceptibility to

metabolic disorders, cancer, and cardiomyopathy (138). Replication

of these findings in sibling-offspring cohorts born BMS and AMS

suggests potential reversibility through surgery-induced epigenetic

reprogramming (132, 139). Further investigations in sibling

offspring cohorts have revealed that maternal surgical

intervention induced alterations in DNA methylation and

transcriptional profiles of genes implicated in insulin and leptin

signaling, as well as pro-inflammatory genes. These findings

underscore the capacity for maternal metabolic health

improvements to modulate offspring epigenetic profiles (132).

However, deciphering the mechanisms underlying maternal

obesity inheritance in human settings remains challenging.

Consequently, studies using established obesity models in

controlled environments have been pivotal in advancing our

understanding. For instance, in-depth investigations using HFD

in C57BL/6 mice for three consecutive generations have revealed a

progressive exacerbation of obesity across generations, with the

severity increasing from F0 to F2 (140). Moreover, the F2

generation exhibited severe glucose intolerance and insulin

resistance, accompanied by increased hepatic steatosis and

elevated serum levels of triglycerides, insulin, and leptin (140).

These metabolic alterations were concomitant with a gradual

increase in hepatic lipogenesis and endoplasmic reticulum stress

genes across generations. Interestingly, the F2 generation displayed

a significant reduction in accumulation of methylated histones in

LXRa and ERO1-a gene promoters (140). Nevertheless, elucidating

the precise contributions of maternal versus paternal transmission

of obesity remains challenging due to the intricate experimental

designs employed in these studies. Using a targeted experimental

approach to examine the specific repercussions of maternal obesity,

Huang et al. unveiled compelling insights. Their study revealed that

maternal HFD not only promoted glucose intolerance and insulin

resistance in the F1 generation but also led to a diminution in

embryonic developmental potential. Furthermore, HFD was

associated with elevated levels of reactive oxygen species (ROS)

and gH2AX, coupled with a decline in mitochondrial membrane

potential (MMP) within oocytes, thus instigating significant

oxidative stress and DNA damage (141). Additionally, the

investigation identified an elevation in Rap1-interacting factor 1

(RIF1) levels in the oocytes of HFD-fed females associated with

aberrations in DNA methylation and histone modification patterns

during zygotic genome activation in obese mice (141). Furthermore,

RIF1 knockdown experiments using Trim-Away methods revealed

that degradation of RIF1 altered the enrichment of H3K4me3 and
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H3K9me3, subsequently triggering the transcriptional activation of

the zygotic genome activation marker Murine Endogenous

Retrovirus-Leucine (MuERV-L). In a recent investigation into

fetal BAT from obese females, it was found that maternal obesity

triggers an increase in the expression of Dio3, encoding deiodinase

3 (D3), thereby leading to the catabolization of triiodothyronine

(T3). Simultaneously, the authors uncovered a suppression of the

maternally imprinted long noncoding RNA, Dio3 antisense RNA

(Dio3os), resulting in intracellular T3 deficiency and subsequent

inhibition of BAT development. Furthermore, the investigators

noted a higher degree of methylation in the Dio3os promoter

region in the oocytes of obese mothers, a modification that

persisted in the offspring (142). Conversely, Wang et al.

demonstrated that maternal obesity suppressed genes associated

with myogenesis and brown adipogenesis while promoting white

adipogenesis during fetal BAT development by enhancing miR-

204-5p expression, consequently leading to the suppression of

PGC1a and Sirt1 (143). Collectively, these findings suggest a

complex interplay of epigenetic modifications underlying the

inheritance of maternal obesity, potentially persisting

across generations.

It is noteworthy that sexual dimorphism in transgenerational

inheritance of obesity has been reported, indicating a more complex

mechanism than initially presumed. For instance, oocytes exposed to

obesity have been previously found to accumulate and transmit

dysfunctional mitochondria to offspring due to an impaired ability to

activate mitophagy (144). Subsequent studies across generation have

demonstrated the transmission of dysfunctional mitochondria to the

second and third generations through the female germline (145).

Furthermore, recent research has shown that maternal obesity

induced by a HFD disrupts genomic methylation in oocytes, with

at least some of the altered methylation transmitted to F2 oocytes

and livers via females. Interestingly, the involvement of melatonin in

regulating the hyper-methylation of HFD oocytes has been

identified, with melatonin increasing the expression of DNMT3a

and DNMT1 mediated by the cAMP/PKA/CREB pathway (146).

These findings highlight the importance of considering significant

distinctions in the mechanisms of maternal inheritance of obesity

between female and male offspring in future studies.
Fetal nutritional availability as a driver of
maternal inheritance of obesity

The complex interplay occurring at the maternal-fetal interface

exerts a profound influence on long-term fetal health outcomes,

underscoring the need to delve into placental genomic regulations

and nutrient sensing pathways as potential contributors to disrupted

metabolic phenotypes in offspring (147). HFD consumption before

and during pregnancy has been found to enhance nutrient transport

and fetal overgrowth in both human and murine studies (148–151).

These findings have been linked to the upregulated expression of the

mammalian target of rapamycin (mTOR) complex 1, which

modulates nutrient transporter expression. Interestingly, vasoactive

intestinal peptide (VIP) has been identified as a regulator of glucose

and amino acid uptake, exerting its effects by increasing GLUT1 and
Frontiers in Endocrinology 08
mTOR gene expression (152). Notably, offspring of VIP-deficient

mothers exhibit a marked reduction in body weight (153). Maternal

inheritance of obesity has also been associated with dysregulation of

circulating steroid hormones during pregnancy. In addition to steroid

hormone dysregulation, maternal obesity is associated with

alterations in a wide range of hormones, growth factors, and

cytokines, which can significantly affect pregnancy outcomes. Page

L et al. provide an extensive review of these dysregulations,

highlighting the complex endocrine environment in obese

pregnancies and its potential implications for both maternal and

fetal health (154). One study in rodents demonstrated that maternal

obesity resulted in low fetal weight in the F1 generation, accompanied

by modified DNA methylation and altered expression of the nuclear

hormone receptor RXRa in a sex-dependent manner (155).

Methylation of RXRa has also been linked to childhood adiposity

(137). Examination of placentas from obese women reveals

diminished mitochondrial b-oxidation of fatty acids (FA) and lipid

accumulation in late pregnancy, fostering a lipotoxic environment

(156). The authors found a significant reduction in genes associated

with FA oxidation, uptake, synthesis, and storage, with pronounced

effects notably observed in placentas of male fetuses (156)..

Furthermore, alterations in placental genes implicated in

modulating offspring glucose and insulin metabolism under the

stress of maternal obesogenic conditions have been documented

(152). Taken together, these findings suggest that maternal obesity-

induced alterations in nutritional uptake may constitute critical

determinants of maternal inheritance of obesity. Notably, evidence

suggests that the action of epigenetic modifiers is sensitive to changes

in dietary components and cellular metabolism intermediates, linking

nutrition and energy metabolism to gene expression plasticity (157).
Environmental influence

Considering the inheritability and genetic basis of obesity, it’s

crucial to also examine gene-environment interactions as potential

contributors to the mechanism of inheritance Studies have implicated

exposure to environmental toxicants in the transgenerational

inheritance of obesity and the development of DNA methylation

sperm epimutations. Notable among these chemicals are plastics such

as BPA, phthalates DEHP and DBP, bisphenol S, the herbicide

glyphosate, insecticides like DDT and methoxychlor, the biocide

tributyltin, the combustion byproduct benzo[a]pyrene, and

hydrocarbons from jet fuel (158–165). Most of these chemicals are

classified as endocrine disruptors and have been labeled as

“obesogens,” capable of promoting obesity by increasing fat cell

count, fat storage, and affecting appetite mechanisms. For instance,

exposure to the estrogenic endocrine disruptor BPA has been linked

to deregulated genomic methylation and hydroxymethylation (166,

167). Prenatal exposure to BPA in humans has been associated with

early childhood obesity and methylation changes at the mesoderm-

specific transcript homologue (MEST) locus (168). Studies on BPA-

treated mouse spermatogonia showed reduced expression of Dnmt1,

while exposure during oocyte maturation altered histone

modifications due to oxidative stress (169, 170). BPA exposure has

also been found to affect TET enzyme expression and function,
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leading to altered levels of 5hmC at several imprinted loci (167). This

suggests a potential mechanism through which environmental

toxicants can disrupt long-term imprinted gene regulation,

ultimately contributing to obesity.

Moreover, some studies suggest that the effects of obesogens can

be inherited across multiple generation. A transgenerational mouse

study showed that grandparental exposure to tributyltin (TBT)

resulted in increased fat depots in offspring extending to the F3

generation (171). Additionally, environmental factors such as

paternal cold exposure have been implicated in influencing

offspring obesity. Human studies have shown that individuals

conceived in colder months exhibit higher BAT activation.

Corresponding mouse studies demonstrated that paternal cold

exposure affected sperm epigenetic programming and enhanced

BAT activity in offspring (172).

Another environmental factor of interest is the maternal gut

microbiome. Maternal diet influences the maternal gastrointestinal

tract (GIT) microbiota, vaginal microbiota, and breast milk

composition, which in turn influence the colonization of the

fetus’ GIT either in utero or postnatally. The fetal microbiome

plays a crucial role in GIT mucosa development and may be linked

to obesity (173). Vaginal delivery is considered vital for infants to

acquire bacterial communities resembling their mothers’, while

cesarean delivery disrupts this process, leading to changes in

offspring immune and metabolic programming (174). Indeed,

studies have reported that infants born via cesarean delivery are

more predisposed to obesity (175).
Current treatments and
future direction

Treatments plans ranging from as simple as regulating the diet to

as complex as surgery are available for the management of obesity.

However, few methods are currently recommended for obese women
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during pregnancy or in the early stages of offspring development.

Nonpharmacological interventions include dietary adjustments and

increased physical activity, both of which been shown to confer benefits

mediated through epigenetic mechanisms (176, 177). Notably, exercise

during pregnancy has been shown to prevent the reduction in placental

vascularization and fetal overgrowth associated with maternal obesity

(178). Mechanistically, maternal exercise was found to downregulated

mTOR protein expression mTOR and amino acid transporters

promoting a healthier fetal outcome (179). Furthermore, maternal

exercise during pregnancy as also found to improve fetal metabolic

health through a vitamin D receptor-mediated increase in placental of

superoxide dismutase 3 (SOD3), which in turn enhances liver function,

and improves glucose tolerance in offspring (180). Extensive reviews

have highlighted the effects of maternal and paternal exercise on

offspring metabolism (181–184), underscoring the potential of

regular exercise to break the cycle of increased metabolic risk across

generations. However, the translation of these findings to the human

population remains to be addressed.

Pharmacological treatment options typically target patients

with a BMI ranging from 27 to 30 kg/m², with discontinuation

recommended if less than 5% of the target weight is lost within three

months of starting the medication (185). Currently, there are seven

FDA-approved drugs for long-term weight loss, including

Semaglutide, Setmelanotide, Gelesis100, Liraglutide, Bupropion-

naltrexone, Phentermine-topiramate, and Orlistat (Table 2) (185).

Of these, semaglutide and liraglutide, which are glucagon-like

peptide 1 (GLP-1) agonists, show the most promising results,

with semaglutide demonstrating the highest placebo-subtracted

weight loss percentage (186, 187). Off-label drugs for weight loss

include Bupropion, Metformin, Pramlintide, Sodium glucose

cotransporter 2 (SGLT-2) inhibitors, Topiramate, and Zonisamide

(185). A summary of the most common FDA-approved drugs for

long-term weight loss, along with those currently in clinical trials, is

provided in Table 2. However, none of these drugs have been tested

in the context of maternal obesity and its impact on future offspring.
TABLE 2 List of drugs approved or currently in trial for obesity treatment and their targets for treatment (185).

Drug Status Mechanism/Target

Tirzepatide FDA Approved (2023) Dual agonist
(GIP, GLP-1)

Semaglutide FDA Approved (2021) GLP-1 agonist

Setmelanotide FDA Approved (2020) MC4R agonist (for monogenic obesity)

Gelesis100 FDA Approved (2019) Oral hydrogel that expands in the stomach, creating satiety

Liraglutide FDA Approved (2014) GLP-1 agonist

Bupropion-naltrexone FDA Approved (2014) Bupropion: Dopamine and norepinephrine re-uptake inhibitor
Naltrexone: Opioid receptor antagonist

Phentermine-topiramate FDA Approved (2012) Phentermine: Sympathomimetic (appetite-suppressing)
Topiramate: Antiepileptic

Orlistat FDA Approved (1999) Gastric/Pancreatic lipase inhibitor

Diethylpropion FDA Approved (1979) Sympathomimetic

Phentermine FDA Approved (1959) Sympathomimetic

(Continued)
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Conclusion

Current research unequivocally illustrates the transgenerational

transmission of obesity (Figure 3). Recent studies in both mice and
Frontiers in Endocrinology 10
humans have revealed that both undernutrition and overnutrition

contribute to metabolic disorders in offspring, shedding light on some

of the underlying mechanisms. However, numerous critical areas

warrant future investigation to comprehensively grasp the central
TABLE 2 Continued

Drug Status Mechanism/Target

Metformin Off-Label Antihyperglycemic agent

Pramlintide Off-Label Mimics pancreatic hormone amylin which regulates post-prandial glucose

Canagliflozin, Dapagliflozin,
Ertugliflozin, and Empagliflozin

Off-Label SGLT-2(Sodium glucose cotransporter 2) inhibitors

Zonisamide Off-Label Antiepileptic

Orforglipron Phase III Clinical Trials Oral GLP-1 agonist

Retatrutide Phase III Clinical Trials Triple-hormone-receptor agonist
(GIP, GLP-1, GCG)

Mazdutide Phase III Clinical Trials Dual agonist
(GLP-1, GCG)

Pemvidutide Phase II Clinical Trials Dual agonist
(GLP-1, GCG)

Danuglipron Phase II Clinical Trials GLP-1 agonist

S-309309 Phase II Clinical Trials MGAT2(monoacylglycerol acyltransferase-2) inhibitor

ARD-101 Phase II Clinical Trials TAS2R(bitter taste receptor) agonist

APH-012 Phase II Clinical Trials Restores intestinal hormone response

Bimagrumab Phase II Clinical Trials ACTRII(activin type II receptor) inhibitor
FIGURE 3

Summary of the various modes of inheritance of obesity.
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mechanisms that drive the perpetuation of obesity across generations.

With emerging evidence indicating sexual dimorphism in the

transmission of obesity, elucidating its extent will be invaluable for

tailoring future pharmacological interventions. Additionally, further

studies are imperative to thoroughly dissect the impact of maternal

obesity on the metabolic organs of offspring and to ascertain whether

the pathophysiological mechanisms promoting cardiometabolic

complications in adulthood are equivalent across generations of

obesity. For instance, because obesity occurs earlier and manifests

more severely in offspring, future research should adopt a holistic

approach to analyze inherited epigenetic alterations in the metabolic

organs of offspring. The placental–fetal system represents another

focal point for offspring developmental programming, given its

significant role during the critical windows of prenatal development.

Identifying the mediating factors and signaling pathways is essential

for human translation, particularly given the escalating global obesity

epidemic, which renders these issues increasingly pertinent for

the future.
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