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Biogenic amines are signaling molecules with multiple roles in the central

nervous system and in peripheral organs, including the gonads. A series of

studies indicated that these molecules, their biosynthetic enzymes and their

receptors are present in the testis and that they are involved in the regulation of

male reproductive physiology and/or pathology. This mini-review aims to

summarize the current knowledge in this field and to pinpoint existing

research gaps. We suggest that the widespread clinical use of pharmacological

agonists/antagonists of these signaling molecules, calls for new investigations in

this area. They are necessary to evaluate the relevance of biogenic amines for

human male fertility and infertility, as well as the potential value of at least one of

them as an anti-aging compound in the testis.
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1 Introduction

Biogenic amines are best known for their roles as neurotransmitters, namely three

catecholamines (dopamine –DA–, norepinephrine –NE–, and epinephrine –Epi–),

serotonin (5-HT) and histamine (HA) (1). Furthermore, the biogenic amine melatonin

is a neurotransmitter-like compound (2).

Catecholamines in the brain play an important role in the secretion of GnRH and the

regulation of the pituitary–testicular axis mainly via a1-adrenergic receptors (3–5). The

existence of a descending multi-synaptic, pituitary-independent neural pathway linking the

hypothalamus and the testis, which involves, at least in part, activation of b-adrenergic
receptors, was reported in the male rat (6). D1- and/or D2-like DA receptors are expressed

in GnRH neurons and thereby participate in the regulation of the endocrine function of the

testis (3, 7). GnRH neurons also express the HA receptors H1 and H2 (5, 8), and synaptic

contacts between the serotoninergic system and GnRH neurons were described (9). Pineal-

derived melatonin, through its binding to specific sites in the suprachiasmatic nucleus and

the pars tuberalis, and via modulation of the kisspeptin (kiss) signaling, influences GnRH

and the adenohypophyseal gonadotropins (10–12).
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Besides central actions, biogenic amines play roles in peripheral

organs including the male gonad. This short review attempts to

summarize available insights into sources, receptors, signaling

mechanisms, local actions and the clinical relevance of biogenic

amines in the testis. We also pinpoint research gaps, concerning

their role in male reproduction. We want to apologize to authors,

whose work we do not mention here, due the short format of this

mini-review.
2 Biogenic amines in the testis

2.1 Sources of biogenic amines

The main common sources of biogenic amines in peripheral

organs are innervation, bloodstream and local production. The

testicular sources of the three catecholamines (DA, NE and Epi),

5-HT and HA are described in detail below.

2.1.1 Testicular innervation
Studies revealing the existence of a catecholaminergic and a

serotonergic innervation of the testis are summarized in Table 1. In

human and non-human primates, adrenergic sympathetic innervation

of the testis is documented. In addition, intrinsic neuron-like cell bodies
Frontiers in Endocrinology 02
with a bipolar or a multipolar elongated phenotype (19–21) were

reported, based on the immunodetection of typical markers such as

tyrosine hydroxylase (TH). Age-related differences in the number of

neuronal elements were found in the testes of the Rhesus monkey.

Neuron-like cell bodies were only detected in immature animals. Nerve

fibers were observed at all ages but they were more prominent in

prepubertal and pubertal monkeys (19, 20). A significant increase in

the number of catecholaminergic fibers and neuron-like cells was

described in testicular biopsies of patients with idiopathic infertility

(21). These changes were accompanied by increased local immune cells

(mast cells and macrophages), possibly hinting to mutual interactions

(20, 22, 31, 32). Because in the human testis these immune cells may

modulate Sertoli cell activity, androgen production and fibrotic events

in the tubular wall (31–35), an interactive network between the

testicular catecholaminergic input and the local immune system

may exist.

Of note, the mentioned studies focus on the catecholaminergic

nature of testicular nerve fibers. Yet, in catecholaminergic nerve

fibers of the human testis several co-transmitters exist, including

peptides such as the neuropeptide Y (NPY), ATP, as well as others

(36–38). Once released, these may have important actions, as

documented recently for ATP (39, 40). Yet their specific and

potentially species-dependent presence in the testis and the

interaction with catecholamines are not well known and remain

to be fully explored.

2.1.2 Blood circulatory system as a source of
testicular biogenic amines

Catecholamines are typical adrenal hormones. In human

plasma, resting catecholamine levels range from 30 to 70 pg/ml

for Epi, 200 to 300 pg/ml for NE and 25 to 100 pg/ml for DA. Levels

increase within minutes upon the onset of stress (41, 42).

Specifically, during stress, one can assume that catecholamines

can reach the testis in concentrations, which allow interaction

with their receptors that were described in different human and

rodent somatic cells (22, 43–45).

Blood levels of gastrointestinal tract-derived 5-HT in man range

between 200 and 300 ng/ml (42). Via interaction with the

serotonergic transporter (SERT) and/or specific testicular

receptors described in rodent Leydig, Sertoli and germ cells

(spermatogonia and sperm) (43, 46–48), blood-derived 5-HT

might also influence testicular processes.

Melatonin, once released from the pineal, is taken up by the

testis and modulates testicular function (49–55). In humans,

physiological levels of melatonin in the blood range from several

pg/ml during the day to more than 50 pg/ml at its nighttime

peak (56).

Basal plasma HA levels in humans are normally very low (less

than 1 ng/ml) (57) but they significantly rise in anaphylaxis (58).

Although the potential impact of blood HA on testicular activity is

still controversial, HA receptors and regulatory actions exerted by

this biogenic amine were described in the testis (59–61).

2.1.3 Other testicular sources of biogenic amines
Enzymes involved in the biosynthesis of catecholamines and

histamine were reported to be expressed in germ cells. Leydig cells
TABLE 1 Catecholaminergic and serotonergic innervation of the testis.

Biogenic Amines Innervated
regions of
the testis

Species References

Catecholamines Capsule,
Mediastinum,

Tunica albuginea
and vasculosa,

Blood vessels near
the rete testis,

Surrounding the
myoid cells of
seminiferous

tubules.
Absent in

the parenchyma.

Rodents
(i.e. rat,
hamster)

(13–18)

Capsule,
Mediastinum,

Tunica albuginea
and vasculosa,

Blood vessels near
the rete testis,

Surrounding the
myoid cells of
seminiferous

tubules,
Interstitium

intermingled with
Leydig cells, mast

cells
and macrophages.

Primates
(i.e.

monkey,
human)

(19–27)

Serotonin Capsule,
Interstitium

surrounding the
Leydig cells.

Rat (28–30)
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express the biosynthetic enzymes of the biogenic amines namely

catecholamines, 5-HT, HA and melatonin. Melatonin is also locally

produced in peritubular cells of the seminiferous tubules, while

testicular immune cells synthesize 5-HT, histamine and melatonin.

Table 2 summaries the pertinent reports.

Mast cell store HA and 5-HT in secretory granules, and

macrophages express the SERT protein and they have been

proposed as an alternative source of HA and 5-HT (68, 69).

Testicular mast cell and macrophage numbers change during

sexual development and in idiopathic infertility in monkeys and

humans, respectively (19–21). Moreover, alterations in the

testicular population of immune cells were observed during sexual

maturation, aging as well as in the seasonally breeding Syrian

hamster (47, 70). Particularly, the increase in mast cells during

sexual development was accompanied by higher local levels of 5-HT

and its metabolite 5-hydroxyindoleacetic acid in hamster

testes (47).
3 Receptors, signaling mechanisms
and local actions of biogenic amines
in the testis

DA receptors D1 and D2 were reported in mouse and rat Leydig

cells and germ cells (62, 71), and DA was implicated in the

regulation of size and proliferation of rat Leydig cells (72). While

D1 receptors participate in the epigenetic reprogramming, namely

histone modifications triggered by cocaine in mice germ cells (73),

D2 receptors, via decreased cAMP levels, may regulate

spermatogenesis and spermiogenesis in rats (74). In addition, DA
Frontiers in Endocrinology 03
presumably via D2 receptors and AKT/PKB phosphorylation, can

modulate sperm capacitation, motility and acrosomal integrity in

several species (i.e. rat, stallion, boar) (74–76).

In hamsters, Epi and NE stimulate testicular steroidogenesis via

a1- and b1-adrenergic receptors (43, 77–79). It was reported that

a1/b1-adrenergic receptors interact with local 5-HT2 receptors

mediating the response of the testicular corticotropin releasing

hormone (CRH) system on cAMP and testosterone production

(43). Interestingly, the impact of catecholaminergic stimuli on

testicular testosterone production in hamsters exposed to a short-

day photoperiod is greater than in gonads of animals kept under a

long day photoperiod (77, 79).

In a1b-adrenergic receptor knockout male mice, testicular

steroidogenic capacity is affected, Sertoli cell/Leydig cell

communication is altered, and disruption of spermatogenesis was

reported (80). Stojkov et al. (81) described that oral administration

of an a1-adrenergic receptor blocker, mitigated stress induced

disturbance of cAMP/cGMP signaling in testosterone-producing

rat Leydig cells. An early study from Cohen et al. (82) reported that

chronic exposure of the testicular vasculature to NE may cause

spermatogenic dysfunction in subfertile men with varicocele. On

the contrary, Nagao (83) proposed that Epi and NE may facilitate

the in vitro viability of meiotic prophase spermatocytes in rats.

In hamster and human testicular macrophages, b1- and b2-
adrenergic receptors were described and Epi and NE participated in

the up-regulation of cyclooxygenase 2 (COX2) expression,

prostaglandin production and the generation of local

inflammatory processes (22). Laser microdissection followed by

RT-PCR studies suggested that human testicular peritubular cells

(HTPCs) of the wall of the seminiferous tubules express a1B-, a1D-,

b1- and b2-adrenergic receptors. Phenylephrine, an a1-adrenergic

receptor agonist, increased intracellular Ca2+-levels and induced

inflammatory processes in cultured HTPCs (45). Therefore,

elevation of catecholamines, for instance during stress, may also

be able to promote inflammatory events by targeting these

testicular cells.

It was further reported that stress increases testicular synthesis

of HA in rats (84, 85). HA receptors H1 and H2 were found in germ

cells, Leydig cells, Sertoli cells and peritubular cells of the human

testis (60, 61). Human, mouse and rat Leydig cells also express H4

receptors (86–88).

HA regulates testosterone production in the MA-10 mouse

Leydig tumor cell line, in primary culture of rat and wall lizard

Leydig cells, and in testicular fragments of gonadally regressed

hamsters kept in a short photoperiod (59, 87, 89). In histidine

decarboxylase (HDC) knockout mice, the steroidogenic capacity of

Leydig cells is significantly lower than in wild type mice (89). HA

seems to exert a biphasic effect on testicular steroidogenesis in

rodents (89). HA-induced stimulation of steroidogenesis seems

primarily be mediated via H2 receptors and an increment of

cAMP, HA-induced reduction of steroidogenesis may involve H1

receptors, stimulation of the PLC/IP3 pathway and increased nitric

oxide synthase (NOS) activity (90). Via H1 and H2 receptors, HA

also modulates the diameter of seminiferous tubules, testicular

peritubular cells activity as well as sperm count and quality in

different species (i.e. mouse, rat, bull, human) (61, 91–96). In
TABLE 2 Expression of catecholamines, serotonin, histamine and
melatonin biosynthetic enzymes in the testis.

Biogenic
Amines

Biosynthetic
enzymes

Testicular
cell type

Species References

Catecholamines TH Leydig cells
Germ cells

mouse,
human

(62–64)

AACDC Leydig cells human (63, 64)

BDH Leydig cells human (63, 64)

Serotonin TPH Leydig cells
Mast cells

human,
hamster

(43, 47, 63)

Histamine HDC Leydig cells
Germ cells
Mast cells

Macrophages

mouse,
human

(60, 61,
65, 66)

Melatonin SNAT Leydig cells
Mast cells
Peritubular

cells

hamster,
ram

(52, 54, 67)

ASMT Leydig cells
Mast cells
Peritubular

cells

hamster,
ram

(52, 54, 67)
TH, tyrosine hydroxylase; AACDC, aromatic amino acid decarboxylase; DBH, dopamine
(DA) beta-hydroxylase; PNMT, phenylethanolamine-N-methyltransferase; TPH, tryptophan
hydroxylase; HDC, histidine decarboxylase; SNAT, serotonin N-acetyltransferase; ASMT, N-
acetylserotonin-O-methyltransferase.
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testicular macrophages, HA inhibits phagocytosis and superoxide

production, at least in the wall lizards (87).

In rodent Leydig cells, 5-HT1A, 5-HT1B and 5-HT2A receptors

were found (43, 48, 97), and 5-HT and agonists of the 5-HT1A and

5-HT2A receptor subtypes inhibited cAMP and testosterone

production, acting through the local CRH system and testicular

a1- and b1-adrenergic receptors (43, 47, 97). 5-HT3A receptors were

reported in rat Sertoli cells, spermatogonia and spermatocytes,

while 5-HT1B and 5-HT2A receptors were described in

spermatogonia and sperm (48). Furthermore, 5-HT seems to be

involved in the development of normal spermatogenesis and sperm

quality in rats (98–100), as well as in the regulation of testicular

blood flow (101).

MT1 and MT2 receptors were reported in mouse, rat, hamster

and bovine Sertoli cells (55, 102, 103), where this indoleamine

stimulates lactate dehydrogenase (LDH) expression and activity

and, consequently, increases intracellular lactate production (55,

102). As recently described, daily oral melatonin supplementation

positively regulates testicular expression of LDH (55) in men with

idiopathic infertility. Melatonin also increased the levels of the

glucose transporter 1 (GLUT1), glucose consumption and acetate

production in rat Sertoli cells (102). Moreover, it upregulated

pyruvate dehydrogenase E1 alpha subunit (PDHA1)

phosphorylation in mouse and hamster Sertoli cells (55), inhibited

the pyruvate dehydrogenase complex and increased the levels of

pyruvate, which can be used to generate lactate via LDH activity (55).

Of note, melatonin abolishes the insulin-dependent increment

of intracellular lactate and alanine, and the decrease of the lactate/

alanine ratio in rat Sertoli cells controlling, in consequence, the

intracellular redox state (102). In agreement with these results,

Rossi et al. (55) reported that melatonin prevents the increase of

lipid peroxidation and the decrease of the expression of antioxidant

enzymes in hamster Sertoli cells.

Melatonin receptors are detectable in human and rodent

testicular mast cells and macrophages (51). While melatonin

inhibits proliferation and the expression of pro-inflammatory

cytokines and COX2 in testicular macrophages, it increases the

expression levels of enzymes of the anti-oxidant system and

decreases the generation of reactive oxygen species (ROS) in

testicular mast cells. Therefore, melatonin exerts anti-proliferative

and anti-inflammatory effects on testicular macrophages and

protective effects against oxidative stress on testicular mast cells (51).

In addition, MT1 receptors were identified in Leydig cells (49,

50). In MA-10 mouse Leydig tumor cells, as well as in primary

cultures of rat and hamster Leydig cells, melatonin inhibited the

production of sex steroid hormones (49, 104, 105). At least in the

Syrian hamster, melatonin, through specific MT1 receptors of

Leydig cells stimulated CRH production. CRH, via CRH-R1

receptors, activated tyrosine phosphatases leading to reduced

phosphorylation of erk 44/42 and jnk 54/46, down-regulation of

c-jun and c-fos, inhibition of transcription factors phosphorylation,

decreased expression of StAR and finally inhibition of androgen

production (43, 49, 50, 52). Melatonin can also regulate the

expression of steroidogenic genes by binding to its nuclear

receptors RORa in mammalian Leydig cells (106).
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Circannual rhythms of circulating and testicular melatonin

occur in response to changes of the daily photoperiod. This

regulates steroidogenesis and the overall reproductive status of

male Syrian hamsters, which are seasonal breeders (49, 107). In

this species, the aging-related decrease of the testicular melatonin

concentration was related to a diminished androgen production

and an increment in inflammatory markers and indicators of

oxidative stress (70, 108). Interestingly, daily i.p. injections of

melatonin in old hamsters, as well as the transfer of aged animals

from a long day to a short-day photoperiod, increased testicular

melatonin levels and significantly improved the local inflammatory-

oxidant status (70, 108). Particularly, hamster peritubular myoid

cells of the tubular wall express MT1 and MT2 receptors, and

melatonin regulates immune and inflammatory functions, as well

as their contractile capacity (54).

In infertile men with unexplained azoospermia, lower testicular

melatonin concentrations were found if testicular morphological

abnormalities were present, together with increased macrophage

numbers, elevated lipid peroxidation, expression of inflammation-

related markers and antioxidant enzymes, as well as tubular wall

collagen fibers disorganization and thickening (53). Consequently,

testicular melatonin concentrations in biopsies of infertile men were

negatively correlated with the gonadal levels of inflammatory

markers (51, 53). In these patients, a daily oral supplementation

with a 3 mg dose of melatonin, which is currently used to treat sleep

disorders, not only increased the testicular levels of this indoleamine

but also improved testicular inflammatory-oxidative status, as well

as the tubular wall architecture (53). Therefore, melatonin appears

to have a positive impact on testicular steroidogenesis and

inflammatory-oxidative events.
4 Discussion

The studies mentioned clearly indicate that modulation of testicular

functions can result upon interaction of biogenic amines with their

target cells, Supplementary graphic summarizes the current knowledge

about receptors and functions of biogenic amines in the different cell

populations of the testis, However, this narrative also reveals that we

only have a rudimentary knowledge of the actions of these signaling

molecules in the testis. This has several reasons. For example, most of

the investigations stem from earlier years and used traditional methods,

including immunohistochemistry, RT-PCR or pharmacological tools

(natural biogenic amines, agonists, antagonists). These approaches have

obvious limitation as, for example, antibodies in some cases may lack

specificity. Lack of specificity is also an issue for pharmacological

agonist/antagonists. Furthermore, often isolated cells were examined

and systemic studies were rarely performed. The fact that several species

and different states of gonadal development or functionality were

studied, may explain the sometimes contradictory results. Therefore,

the currently limited knowledge about the role of biogenic amines in

peripheral tissues calls for focused investigations in (systemic and

cellular) models that resemble closely the human. They are required

to answer the question, how important biogenic amines are for themale

gonad especially in the human.
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We believe that new studies trying to answer this question are

worthwhile being performed, as biogenic amines, and drugs

targeting their biosynthetic pathways and/or receptors are in daily

clinical use or are being developed for a variety of conditions, yet

their potential testicular consequences are not well known.

Looking at the widespread use of biogenic amines and/or their

agonists/antagonists, in man, the importance of better insights

becomes clear. In brief, a DA-precursor is used to treat Parkinson’s

disease, DA-agonists are used in human prolactinomas, acromegaly,

and in type 2 diabetes (109). Epi, NE and agonists of adrenergic

receptors are used as vasopressors in acute hypotensive states, as

vasoconstrictors to reduce bleeding, and as nasal decongestants, but

also in the treatment of anaphylaxis and bronchospasms. Adrenergic

receptors antagonists are employed to treat hypertension, congestive

heart failure, and some cardiovascular diseases. Inhibitors of

catecholamine reuptake are part of several psychiatric treatments

and used against musculoskeletal pain (110). 5-HT reuptake

inhibitors are prescribed to treat depression (111, 112). Melatonin

is prescribed to improve sleep in men suffering from insomnia and jet

lag (113). As a consequence of its strong antioxidant action, the

therapeutic potential of melatonin was suggested to be extended to

Parkinson’s disease, cancer and male infertility (53, 114, 115). Finally,

anti-HA medications and mast cell stabilizers are frequently used in

allergic diseases (116).

Of note, there is vast body of evidence showing that

catecholamines interact with cells of the immune system (117–

120). Immune cells and innervation density and pattern in the

male gonad change during development and infertility (20–22, 31,

32). Yet, the clinical implications of the interplay of adrenergic

compounds and local immune cells of the testis, have not yet

been investigated.

Furthermore, adrenergic nerves are important players in the aging

of hematopoietic stem cell niche in bone marrow of mice (121). The

testis also harbors a stem cell niche, yet the possibility of an influence of

testicular nerves and biogenic amines on the spermatogonial stem cell

niche is not known, neither in young adult nor in middle-aged adult

and agedmen.With exception of melatonin, for which current findings

in rodents indicate a potential beneficial role on the steroidogenic

activity and the local inflammatory-oxidative status in aged testes (70,

108, 122), biogenic amines and testicular aging represent almost

unexplored field of research.

We believe that the time for new studies of the old topic

“biogenic amines and their roles in the testis”, yet with a focus on

the clinical, i.e. human-specific aspects, may have come. Modern

techniques will provide unprecedented novel insights and may

identify adequate models. In particular, (spatial) multiomics

approaches (123, 124) will be instrumental, i.e. the integration of

molecular (DNA, RNA, protein) data and lineage data, possibly

with three-dimensional spatial resolution (or even four-

dimensional, temporal resolution). Indeed, more and more single

cell sequencing studies are already being published (125, 126) and
Frontiers in Endocrinology 05
together with other approaches (127, 128), they eventually will

provide a clear and precise picture of the sources of biogenic

amines, and their testicular receptors, as well as their changes

during development, aging and diseases.
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71. Otth C, Torres M, Ramıŕez A, Fernandez JC, Castro M, Rauch MC, et al. Novel
identification of peripheral dopaminergic D2 receptor in male germ cells. J Cell
Biochem. (2007) 100:141–50. doi: 10.1002/jcb.21037

72. Dirami G, Teerds KJ, Cooke BA. Effect of a dopamine agonist on the
development of Leydig cell hyperplasia in Sprague-Dawley rats. Toxicol Appl
Pharmacol. (1996) 141:169–77. doi: 10.1006/taap.1996.0273
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