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Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis

failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and

Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA)

pathway is closely related to the occurrence of NOA. There are FA genemutations in

male NOA patients, which cause significant damage to male germ cells. The FA

pathway is activated in the presence of DNA interstrand cross-links; the key step in

activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex,

and the activation of the FA pathway can repair DNA damage such as DNA double-

strand breaks. Therefore, we believe that the FA pathway affects germ cells during

DNA damage repair, resulting in minimal or even disappearance of mature sperm in

males. This review summarizes the regulatory mechanisms of FA-related genes in

male azoospermia, with the aim of providing a theoretical reference for clinical

research and exploration of related genes.
KEYWORDS

non-obstructive azoospermia, Fanconi anemia pathway, Fanconi anemia gene,
interstrand crosslinks, homologous recombination
1 Introduction

Male infertility is a common reproductive disease that affects multiple families eager to

create a new life. Existing research statistics have found that approximately seven out of

every 100 males suffer from infertility symptoms (1). Of these, 13-17% of infertile men are

due to azoospermia, which accounts for 55-65% of non-obstructive azoospermia (2). It is

generally believed that the main cause of male infertility may be abnormal reduction in

sperm count or even azoospermia caused by factors such as congenital inheritance or
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acquired living environment (3). Azoospermia is an extreme form

of decreased sperm count during ejaculation, divided into two types:

obstructive azoospermia (OA) and non-obstructive azoospermia

(NOA) (4). The viability of sperm is closely related to the health

status of the testes, and NOA is the result of abnormal gene

expression in the testes. The entire ejaculatory duct of NOA is

open and functioning normally, but the number of healthy sperm is

very low, which may be related to genetic mutations (5). Interstrand

cross-linking (ICL) has a direct effect on the proliferation of male

germ cells and sperm maturation, and the error repair of ICL will

lead to the production of NOA (6). Fanconi anemia (FA) is a

chromosomally inherited disease caused by mutations in the FA

genes. It affects the same signaling pathway through multiple sets of

genes and is highly sensitive to damage of intracellular genetic

material (7). Studies have found that the deletion of FA gene is

closely related to reproductive diseases, especially interference with

primordial germ cells (PGCs), including ovarian and breast cancer

in women and azoospermia in men (8–10). Some of the genes in the

FA pathway are important for the repair process of ICL of DNA

(11). In this review, we focus on exploring the relationship between

FA genes and male azoospermia. For example, Krausz et al. (12)

reported a high correlation between NOA and the pathogenic

variation of the Fanconi gene in the FA pathway; Tsui et al. (13)

also suspected that homozygous mutations in FANCM can lead to

the occurrence of NOA. The association between the Fanconi gene

and male NOA deserves further research, such as whether abnormal

DNA damage and calcium signaling abnormalities in FA have an

impact on sperm formation and maturation (14). Based on the

relevant research results in recent years, this review summarizes the

molecular-level interaction mechanism and relationship between

the specific genes of FA and NOA, aiming to provide helpful

insights for the treatment of azoospermia and research on FA

from a genetic perspective.
2 The mechanism of fanconi anemia

The FA pathway is associated with genetic disorders that

primarily play a role in DNA replication (11). DNA replication

includes processes such as unwinding, catalysis by DNA

polymerase, and DNA ligase connecting Okazaki fragments, and

replication is carried out in a semiconservative replication manner

(15). This process requires the collaboration of multiple enzymes

and is prone to errors. Damaged DNA needs to be repaired or

cleared in a timely manner, and FA signals are involved in this

process (15, 16). There are currently 22 known genes related to the

FA pathway (16): FANCA (17), FANCB (18), FANCC (19),

FANCD1 (BRCA2) (20), FANCD2 (21), FANCE (22), FANCF

(21), FANCG (XRCC9) (17, 23), FANCI (21), FANCJ (BRIP1/

BACH1) (24), FANCL (25), FANCM (26), FANCN (PALB2) (27),

FANCO (RAD51C) (28), FANCP (SLX4) (29), FANCQ (ERCC4)

(30, 31), FANCR (RAD51) (31), FANCS (BRCA1) (32), FANCT

(UBE2T) (25), FANCU (XRCC2) (33), FANCV (REV7) (34) and

FANCW (35, 36) (Table 1). Research has shown that the FA

pathway can be classified upstream, middle, and downstream of

FANCD2 ubiquitination: Upstream is mediated by a complex
Frontiers in Endocrinology 02
enzyme composed of FANCA, FANCB, FANCC, FANCE,

FANCF, FANCG, FANCI, FANCL and FANCM (110). The

ubiquitination of FANCD2 by these complex results from the

activation of FANCT by FANCL, and FANCD2 often binds to

FANCI, resulting in the ubiquitination of FANCD2-FANCI (ID2)

complex (111–113). The ubiquitination of the ID2 complex induces

processes such as cleavage and homologous recombination of

endonucleases, leading to de-ubiquitination and ultimately

completing DNA damage repair (114, 115) (Figure 1). In the FA

pathway, signaling networks formed by protein complex enzymes

such as FANCA can dynamically monitor the process of DNA

changes (116). Damage or termination of DNA replication forks

can activate upstream FA proteins, thereby regulating downstream

genes such as FANCP to correct DNA damage and restore normal

replication process (116). One of the most important links

connecting the upstream and downstream FA signaling pathways

is the ubiquitination of FANCI-FANCD2 (116). The FRT-flanked

neomycin cassette can target the FANCG gene in mouse embryonic

stem cells, causing the defect of this gene and further blocking the

protein signal network that binds FANCG to the SH3 domain of

RIISp, and the DNA repair of embryonic stem cells cannot be

completed (117, 118). Embryonic stem cells can differentiate into

germ cells, so blocking the FNACG signaling pathway may reduce

the number of sperm in mice (117–119). In addition, exogenous

stimuli such as cisplatin and mitomycin C lead to the production of

cellular ICL, where the FA protein recognizes and repairs damaged

DNA or excises faulty coding (120). When the FA gene is missing,

the damaged DNA accumulates in the cell, The resulting self-

nucleic acids activate the cyclic GMP-AMP synthase (cGAS) in

the cytoplasm to produce secondary messenger cGAMP, which in

turn activates type I interferons (IFN-I), which is involved in the

emergence of Fanconi related disease phenotypes via the cGAS-

STING-IFN-I axis (120, 121). It can be seen that FA, as a signal

pathway of target gene, is closely related to DNA damage repair. In

addition, studies have shown that abnormal DNA repair can lead to

the occurrence of NOA (6). Taking FA signaling pathway as the

starting point, we will elaborate on the effects and possible roles of

various FA genes in male NOA according to the upstream, middle,

and downstream processes of FANCD2 ubiquitination (Figure 2).
3 The role of ICL in repairing defects
leading to NOA occurrence

In physiological conditions, DNA replication is more common

in poorly differentiated embryonic stem cells with the ability to

divide (122). ICL is a type of DNA damage that poses great harm

during DNA replication, known as the obstruction of replication

forks, which has a significant effect on the development of germ

cells (123). ICL can terminate normal DNA unwinding, causing

replication and transcription abnormalities and leading to meiosis

arrest, chromosome breakage, and abnormal chromosome binding,

significantly damaging the cell’s proliferative ability and causing

abnormal germ cell development (124, 125). Zhang et al. found that

the Sertoli cell-only syndrome phenotype of NOA may be related to

ICL repair defects and is associated with DNA replication in germ
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TABLE 1 The position of human FA gene and its mechanism and influence on NOA.
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TABLE 1 Continued
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cells (126). In the upstream of the FA signaling pathway, mutations

in the FANCM/A/G/B/C gene have been shown to be associated

with human NOA (12, 46, 47, 49, 127). Among them, FANCM

defect will cause the FA core complex enzyme in the cell to be

unable to recognize ICL in time, and the deletion of FANCA/G/B/C

gene will cause the FA core complex enzyme to be unable to

associate with FANCD2 ubiquitination, resulting in abnormal

repair of ICL (17, 18, 37, 50). ICL persists and interferes with the

normal replication of DNA, eventually leading to the proliferation

of male germ cells and a decrease in male sperm count (124, 125).

The ubiquitination of FANCD2 is closely related to the repair of

ICL, and FANCD2mutations occur at the K561 site in patients with

FA. Due to genetic mutations, FANCD2 is unable to complete

ubiquitination (51). Failure of the FANCD2 ubiquitination process

causes cells to stall in the S phase (51), unable to produce mature

sperm. At the same time, in the downstream of the FA pathway,

homologous recombination mediated by FANCN/FANCU and

other proteins is involved in the subsequent ICL repair process,

and the defects of related genes lead to the reduction of sperm

quantity and quality (27, 51, 81, 95, 96). The essence of NOA is the

reduction of sperm count, which is often caused by the failure of

migration of PGCs (128) and abnormal mitosis and meiosis of

PGCs (8). For men, a defect in the repair of DNA cross-linking

between strands during the formation of sperm can cause problems

in the gene expression of PGCs, leading to defects in the sperm and

even the inability to form mature sperm, leading to NOA or

oligospermia (6). Therefore, the FA signaling pathway is related

to the occurrence of NOA, and the defects of related genes will

hinder the repair process of ICL and eventually lead to the

occurrence of NOA.
4 FA gene leads to the occurrence
of NOA

4.1 The effect of ID2 ubiquitination
upstream defects on NOA

4.1.1 FANCM
The expression product of FANCM is a protein comprising the

FA core complex. The FANCM protein has seven domains: aa 5-12,

aa 77-590, aa 661-800, aa 826-967, aa 1218-1251, aa 1818-1956, and

aa 1971-2030. Each domain is involved in different stages of FA and

has genetic significance for the formation of NOA (26, 129).

According to reports, FANCM mutants are present in patients

with NOA (129). Kherraf et al. analyzed 151 genes using whole-

exome sequencing and found a homozygous mutation in the

FANCM gene of patients with NOA (NM_020937.4: c.5791C>T;

p.Arg1931Ter) (127). Previous studies have shown that after

truncated FANCM mutations, the major histone fold binding

domain, MM1 (aa 826-967) domain, MM2 (aa 1218-1251)

domain, and ERCC4 (aa 1818-1956) domain cannot express the

corresponding proteins, leading to spermatogenesis disorders and
Frontiers in Endocrinology 06
infertility (38, 39). Furthermore, FANCM can regulate the

ubiquitination process of FANCD2 and play an important role in

DNA repair. Studies have shown that mutations in the DEAH (aa

77-590), MM1 (aa 826-967), and FANCM-PIPbox (aa 5-12)

domains of FANCM can lead to the inability to recruit FA

complexes and FANCD2 to undergo ubiquitination, leading to

the disruption of DNA repair processes (38, 40, 41), thereby

blocking the proliferation of germ cells. Yin et al. found that adult

mouse sperm inside the testicles with FANCM mutations were lost

and sperm maturation was delayed (42), which may be related to

DNA damage, such as FANCM binding to FAAP24 protein at the

termination of a replication fork and recognition of ICL in the S

phase (37). Therefore, during cell division, FANCM mutations may

lead to the formation of FA complexes and the inability of FANCD2

to complete ubiquitination, resulting in the inability to repair ICL.

Ultimately, the number of sperm in seminiferous tubules may

decrease because of the inability of spermatogonia cells to

proliferate and mature, leading to the occurrence of NOA.

4.1.2 FANCA-FANCG
The FANCA gene is currently one of the genes generating the

most interest (43), along with FANCG, also known as XRCC9 (23).

FANCA is an important gene for repairing DNA breakage and is

mainly expressed in the testes (130). The complex composed of two

gene-encoded proteins is one of the main elements involved in the

formation of ubiquitination complex enzymes (17). FANCA uses

the amino terminal nuclear localization signal to bind to the

FANCG protein to increase the content of the FANCA protein,

leading to the accumulation of FANC ubiquitinase in the nucleus

(44), which is conducive to stable DNA replication. In contrast, the

FANCG protein can assist the FANCA protein in DNA repair (17).

Krausz et al. found that pathogenic mutations in FANCA lead to

NOA (12). They sequenced two types of patients and found that the

first type had c.2639G>A mutations, while the second type had two

types of mutations, [NM_000135.2: c.3788-3790delTCT,

p.Phe1263del] and [NM_000135.2: c.3913C>T, p.Leu1305Phe],

both of which had significant pathogenicity (12). Simultaneously,

studies have found that FANCA mutated and showed high

expression (12) after biopsy of tissues from patients with NOA

(131). Furthermore, Wong et al. found that under the action of

FANCAtm1.1Hsc homozygotes, the number PGCs may decrease due

to their inability to survive or divide (43). Simultaneously, the

number of errors during meiosis in spermatocytes and apoptosis in

spermatocytes increase, ultimately resulting in almost zero sperm

count in the vas deferens (43). After mutation of the FANCG gene,

PGCs are blocked during the S phase, resulting in a decrease in the

number of PGCs and can interfere with the migration process of

PGCs to the testes through Rac1 (46). After a FANCA or FANCG

defect mutation, double stranded breaks in DNA become difficult to

repair (45). The FANCA-FANCG complex can interact with each

other, and the phenotype of the double mutation is consistent with

that of FANCA or FANCG single mutation, but with a higher degree

of harm (132). From this, it can be seen that the FANCA-FANCG
frontiersin.org
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complex has a regulatory effect on DNA interstrand cross-linking

repair and can lead to NOA by affecting the cell proliferation cycle,

especially the meiosis process of sperm.

4.1.3 FANCB
The FANCB gene is currently the only known FA gene located

on the X chromosome. However most current research focuses on

the relationship between this gene and female ovaries, breasts,

and other aspects and the research on male azoospermia is scarce.

The effects of FANCB on male reproduction can be attributed to

two pathways. The first pathway is for FANCB can accumulate in

spermatogonia and participate in the maintenance of

undifferentiated spermatogonia (47, 48). Kato et al. found that

the number of PGCs in male Fancb-mutant mice was significantly

reduced compared with that in the control group, and infertility

occurred (47). As PGCs decreased, the number of spermatogonial

cells that divided into spermatogonia also decreased, leading to a

decrease in sperm count and the occurrence of NOA. The second

pathway is that FANCB can participate in DNA damage repair,

ensuring normal meiosis. Studies have shown that the FA core

complex cannot ubiquitinate FANCD2 because of the mutant

FANCB, which leads to the failure of ICL repair. This prevents

normal homologous recombination (HR) and sister chromosome

exchange (SCEs), leading to failure of division (18). Therefore,

the FANCB mutation decreases the number of spermatogonia in

male testes and may reduce the success rate of meiosis by

hindering the repair of ICL and meiotic recombination process,

inducing NOA.
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4.1.4 FANCC
The expression product of the FANCC gene exists in the

cytoplasm and nuclear compartments (133). As a core complex of

FA, the function of FANCC to repair DNA damage can maintain

the activity of sperms and ensure their survival (19). FANCC does

not change during the cell cycle, but there is a certain degree of

dependent regulation (133). Nadler et al. found that mutations in

the FANCC gene can interfere with the mitotic process of PGCs,

and in males, these exhibit infertility (49). FANCC participates in

the ubiquitination process of the FA core complex (50). A mutation

in this gene will result in the inability of the FA core complex to

ubiquitinate, inactivating the FA pathway and preventing it from

participating in replication fork stability and cytoplasmic division,

which may further lead to the inability of primordial germ cells to

undergo mitosis and meiosis. The division of primordial germ cells

is impaired, preventing the formation of mature sperm. In

experiments in mice, mice with Fancc gene mutations

experienced a significant decrease in the number of sperms within

more than ten days (49). PGCs are precursors of sperm, and a

decrease in PGCs indicates a corresponding decrease in the number

of subsequently produced sperm (134). Low sperm count leads to a

series of male infertility diseases such as NOA.

4.1.5 FANCE
The product of the FANCE gene is a member of the FA core

complex (50), which is mainly involved in ICL repair. Fu et al. (52)

reported very few spermatocytes in the Fancemutant mouse model,

and that spermatocytes are directly related to spermatogenesis.
FIGURE 1

(By Figdraw) A model of the mechanism of action of FA genes. The FA gene action sites are divided into three parts: upper, middle, and lower.
Proteins such as FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCI, FANCL and FANCM that exist upstream combine to form FA core
complexes; ubiquitination of the ID2 complex located in the middle reaches is the main step in repairing DNA damage such as ICL, and the ID2
complex is the main pathway for activating downstream; the downstream protein SLX4 (FANCP) catalyzes ICL decoupling and binding to ERCC4
(FANCQ) through the UBZ-1 domain. REV7 (FANCV) and REV3 form a DNA polymerase complex for ICL repair. Under the action of FANCN, BRCA1
(FANCS) binds to BRCA2 (FANCD1) and acts together with RAD51 (FANCR) to repair DSB. RAD51C binds to XRCC3 to form a complex and is
dependent on RAD51 to maintain normal division.However, XRCC2 (FANCU) forms a complex with RAD51 and has replication restart effect, which
can repair homologous recombination. The C end of FANCW binds to PRA and is recruited by it to restart the replication fork. RAD51 (FANCR) can
be used to repair DNA double-strand break. FANCJ repairs DNA interstrand cross-linking through homologous recombination (HR). (Note: The
diagram is not the actual spatial configuration of the FA core complex, it is only a schematic diagram).
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Therefore, similar to NOA, Fance deficiency significantly reduces

the sperm count, leading to impaired reproductive function and

infertility symptoms in male mice (52, 135). Research has shown

that FANCE participates in ICL repair through both direct and

indirect pathways. In the direct pathway, FANCE can ubiquitinate

FANCD2 in the S phase and participate in the assembly of FA

complexes (51, 53). Then, FANCD2 locates the DNA damage site

and recruits FA protein for ICL repair (51). In the indirect pathway,

FANCE and FANCC participate in each other ’s nuclear

accumulation and form the FANCE/FANCC complex regulated

by FANCF (54)to participate in the FA pathway (55, 56). After

FANCE mutation, FANCC cannot accumulate in the nucleus, FA

complex cannot assemble (22), and FANCD2 cannot complete

ubiquitination, ultimately leading to ICL repair failure. Data

shows that FANCE mutations can arrest the cell division cycle

(57). Loss of FANCE leads to increase cell mortality rate, and cause

difficulty in spermatogenesis, often resulting in NOA (52, 57).

Simultaneously, cell cycle arrest can affect the development of

spermatogonial stem cells (136). As the earliest sperm cells,

spermatogonial stem cells are of great significance in male

reproduction. Therefore, FANCE deficiency can lead to cell cycle

arrest, affect spermatocyte and sperm development, and lead

to NOA.

4.1.6 FANCF
FANCF mainly exists in the nucleus and is an important

component of the core complex that constitutes the FA pathway,

playing a protective role on the genome (21). FANCF is an adapter

protein and has two relatively stable regions located at the N-

terminus and C-terminus. The C-terminal binding of FANCG to
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FANCF seems more stable, while the FANCC/FANCE complex can

bind to the N-terminal of FANCF (54). In this way, FANCF protein

tightly binds to other core complex components to maintain the

stability of the FA core complex and promote the ubiquitination of

the ID2 complex (58). Compared with other Fanconi genes, many

mechanisms of FANCF are not yet clear. Previous studies have

shown that FANCF mutations can cause instability in the FA

genome, damaging the gonads (59). According to relevant data

(137), FANCF defects can cause testicular lesions and testicular

cancer. Spermatogonia develop into sperm in the seminiferous

tubules within the testicles (138) (139),. Therefore, mutations in

FANCF can further damage the seminiferous tubules by causing

testicular damage and making them unable to provide a place for

sperm production, resulting in immature sperm development and

ultimately NOA. Furthermore, Mutations in FANCF protect the

crossover phenomenon of DNA, making it difficult to repair its

function and adversely affecting fertility (140). Therefore, the

deletion of the FANCF gene not only causes testicular lesions,

causing difficulty in spermatogenesis, but also affects seminiferous

tubules, leading to NOA.

4.1.7 FANCL/FANCT (UBE2T)
FANCL encodes the FA core complex protein E3 ubiquitin

ligase (141), and its encoded product plays an important role in

DNA damage repair. FANCT, also known as UBE2T, encodes E2

ubiquitin-conjugating enzyme (142). The complex formed by

FANCL/FANCT (E2-E3) (25) is the only known complex that

directly regulates FANCD2-FANCI (ID2) and positively affects

the ubiquitination of ID2 complexes. This complex can reduce

the DNA interstrand cross-links to a certain extent, inhibit DNA
FIGURE 2

(By Figdraw) Schematic diagram of the influence of FA gene on sperm development process. FA genes affect almost every stage from primitive germ
cells to sperm development. Mutations in the FANCA, FANCB, FANCV and FANCJ gene can cause apoptosis in primordial germ cells. During the
mitotic stage, FANCC, FANCT, FANCV and FANCL mutations prevent the formation of spermatogonia, and a group of genes also play an important
role in the formation of primary spermatocytes. Most genes affect the meiotic stage, while FANCD1, FANCM and FANCW mutant spermatocytes
cannot form mature sperm.
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segment crossovers that occur in some cells during DNA

replication, and ensure the stability of cellular genetics (61).

FANCD2, as a key factor in activating the FA pathway, appears

around the nucleus of S-phase PGCs in normal development,

indicating a correlation between the FA pathway and fertility

(62). Although there are not many reports on these two genes in

NOA diseases, we can speculate based on the above research results

that UBE2T mutation or knockout will result in disorder in the

PGCs in DNA replication and also affect normal mitosis (62), and

FANCLmutations may cause apoptosis in a large number of sperms

in the seminiferous tubules, and resulting in a sudden decrease in

sperm. Therefore, both FANCL and FANCT defects can damage

sperm formation and lead to NOA in men (143).
4.2 The effect of ID2 defect on NOA

FANCD2 is one of the most conserved members of the FA

family, and its mono-ubiquitination is key to activating the FA

pathway. FANCD2 can interact with other proteins to repair DNA

damage and play an important role in many stages of cell

development (144, 145). FANCI is mainly located in the

nucleolus and can regulate the transcription of ribosomes,

maintaining the relative stability of DNA (146, 147). FANCD2

and FANCI combine to form an ID2 complex, both of which are

mono-ubiquitinated substrates (21). ICL cannot be repaired

without the activation of the FA pathway, and this depends on

the mono-ubiquitination of FANCD2 and FANCI, which activates

the downstream FA pathway (148, 149). At the molecular level, the

ubiquitinated ID2 complex initiates downstream processes such as

nucleotide cleavage and homologous recombination, while at the

cellular level, it activates the cell cycle to continue dividing (63).

Ubiquitination binds the ID2 complex more firmly in space, thus

better protecting damaged DNA from external interference and

ensuring normal DNA damage response and repair (64). Moreover,

by phosphorylating FANCI with ATR kinase, the ID2 complex can

maintain its ubiquitination (150). After participating in the FA

pathway, the ID2 complex needs to be immediately de-

ubiquitinated, which is mediated by the ubiquitin-specific

peptidase USP1. Blocking the de-ubiquitination process will lead

to the failure of chromosomal homologous recombination

and the inability to produce spermatogenic cells (151).

Hypospermatogenesis is the testicular phenotype of patients with

NOA (152). Furthermore, in mice with Fancd2 deficiency, double

strand break (DSB) and crossovers cannot be repaired in a timely

manner, resulting in genetic information damage to PGCs during

division and minimal sperm count (65). Simultaneously, mutated

FANCI will induce FANCD2 lesions and lead to a decrease in the

number of undifferentiated spermatocytes, which may develop into

NOA (143). In summary, the ubiquitination, ATM and Rad3-

related phosphorylation, and de-ubiquitination processes of the

ID2 complex are indispensable. A mistake in any link can seriously

affect downstream homologous recombination processes (69),

leading to ICL repair failure and affecting the normal

development of male testes (66), thereby inducing NOA.
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4.3 The effect of ID2 ubiquitination
downstream defects on NOA

4.3.1 The effect of nucleolysis-related genes
on NOA
4.3.1.1 FANCP

FANCP, also known as SLX4, encodes a large scaffold protein

that assists structure-specific endonucleases. This protein is

important in maintaining gene stability in repairing various types

of DNA damage, such as DNA interstrand cross-links (29). This

gene is precisely located in pachytene sex chromatin and is closely

related to the genetic stability of sex chromosomes (153). The more

stable the inheritance of XY chromatin, the stronger the SLX4

intensity and the more complete the genetic material possessed by

the sperm (153, 154). We believe that the probability of NOA

occurring in a stable genetic environment will also be minimal. In

the process of repairing interchain crosslinks, FANCP decouple the

cross-linked portion (67). FANCP (SLX4) acts as a scaffold protein

and acts on DNA strand cross-linking through the UBZ-1 domain

to release the cross-linked portion (68). Simultaneously, this protein

can effectively inhibit the intermediate produced by homologous

recombination, and SLX4IP regulates the SLX4-XPF-ERCC1

complex, which can, to some extent, inhibit ICL (68). FANCP

regulates the correct segregation of chromosomes within PGCs.

Furthermore, research has found that the absence of SLX4 can lead

to the abnormal development of spermatogonia, which cannot

develop into mature sperm in the seminiferous tubules (139), and

the number of sperm decreases. A low number of mature sperm can

lead to a low number of sperm in the seminal vesicles, resulting in

NOA (155). We speculate that if SLX4 undergoes mutations or

deletions, the meiotic process may be halted owing to genetic

instability, resulting in the inability to produce sperm and NOA

or oligospermia.

4.3.1.2 FANCQ

FANCQ, also known as ERCC4 (156), encodes a protein mainly

involved in the repair of ICL. FANCQ plays a role downstream of

the FA pathway. XPF expressed through ERCC4 can form a

complex with ERCC1, which is recruited by SLX4 with the help

of FANCD2 mono-ubiquitination and directly acts on the ICL

repair site (30, 31, 69). In contrast, ERCC4 expresses a specific

nuclease XPF that participates in the nucleotide excision repair

necessary for ICL repair, thereby indirectly participating in ICL

repair (30, 70). FANCQ mutations exhibit cell cycle arrest induced

by mitomycin C, which may be due to chromosome breakage

caused by ICL repair defects (71, 72). Therefore, FANCQ

mutations may disrupt the process of sperm production or reduce

the number of sperm, and hypospermatogenesis and cell maturity

arrest are the histological phenotypes of the testicles in NOA (157).

Furthermore, FANCQ also plays an important role in the meiotic

recombination process. The SHOC1 protein is an ERCC4-like

protein, and plays a role in the meiotic process of spermatocytes,

promoting the formation of crossovers and ensuring correct

chromosome separation to produce haploid gametes, and the

ERCC4 protein also has this function (73, 74). Therefore, FANCQ
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mutations may result in chromosome recombination errors during

meiosis and arrest the spermatocyte cycle (73, 74). We summarized

the possible effects of FANCQ on NOA pathogenesis. FANCQ plays

important roles in ICL repair and meiotic recombination. FANCQ

mutation may prevent ICL repair, cause meiotic recombination

errors, and hinder the spermatocyte division cycle, leading to

apoptosis, and then lead to hypospermatogenesis often leads to

NOA (72).

4.3.2 The effect of TLS-related genes on NOA
4.3.2.1 FANCV

FANCV, also known as REV7/MAD2L2 (34, 75), encodes a

protein that can form a DNA polymerase complex with REV3 (76),

enabling FANCV to greatly promote REV3’s ability to repair DNA

damage and play an expanding role in ICL repair in the form of

enzymes (77, 78). ICL repair is closely related to spermatogenesis,

indicating the importance of FANCV in regulating cell mitosis and

cell development. Experimental reports show the extreme

abundance of REV7 in adult male testes (158). After the deletion

of this gene, the number of PGCs in mice decreases and they exhibit

infertility (79). Furthermore, studies have shown that after FANCV

mutation, PGCs undergo apoptosis during the embryonic stage,

resulting in spermatogenesis defects and testicular sperms are

underdeveloped (75). The structural domain mutations in the

interaction between FANCV and REV3 manifest as cell cycle

arrest, chromosome breakage, and difficulty in cell proliferation,

leading to difficulty in spermatogenesis (80). Therefore, REV7 can

maintain the normal morphology and function of sperms, and

FANCV mutations can lead to sperm maturity arrest, leading to

NOA (157).

4.3.3 The effect of homologous recombination
related genes on NOA

Homologous recombination is important in chromosomal

inheritance and DNA repair during mitosis and meiosis.

Homologous recombination maintains genome stability by

regulating damaged replication forks or filling DNA gaps, and

can be used to repair DNA double-strand break (159, 160).

Studies have shown that the FA pathway can also repair DNA

damage (161), and many genes in the FA gene family are involved

in homologous recombination processes, such as FANCR (RAD51),

FANCS (BRCA1), FANCD1 (BRCA2), and other genes that encode

crucial homologous recombination proteins (162). Homologous

recombination repair affects spermatogonial stem cells and may

be associated with NOA (163).

4.3.3.1 FANCN

FANCN, also known as PALB2, encodes a gene product that can

participate in homologous recombination repair, which is related to

the repair of ICL and the smooth progression of the cell cycle (27).

Cell cycle arrest and cell apoptosis often cause NOA. FANCN

recruits DNA damage sites by connecting one end of the coil

domain to FANCS (BRCA1), while the other end recruits

FANCD1 (BRCA2) and FANCR (RAD51) to DNA damage sites
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to initiate homologous recombination repair (82). Furthermore,

phosphorylation of FANCN by the cell cycle checkpoint regulatory

factor ataxia telangiectasia mutated can promote the repair

process of homologous recombination by RAD51 (164, 165).

The n-terminal mutation of FANCN prevents homologous

recombination repair involving FANCN (81, 83). According to

Simhadri et al., removing the Palb2 gene in mice can lead to a

significant reduction or apoptosis of male sperms, affecting fertility

(81). Defects in homologous recombination repair of cells can

hinder chromosomal recombination during decelerative

division, and spermatocytes exhibit cell cycle arrest (81). Male

spermatogonial stem cells will gradually develop into sperm

(166), and in mice lacking Palb2, the number of spermatogonial

stem cells significantly decreases. We speculate that the number of

male sperms lacking this gene will also show a downward trend,

resulting in a sudden decrease in the number of sperm formed in

the future. Therefore, FANCN mutations may be potential risk

factors for NOA.

4.3.3.2 FANCS

FANCS, also known as BRCA1 (167), encodes a protein that is

important in DNA damage repair and transcriptional regulation

(168, 169), and can also maintain genomic integrity and stability by

participating in cellular DNA damage repair (32). Research has

shown that BRCA1 can interact with Werner syndrome protein to

jointly repair ICL (170). According to Durocher et al., the BRCA1

gene is present in interstitial cells of the testis, and BRCA1

deficiency can lead to impaired expression in interstitial cells of

the testis (171). Interstitial cells of the testis play a controlling role in

male fertility, and if damaged, they can lead to a decrease in sperm

quality and quantity (172). Therefore, mutations in BRCA1 damage

interstitial cells of the testis, further affecting sperm count and

indirectly leading to NOA. Furthermore, research has found that

when FANCSmutates, the testicular volume significantly decreases,

the seminiferous tubules cannot produce sperm, and the expression

of genes related to the repair of DNA damage is reduced, making it

difficult to repair damaged spermatocytes in a timely manner (86).

Sciurano et al. found that spermatocyte division was stagnant and

spermatocyte death occurred in a patient with azoospermia (173).

Therefore, patients with FANCS mutations are likely to further

develop NOA due to irreversible damage to spermatocytes.

4.3.3.3 FANCD1

BRCA2, also known as FANCD1, encodes a protein that

regulates the RAD51 protein by participating in ID2

ubiquitination and binding to DNA, thereby participating in

homologous recombination repair processes (87, 88). BRCA2 can

control the stability of the genome while maintaining normal

meiotic processes, playing an important role in the maturation

and development of sperms (174). Studies have shown that BRCA2

is associated with male azoospermia and plays a controlling role in

meiosis (89). BRCA2 deficiency can lead to a meiotic disorder in

spermatocytes, leading to infertility and directly affecting

spermatogenesis, leading to male azoospermia or oligospermia
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(89). Shukron et al. compared the structure of male fruit flies with

Brca2 homozygous and heterozygous deletions, as well as wild-type

fruit flies, and found that male fruit flies with homozygous

mutations experienced sperm arrest, testicular development

abnormalities, and infertility (175). Shive et al. found

oligospermia in male zebrafish in a homozygous mutation model

of Brca2 (176). Simultaneously, a report showed that homozygous

deletion of FANCD1 resulted lower sperm maturation (90).

Therefore, mutated FANCD1 may lead to the failure of ICL

repair, meiosis stagnation at the S-phase checkpoint, failure of the

spermatocyte-to-sperm process to proceed normally, gradual

apoptosis, and oligospermia or aspermia (20, 87, 89).

4.3.3.4 FANCO and FANCR

FANCO is also known as RAD51C, and FANCR is also known as

RAD51 (177). FANCO, a newly isolated member of the RAD51

(FANCR) family, shares genetic similarities with other members.

Therefore, RAD51C is a collateral homolog of RAD51 (178). Both

play important roles in repairing DNA interstrand cross-links. In

DNA damage, overexpression of the RAD51 paraprotein XRCC3

increases resistance to ICL inducers, while RAD51C binds to

XRCC3 to form a complex dependent on RAD51 to ensure

proper chromosome separation during meiosis (28, 91, 92).

Mutation or deletion of RAD51C can enhance the sensitivity of

cross-linking between DNA strands (93), and RAD51C can

transmit DNA damage signals to induce DNA damage repair

(179). Some studies have found that RAD51 mutants develop

azoospermia due to meiosis termination (95). Simultaneously, in

a mouse model, Qin et al. found (180) that the knockout of Rad51

led to abnormal development of spermatogonocytes, a reduced

number of pachytene spermatocytes, or apoptosis. If defective

RAD51 results in a reduced sperm count, NOA is further

increased. Similarly, mutations in RAD51C can induce the

suspension of spermatocyte development, which mainly occurs in

the first phase of meiotic division and is related to abnormal

chromosome breakage or premature sister chromosome

separation (94). The further development of meiotic arrest in

spermatocytes may result in NOA (173) Therefore, FANCO and

FANCR are interdependent, ensuring normal progression of

meiosis. If both mutations occur, they can affect spermatogonia

and spermatocytes, causing NOA.

4.3.3.5 FANCU

The alias of FANCU is XRCC2, and its expression product can

form a complex BCDX2 with FANCR (RAD51) homologous

compounds (33, 178, 181). This complex plays a role in

replication restart in homologous recombination repair (96).

FANCU mutation reduces the stability of BCDX2 (96), resulting

in the collapse of the replication fork due to the inability to restart,

resulting in chromosome breakage and forced termination of cell

division (97, 98). Sanger sequencing of Fancumutant mice revealed

a recessive mutation in Fancu (C. 41T>C/p.Leu14Pro), which

stopped the meiosis of cells, thus leading to azoospermia (95).
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BCDX2 complex participates in the formation of RAD51 nuclear

protein filament by binding with single-stranded DNA, and plays a

role in double-strand break repair in the assembly of RAD51 lesions

(33). FANCU mutant cells showed defects in homologous

recombination damage repair (99). Simultaneously, Zhang et al.

used whole-exome sequencing to sequence two patients with

infertility and found that male patients with NOA had C. 41T>C

(p.Leu14Pro) XRCC2 mutation, and believed that the occurrence of

NOA in the family was caused by XRCC2 mutation (182).

Therefore, we concluded that the mutation of FANCU led to the

defective assembly of RAD51 lesions, which resulted in the failure of

homologous recombination repair and apoptosis (99). The

consequence of incomplete spermatocyte division may be sperm

apoptosis, resulting in NOA.

4.3.3.6 FANCW

FANCW, also known as RFWD3, encodes a protein that plays a

role in the synthesis of homologous recombination repair DNA

(87). After binding to RPA, the C-terminal of FANCW is recruited

by RPA to the stalled replication fork, and the protein is

phosphorylated by checkpoint kinase Ataxia-telangiectasia

mutated (ATM) and Rad3-related (ATR) to participate in the

ATM/ATR signaling pathway and control the DNA replication

checkpoint to restart the replication fork (100–104). FANCW

accelerates the separation of RPA from single-stranded DNA by

regulating its ubiquitination (105), while also promoting the

recruitment of repair proteins such as RAD51 and RAD52 by

RPA, enabling them to jointly locate DNA damage sites and

initiate RAD51-mediated homologous recombination repair (35,

36, 183). This may be due to the FANCWmutation, which prevents

isolation of RPA from the RAD51 lesion, prevents the formation of

RAD51 nuclear filaments, and leads to cell cycle arrest (105, 106).

Cell cycle arrest greatly affects the development of spermatogonial

stem cells, causing them to stagnate, unable to produce

spermatogonial cells or sperm, resulting in a decreased sperm

count (136). Simultaneously, the interaction between

spermatogonial stem cells and Sertoli cells is regulated, and

Sertoli cells promote the maturation and development of

testicular seminiferous tubules (166). Although there is currently

no relevant literature on FANCW mutations directly leading to

NOA, we speculate that FANCW defects can cause low sperm levels

and immature spermatogenic tubules, affecting the maturation and

development of spermatogonial stem cells and supporting cells,

thereby inducing NOA.

4.3.3.7 FANCJ

The FANCJ gene is called BRIP1 or BACH1 (184). The protein

encoded by this gene acts DNA helicase and plays an important role

in repairing ICL and DNA DSB through HR (24). Studies have

found that mutated FANCJ seriously affects spermatogenesis (107).

Compared with normal cells, cells with FANCJ deficiency or lack of

FANCJ catalytic activity have an increased sensitivity to DNA ICL

(185), while cells with FANCJ mutations significantly reduce their
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resistance to ICL (108), resulting in a significant increase in the

number of ICL within cells. Furthermore, FANCJ can control the

normal division of chromosomes by regulating the replication fork,

reducing the destruction of chromatin structure during the

replication process, ensuring normal chromatin replication, and

maintaining genetic stability (109). According to experimental

studies in mice, FANCJ causes genetic defects or mutations, with

only some males exhibiting fertility. However, there is a significant

reduction in testicular volume and a sudden decrease in the number

of spermatogonial stem cells (107). NOA is characterized by a low

sperm level, whereas spermatogonial stem cells are the most

primitive spermatogonial cells, which gradually develop into

sperm (186). Although no direct evidence currently links FANCJ

mutations to the occurrence of NOA, based on our research, we

speculate that FANCJ mutations may cause genetic and DNA

disorders in primordial germ cells, preventing the formation of

normal sperms and leading to NOA.
5 Summary and outlook

The treatment methods for infertility, including for NOA, are

not mature internationally and can be roughly divided into

auxiliary technologies, such as spermatogonial stem cell

transplantation and intracytoplasmic sperm injection (187, 188).

The diagnosis and treatment of NOA through the FA pathway has

broad research prospects. If activation of the FA pathway fails, it

can lead to unstable DNA replication in PGCs, exacerbating their

damage and significantly reducing their number during division,

leading to NOA or oligospermia in males. Using the FA pathway to

repair the ICL and restore the number of mature sperm in the testes

of patients with NOA may cure the disease. Mutations in any FA

gene may cause irreparable damage to male reproductive function

through the FA pathway and may even be fatal. A key step in the FA

pathway is successful ubiquitination of the ID2 complex to repair

the damage caused by ICL. Activation of the FA pathway controls

the rapidly proliferating PGCs to stabilize the replication and

transcription of their DNA (8). At present, relatively novel

studies mainly focus on gene level changes such as mRNA

therapy and lentiviral vector therapy (189, 190). At the same

time, adeno-associated virus integration site 1 has also been

found to guide FANCA to target the binding of DNA missing

this gene fragment to achieve changes in cell phenotype (191). In

the future, perhaps we can actively encourage genetic testing and

premarital physical examination to reduce the birth of NOA

children to some extent from the perspective of prevention. For

patients who have been clinically diagnosed with NOA, we can use

special mRNA or other special carriers to bind the DNA of FA gene

defect to make the expression of FA gene complete again, so as to

maintain the number of viable sperm in NOA patients. At the same

time, the development of FA protein replacement drugs may be of

great significance for maintaining the normal function of FA

pathway and improving the reproductive defects in NOA

patients, and it is expected to become a new therapeutic strategy.
Frontiers in Endocrinology 12
This article reviews the correlation between NOA and FA,

categorizes them according to the different gene properties, and

attempts to elucidate the relevant mechanisms and significance. We

hope that this review will be helpful in solving the problems of

DNA damage and FA pathway activation failure caused by FA gene

mutations and provide new development ideas and concepts for

NOA researchers.
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