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Background: The onset and progression of chronic kidney disease (CKD) has

been linked to metabolic syndrome (MetS), with the results of recent

observational studies supporting a potential link between renal failure and

MetS. The causal nature of this relationship, however, remains uncertain. This

study thus leveraged a Mendelian Randomization (MR) approach to probe the

causal link of MetS with renal failure.

Methods: A genetic database was initially used to identify SNPs associated with

MetS and components thereof, after which causality was evaluated through the

inverse variance weighted (IVW), MR-Egger regression, and weighted media

techniques. Results were subsequently validated through sensitivity analyses.

Results: IVW (OR = 1.48, 95% CI = 1.21–1.82, P =1.60E−04) and weighted median

(OR = 1.58, 95% CI =1.15–2.17, P = 4.64E-03) analyses revealed that MetS was

linked to an elevated risk of renal failure. When evaluating the specific

components of MetS, waist circumference was found to be causally related to

renal failure using the IVW (OR= 1.58, 95% CI = 1.39–1.81, P = 1.74e-11), MR-

Egger (OR= 1.54, 95% CI = 1.03–2.29, P = 0.036), and weighted median (OR=

1.82, 95% CI = 1.48–2.24, P = 1.17e-8). The IVW method also revealed a causal

association of hypertension with renal failure (OR= 1.95, 95% CI = 1.34–2.86, P =

5.42e-04), while renal failure was not causally related to fasting blood glucose,

triglyceride levels, or HDL-C levels.

Conclusion: These data offer further support for the existence of a causal

association of MetS with kidney failure. It is thus vital that MetS be effectively

managed in patients with CKD in clinical settings, particularly for patients with

hypertension or a high waist circumference who are obese. Adequate

interventions in these patient populations have the potential to prevent or

delay the development of renal failure.
KEYWORDS
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1 Introduction

Metabolic syndrome (MetS) has emerged as an increasingly

pressing threat to global public health (1). It is defined as a series of

abnormal conditions including hypertension, abdominal obesity,

decreased HDL-C levels, elevated levels of triglycerides (TGs), and

hyperglycemia. This metabolic dysregulation can ultimately cause

substantial renal damage such that the kidneys are among the most

well-established target organs associated withMetS.MetS is thus closely

related to chronic kidney disease (CKD) onset and progression (2, 3).

Despite several reports documenting a link betweenMetS and end-stage

renal disease (ESRD) or renal failure, whether these links are causal in

nature remains an open question (3, 4). The kidneys are highly

vascularized such that they are highly susceptible to changes at the

microvascular level. Causal links between MetS and the onset,

acceleration, and progression of CKD have been reported. There is

thus a vital need to fully elucidate the mechanisms through whichMetS

contributes to renal failure so that effective interventional strategies can

be devised to slow the progression of disease and prevent ESRD (5).

Kidney disease impacts >850 million people worldwide, including

acute kidney injuries, CKD, and treated kidney failure characterized by

renal insufficiency with a GFR < 15 mL/min/1.73 m2 (6). The leading

causes of renal disease include arterial hypertension and diabetes

mellitus (7), with other contributing conditions also playing

a role such as genetic mutations, renal vasculitis, infectious

glomerulonephritis, ureteral obstruction, and autoimmune disorders

including Goodpasture’s disease, lupus nephritis, and IgA nephropathy

(8, 9). Given the immense public health impact of CKD, particularly in

lower and low-middle income countries, it is vital that new strategies be

developed to reduce the burden of disease (10).While prior studies have

documented links between MetS and both CKD and ESRD (3, 11, 12),

relatively little data is currently available that pertains specifically to the

association between MetS and CKD or ESRD onset (13). Those studies

that have been performed were largely retrospective in design such that

they are susceptible to the potential for bias due to the effects of

confounding factors including limited sample sizes, short follow-up

durations, and reverse causality (14).

Mendelian randomization (MR) strategies provide a means of

minimizing the effects of confounding factors or reverse causality,

making them ideal forprobing the causal linkofMetSwith renal failure

(15). In the absence of pleiotropy, MetS-related genetic mutations

should have an impact on renal failure incidence if there is indeed a

causal link of the exposure (MetS) with the outcome variable (renal

failure). Given the absence of any definitive conclusions regarding the

causal link of MetS with renal failure, the present study was developed

inwhich anMR analysis was performed to probe the causal impacts of

MetS on renal failure in order to provide guidance for efforts to treat or

prevent renal failure.
2 Methods

2.1 Overview of MR analyses

MR analyses employ SNPs as instrumental variables (IVs),

providing a means of overcoming the effects of confounding
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factors when examining potential causal links between particular

risk factors and forms of disease (16). This analytical strategy takes

advantage of the wealth of genetic variants present in genome-wide

association study (GWAS) datasets to facilitate the identification of

SNPs related to particular exposures (e.g., MetS) and outcomes (e.g.,

renal failure). As genotypes are randomly established via meiosis

before birth (17), they can be utilized in MR analyses to mitigate

possible confounding effects and to explore causal links of

exposures with outcomes. IVs employed in these MR analyses

must meet with three key assumptions (18, 19): they must be

strongly correlated with the exposure being studies (20),

independent of confounding factors, they must not be linked to

the outcome through any other cause (21), Influencing the

outcomes exclusively through the exposure, as illustrated

in Figure 1.
2.2 Data source

The FinnGen project, a large genetics research program in

Finland, compiles GWAS and PheWAS findings across various

diseases to investigate the correlation between genomic data and

health traits in the Finnish population. The GWAS ATLAS database

encompasses GWAS outcomes from 4,756 human phenotypes, with

genetic correlation analyses conducted among different traits. The

GWAS Catalog curated by the European Bioinformatics Institute

(EBI) summarizes published GWAS findings across a wide

spectrum of diseases and phenotypes. CNCR CTGLAB offers

GWAS summary statistics for over 100 common diseases and

human phenotypes, spanning metabolic, cardiovascular, immune,

oncological, and other disease categories. The data are sourced from

public databases available from the aforementioned sources.

Detailed URLs for data collection are provided in Table 1. All

personal data were anonymized, and ethical approval and informed

consent were waived.
2.3 Instrumental variable selection

IVs were obtained from the most recent summary-level GWAS

data and used to conduct a two-sample MR analysis investigating
FIGURE 1

The hypotheses that must be met for Mendelian
randomization studies.
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causal associations of MetS with renal failure. Variants for MetS

were from the Complex Trait Genetics Lab (CTG) dataset

comprising 461,920 individuals of European ancestry with

structural equation modeling to identify MetS-related genetic

variants (22). IVs were selected based on a strict series of criteria

(19): only those SNPs exhibiting genome-wide significance (P < 5 ×

10-8) were eligible for consideration (20), employing the PLINK

algorithm with precision, the removal of linkage disequilibrium was

undertaken by setting a stringent r2 threshold at 0.001, coupled with

a clumping distance parameter of 10,000 kb (21), and eliminating

SNPs related to confounders (23), as well as using harmonizing

processes to remove ambiguous and palindromic SNPs. Pleiotropic

SNPs were also removed. The MR analysis included 161 total SNPs.

Details regarding the utilized IVs are presented in Table 1, with the

F-statistic values > 10 being indicative of greater strength when

predicting renal failure (24). Genetic variants related to MetS were

derived from a GWAS dataset and screened to ensure the adequate

strength of these variants as IVs. Only those IVs with an F-statistic >

10 were included, ensuring that the findings were robust (see

Table 1). Genetic instruments pertaining to fasting blood glucose

(FBG) could be attained from a comprehensive database

encompassing 58,074 participants, all of European ancestry,

adjusting for body mass index (BMI) (25), increasing the validity

of these results. Screening led to the identification of 7 FBG-related

SNPs that were included in this analysis. A comprehensive set of

537 SNPs was involved in the assay. Waist circumference (WC)-

related genetic instruments were derived from the Medical Research

Council Integrative Epidemiology Unit (MRC-IEU) UK Biobank

GWAS pipeline consisting of data from 462,166 individuals of

European ancestry. Data pertaining to hypertension from the

MRC-IEU UK Biobank pipeline was based on results from

119,731 cases and 343,202 controls, all of whom were of

European ancestry, yielding 301 SNPs following screening.

Summary statistics for HDL-C and TG were attained from the

Global Lipids Genetics Consortium (GLGC), encompassing a
Frontiers in Endocrinology 03
participant pool where 96% belonged to European ancestry (26).

After screening, 122 and 70 SNPs associated with these two

respective parameters were identified.
2.4 Statistical analysis

Bonferroni-corrected two-tailed P-values < 0.008 (0.05/

6 = 0.008) were regarded as significant for this MR analysis. MR

estimates are presented in the form of odds ratios (ORs) and 95%

confidence intervals (CIs). R2 values were computed to indicate the

proportion of exposure variance explained by the selected IVs. The

strength of the relationships between IVs and exposures was

assessed with the F-statistic (Table 1). It was attempted to carry

out the statistical analysis utilizing the TwoSampleMR package (v

0.5.8) in R (v 4.3.2). To ensure the robustness of the MR estimates,

we conducted additional sensitivity analyses. In our MR analysis,

where all SNPs were assumed to be valid instrumental variables, the

inverse variance weighting (IVW) method was our primary

analytical approach. Furthermore, we employed three sensitivity

analyses to validate our findings, including the weighted median

method, the MR-Egger method, and the MRPRESSO (Multiple

Residuals and Outliers of Effectiveness) method.
3 Results

3.1 Causal associations of MetS with
renal failure

Based on the PLINK algorithm clumping step, 161 SNPs

intricately linked to MetS were selected for use in this MR

analysis. SNPs related to the outcome and palindromic SNPs

were excluded. The results of MR and sensitivity analyses are

shown in Table 2 while corresponding scatter plots and forest
TABLE 1 Study data sources and strength analyses.

Exposure Ancestry Sample size
(case/
control)

Data sources R2

(%)
F-
statistic

Source

Metabolic
syndrome

European 461,920 Jorim J.
Tielbeek et al.

0.98 54.37 https://ctg.cncr.nl/software/summary_statistics

FBG European 13,556 Alisa K
Manning et al

0.76 82.24 https://gwas.mrcieu.ac.uk/datasets/ebi-
a-GCST005186/

WC European 462,166 MRC-IEU 0.75 51.63 https://gwas.mrcieu.ac.uk/datasets/

Hypertension European 119,731/343,202 MRC-IEU 0.69 56.77 https://gwas.mrcieu.ac.uk/

HDL-C Mixed
(96% European)

187,167 GLGC 0.90 119.70 https://gwas.mrcieu.ac.uk/datasets/

Triglycerides Mixed
(96% European)

177,861 GLGC 0.90 150.16 https://gwas.mrcieu.ac.uk/datasets/

Renal failure European 5,951/212,841 FinnGen
Consortium

/ / www.finngen.fi/f
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plots are presented in Figures 2, 3. These plots confirmed a causal

link of MetS with a greater risk of renal failure, as confirmed

through the IVW (OR = 1.48, 95% CI = 1.21–1.82, P = 1.60E−04),

weighted median (OR = 1.58, 95% CI = 1.15–2.17, P = 4.64E-03),

and MR-Egger (MRE) analyses (OR = 1.54, 95% CI = 1.03–2.29, P =

0.044) (Table 2). These results remained significant when analyses

were conducted with random-effects models owing to the presence

of heterogeneity (P < 0.05) as demonstrated by the Cochran Q-test

for MRE (P = 0.044) and IVW analyses (P = 0.049). No significant

MRE intercept (MREI) values were detected (intercept = -5.04e-05;

P = 0.992), andMR-PRESSO results (P-value = 0.748) did not reveal

any directional pleiotropy. Symmetrical funnel plots were generated

(Supplementary Figure S1 (namely SFS1)), and leave-one-out

(LOO) sensitivity analyses did not detect any individual

SNPs that significantly affected the overall results (refer to
Frontiers in Endocrinology 04
Supplementary Figure S2 (namely SFS2)). These results confirmed

the stability of this MR analysis.
3.2 Causal associations of MetS
components with renal failure

Using IVs related to different exposures, including 7, 537, 301, 122,

and 70 SNPs associated with FBG, WC, hypertension, HDL-C, and

TG, the causal links between different components of MetS and renal

failure were further probed. Following the exclusion of unavailable or

palindromic SNPs from thepooleddataset, these analyses revealed that

increasedWCwas causally related to renal failurewhenusing the IVW,

MRE, andweightedmedian (OR=1.58, 95%CI = 1.39–1.81,P= 1.74e-

11;OR=1.54, 95%CI=1.03–2.29,P=0.036;OR=1.82, 95%CI=1.48–
TABLE 2 The relationship between MetS or components thereof and renal failure in the MR analysis.

Exposure Method OR (95%CI) P-value Cochran
Q test
P-value

Egger_
intercept

P-Egger_
intercept

MR-PRESSO
P-value

Metabolic
syndrome

0.748

Inverse variance 1.48 (1.21–1.82) 1.60E-04 0.049

MR Egger 1.49 (0.84–2.65) 1.80E-01 0.0442 -5.04e-05 0.992

Weighted median 1.58 (1.15–2.17) 4.64E-03

FBG 0.232

Inverse variance 1.18 (0.96–1.45) 0.119 0.131

MR Egger 1.26 (0.68–2.35) 0.492 0.083 -0.00849 0.819

Weighted median 1.24 (1.03–1.51) 0.027

WC 0.05

Inverse variance 1.58(1.39–1.81) 1.74E-11 0.048

MR Egger 1.54(1.03–2.29) 0.036 0.045 0.00050 0.870

Weighted median 1.82(1.48–2.24) 1.17E-08

Hypertension 0.486

Inverse variance 1.95(1.34–2.86) 0.001 9.56e-06

MR Egger 1.41 (0.49–4.03) 0.519 8.76e-06 0.00280 0.515

Weighted median 1.21 (0.86–2.45) 0.167

HDL-C 0.056

Inverse variance 0.99 (0.09–1.09) 0.838

MR Egger 1.23 (1.03–1.47) 0.026 0.146 -0.01185 0.006

Weighted median 1.00 (0.86–1.17) 0.950 0.066

Triglycerides 0.495

Inverse
variance weighted

1.05(0.94–1.17) 0.389 0.470

MR Egger 1.01(0.85–1.20) 0.942 0.449 0.00270 0.549

Weighted median 1.05(0.89–1.25) 0.562
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2.24, P = 1.17e-8). Both scatter and forest plots, as illuminated in

Figures 1 and 2, provided visual evidence in support of these

conclusions. The Cochran Q test revealed significant heterogeneity

(IVW,P=0.048;MRE,P=0.045), such thata random-effectsmodelwas
Frontiers in Endocrinology 05
employed for these analyses. No multicollinearity was detected when

using the MREI test (intercept = - 0.00050; P = 0.870) or the MR-

PRESSO test (P value (particularly for global test) = 0.05). A funnel plot

(SFS1) and the LOO approach (SFS2) additionally supported these

findings. MR analyses performed with the IVWmethod also revealed a

clear, significant, causal link betweenhypertension and an increased risk

of renal failure (OR= 1.95, 95%CI = 1.34–2.86, P = 5.42E-04) (Table 2),

with the resultsbeingpresented inscatter and forestplots, as illustrated in

Figures1, 2.Notably, a random-effectsmodelwas employedowing to the

presence of significant heterogeneity (IVW, P = 9.56e-06; MRE, P =

8.76e-06). No multicollinearity was detected using the MREI test

(intercept = - 0.00280; P = 0.515) or MR-PRESSO test (P value

(particularly for global test) = 0.486). Renal failure was not

significantly associated with any of the three other analyzed

indices (Table 2).

4 Discussion

This study is the first report to our knowledge employing a

large-scale MR approach to probe the potential causal association of
B C

D E F

A

FIGURE 2

Scatter plots corresponding to MetS and components thereof. Scatter plots are shown corresponding to the relationship between renal failure and
MetS (A), FBG (B), WC (C), hypertension (D), HDL-C (E), and TG (F). MetS, metabolic syndrome; FBG, fasting blood glucose; WC, waist
circumference; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides.
FIGURE 3

ORs pertaining to MetS and its constituent components.
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MetS or components thereof with renal failure incidence. These

results revealed a significant link between the development of renal

failure and MetS, WC, and hypertension. The robust nature of

these results was further confirmed through sensitivity and

multiplicity analyses.

MetS consists of a series of cardiovascular risk factors that are

related to the onset and progression of CKD (5), with recent

evidence strongly linking MetS and CKD (27). In a cross-

sectional analysis, MetS incidence was found to be related to CK

incidence irrespective of BMI, while WC and hypertension were

identified as the MetS components most closely related to renal

failure (28), in line with the present results. A meta-analysis

determined that the combination of WC and TF levels can be

effectively used to assess CKD risk (29), and there is also cross-

sectional evidence suggesting that MetS or chronic inflammation

are related to renal impairment, with a particularly strong link

between low-grade inflammation and stage 3+ CKD in individuals

with MetS, whereas the same was not true in individuals without

MetS (30). Transplant kidney loss and cardiovascular disease-

related death have been linked to MetS diagnosis following renal

transplantation (31). Further cross-sectional evidence suggests that

obese individuals exhibit a significant correlation between MetS and

CKD, while the same is not true in individuals who are non-obese

(32). These discrepant results may be related to confounding factor-

related biases introduced in observational studies. As the present

MR analyses were conducted at the genetic level, this research could

notably mitigate the influences of confounding variables,

encompassing external environmental factors, lifestyle elements,

and dietary practices, thereby boosting the reliability of

the outcomes.

Our study findings indicate that there is no causal relationship

between FBG, HDL-C, and triglycerides and renal failure in

individuals with MetS. This lack of causality may be attributed to

various factors, such as genetic predisposition, environmental

influences, and other confounding variables. It is important to

note that while hypertension, abnormal glucose metabolism,

hyperuricemia, and dyslipidemia are established risk factors for

CKD (33–35), they are not directly linked to renal failure in the

context of MetS. Animal and human studies have demonstrated

that hyperinsulinemia can enhance sodium reabsorption and

induce glomerular hyperfiltration, thereby contributing to kidney

injury (36–38). Excessive levels of insulin may result in renal

damage. Additionally, insulin resistance can initiate and

exacerbate CKD by impairing podocytes and basement

membranes through chronic inflammation and oxidative stress.

Despite these theoretical underpinnings, abnormalities in glucose

metabolism and lipid metabolism have the potential to serve as risk

factors for CKD and kidney failure. Metabolic markers such as

(Triglyceride-glucose)TyG, MetS-IR, and TG/HDL-C have been

observed to be markedly increased in individuals with metabolic

syndrome. However, in certain cross-sectional studies, elevated TyG

levels were linked to CKD solely in hypertensive patients aged over

65 years (39). One study revealed a notable association between the

TyG index and CKD in hypertensive patients with abnormal

glucose metabolism, independent of other conventional risk

factors. In contrast, a nonlinear relationship was observed
Frontiers in Endocrinology 06
between the TyG index and CKD, where the risk initially

decreased and then increased with a gradual elevation in TyG

levels (40). This pattern mirrors the findings of our study,

suggesting a potential strong causal relationship between these

risk factors in stratified patient groups. There could be

unaccounted genetic variants, treatment interventions, lifestyle

factors, and disease stratification variables that might influence

the causal association between components of Mets and

kidney failure.

As the anthropometric parameters that can most effectively

measure visceral adipose tissue mass, WC is strongly linearly

correlated with abdominal obesity (41). Obesity, in turn, is an

important metabolic condition that is closely associated with the

incidence of CKD, ESRD, and renal failure. There is ample evidence

supporting a significant relationship between obesity, CKD

development, and renal failure (42–44), with those individuals

exhibiting abdominal obesity facing a greater risk of CKD,

potentially owing to renal sinus fat deposits. Indeed, the available

evidence regarding correlations between fat deposits in the renal

sinuses or other sites, particular metabolic indices, anthropometric

measurements, and clinical characteristics including blood pressure

suggests that renal sinus fat acts as an ectopic fat depot related to

renal metabolic activity. Renal sinus fat is closely related to obesity-

associated conditions including CKD, atherosclerosis, and

hypertension (45–47). The Framingham trial found that those

patients presenting with elevated levels of renal sinus fat were

more likely to exhibit CKD and hypertension, even when

controlling for BMI and visceral adipose tissue (47). Higher levels

of renal sinus fat are also related to a greater risk of

microalbuminuria, which is associated with greater major adverse

cardiovascular event and death risk among patients experiencing

albuminuria and renal impairment (48–50).

MR studies have offered clear evidence in support of a causal

link of MetS with elevated CKD risk (27). Specific MetS

components, in particular hypertension, have consistently been

shown to be related to a greater risk of CKD incidence. In this

study, 161 MetS-related SNPs were initially examined, leading to

the identification of a clear positive causal link of MetS with renal

failure using IVW and weighted median analytical approaches.

Specific analyses of MetS components further revealed that WC

and hypertension were associated with a significant increase in renal

failure risk. Although prior observational studies have noted links

between BG, TG, or HDL-C and the incidence of CKD or renal

failure (51–55), the present approach failed to detect any significant

causal association between these metabolic markers and renal

failure. Overall, these data suggest that the link between MetS and

renal failure may be primarily attributable to the effects of visceral

obesity and hypertension, emphasizing the key role that these

metabolic factors play in kidney disease pathogenesis.

In past studies, researchers have largely utilized retrospective

approaches, introducing confounding variables that may have

adversely impacted study results. Addressing these issues by

conducting large-scale randomized clinical trials can be expensive

and labor-intensive, complicating the research process. In contrast,

the MR approach employed herein offers a means of readily

minimizing the risk of error due to reverse causality of
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confounding effects, enabling more accurate and precise analyses of

the links between MetS or components thereof and renal failure.

Through the use of extant GWAS summary-level data, this study

performed in-depth analyses of both MetS as a whole and its

specific components, with corresponding sensitivity analyses

providing greater credibility to these analytical results. These

sensitivity analyses are vital for the identification and correction

of potential errors, ensuring greater result stability and reliability.

This in-depth analytical strategy yielded greater validity to the

overall approach, ensuring that the causal link of MetS with renal

failure could be examined in detail.

This study is subject to some limitations. The results presented

herein are primarily derived from a population of European

ancestry. As such, the generalizability of these findings to

populations of different ancestries may be limited. The unique

genetic make up, lifestyle, and environmental factors prevalent in

different populations could potentially influence the relationship

between MetS and kidney failure. Therefore, it is crucial to replicate

these findings in diverse populations to ensure their broad

applicability. In addition, no stratified or subgroup analyses were

conducted in this study, potentially limiting the ability to detect

causal relationships of MetS with different types of renal failure.

Future research efforts are thus warranted to address these

limitations, including conducting studies in diverse populations

and performing stratified or subgroup analyses, in order to better

understand how MetS is linked to kidney failure. In addition to the

aforementioned limitations, it is important to acknowledge the

assumptions inherent in MR analysis. MR relies on three core

assumptions: (i) associated with the exposure (the relevance

assumption); (ii) have no common cause with the outcome (the

independence assumption); and (iii) have effects on the outcome

solely through the exposure (the exclusion restriction assumption)

(18). In MR, (i) is relatively straightforward to test, while (ii) and

(iii) are difficult to establish unequivocally. As a prominent

example, horizontal or type I pleiotropy has been shown to be

common in genetic variation, which can bias MR estimates (56, 57).

This occurs when a genetic instrument is associated with multiple

traits other than the outcome of interest. To detect and correct this

as best as possible, we used various MR tests as sensitivity analyses

that each aim to adjust for or account for the presence of horizontal

pleiotropy, including MR-PRESSO, as well as MR-Egger and

weighted median methods. There is no universally accepted

method that is perfectly robust to horizontal pleiotropy, but we

take the best current approach by using multiple methods and

examining the consistency of results.
5 Conclusion

In conclusion, these findings provide support for a causal

association of MetS with renal failure. There is thus a clear need

for clinicians to carefully monitor patients with MetS and

evaluate these individuals for the risk of advancement to the

state of renal failure. In CKD patients, there is a need to more
Frontiers in Endocrinology 07
effectively manage MetS, focusing in particular on those

individuals with a larger WC and the management of

hypertension in these patients.
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31. Pedrollo EF, Corrêa C, Nicoletto BB, Manfro RC, Leitão CB, Souza GC, et al.
Effects of metabolic syndrome on kidney transplantation outcomes: a systematic review
and meta-analysis. Transplant International: Off J Eur Soc Organ Transplant. (2016)
29:1059–66. doi: 10.1111/tri.12805

32. Yoon YS, Park HS, Yun KE, Kim SB. Obesity and metabolic syndrome-related
chronic kidney disease in nondiabetic, nonhypertensive adults.Metab: Clin Exp. (2009)
58:1737–42. doi: 10.1016/j.metabol.2009.05.029

33. Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin
resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases.
Neuropharmacology. (2022) 203:108877. doi: 10.1016/j.neuropharm.2021.108877

34. Yang S, Kwak S, Song YH, Han SS, Lee HS, Kang S, et al. Association of
longitudinal trajectories of insulin resistance with adverse renal outcomes. Diabetes
Care. (2022) 45:1268–75. doi: 10.2337/dc21–2521
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2024.1392466/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2024.1392466/full#supplementary-material
https://doi.org/10.1016/j.diabres.2022.109924
https://doi.org/10.1111/ijcp.13201
https://doi.org/10.2215/cjn.09870912
https://doi.org/10.2215/cjn.02180311
https://doi.org/10.1111/obr.13649
https://doi.org/10.3390/biomedicines11102828
https://doi.org/10.3390/biomedicines11102828
https://doi.org/10.1016/j.mehy.2004.11.048
https://doi.org/10.1111/j.1523-1755.2004.00773.x
https://doi.org/10.1016/j.pharmthera.2010.05.006
https://doi.org/10.1016/j.pharmthera.2010.05.006
https://doi.org/10.1016/s2214&ndash;109x(23)00570&ndash;3
https://doi.org/10.5812/ijem.61201
https://doi.org/10.1080/0886022x.2019.1611602
https://doi.org/10.1007/s11906-012-0254-y
https://doi.org/10.1681/asn.2016010098
https://doi.org/10.1093/ije/dyh132
https://doi.org/10.1038/s41588&ndash;020-0631&ndash;4
https://doi.org/10.1038/s41588&ndash;020-0631&ndash;4
https://doi.org/10.1101/cshperspect.a041302
https://doi.org/10.1093/ije/dyv071
https://doi.org/10.1001/jama.290.10.1345
https://doi.org/10.1016/j.jegh.2017.07.004
https://doi.org/10.1016/j.jegh.2017.07.004
https://doi.org/10.3389/fonc.2018.00326
https://doi.org/10.2337/db22&ndash;0478
https://doi.org/10.1161/circulationaha.109.192644
https://doi.org/10.1093/ije/dyq151
https://doi.org/10.1038/ng.2274
https://doi.org/10.1038/ng.2797
https://doi.org/10.1089/met.2023.0161
https://doi.org/10.1038/s41598&ndash;023-48333&ndash;9
https://doi.org/10.7570/jomes23037
https://doi.org/10.3346/jkms.2012.27.6.630
https://doi.org/10.1111/tri.12805
https://doi.org/10.1016/j.metabol.2009.05.029
https://doi.org/10.1016/j.neuropharm.2021.108877
https://doi.org/10.2337/dc21&ndash;2521
https://doi.org/10.3389/fendo.2024.1392466
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cai et al. 10.3389/fendo.2024.1392466
35. Morales-Villegas E. Dyslipidemia, hypertension and diabetes metaflammation.
A unique mechanism for 3 risk factors. Curr Hypertens Rev. (2014). 9:278–96.
doi: 10.2174/1573402110666140702091315

36. Esteghamati A, Ashraf H, Nakhjavani M, Najafian B, Hamidi S, Abbasi M.
Insulin resistance is an independent correlate of increased urine albumin excretion: a
cross-sectional study in Iranian Type 2 diabetic patientsDiabetic Med: J British Diabetic
Assoc. (2009) 26:177–81. doi: 10.1111/j.1464-5491.2008.02653.x

37. Dengel DR, Goldberg AP, Mayuga RS, Kairis GM, Weir MR. Insulin resistance,
elevated glomerular filtration fraction, and renal injury. Hypertens (Dallas Tex: 1979).
(1996) 28:127–32. doi: 10.1161/01.hyp.28.1.127

38. Andronico G, Ferraro-Mortellaro R, Mangano MT, Romé M, Raspanti F, Pinto
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